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INTRODUCTION 

A common argument against linear utility function for monetary returns is, 
that an agent with such a utility function would have no incentive to insure himself 
against possible “loss”. However, this argument seems to collapse if the linear utility 
function for monetary returns is state dependent and the “probability of the gain or 
loss” is spelt out as the “probability of the state of nature (SON) in which there is 
the gain or loss” with the constant marginal utility of monetary returns in the “worse” 
state being more than the constant marginal utility of money in the “better” state. In 
what follows we will refer to states of naure (SONs). 

The seminal contribution of Kahneman and Tversky (Kahneman and Tversky 
1979) noted the experimentally verified observation that agents tend to have a 
marginal utility of loss that is no less- if not higher-than the marginal utility of gain, 
so that a typical utility function for monetary returns u:ℝ ℝ may be of the form 
u(x) = u+max{x,0} + u-min{x,0} with u-  u+ > 0. This phenomenon is known as 
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“loss aversion”. Thus, any utility function of this form can be represented by a pair 
of real numbers (u-, u+) where u-  u+ > 0. Allowance is made for the possibility of 
u- = u+. It is generally assumed that under normal circumstances u- - u+ is a non-
decreasing function of initial wealth, thereby implying that wealthier individuals are 
more “risk averse” than those individuals who are less wealthy. 

The dominant interpretation of probability in expected utility theory, is the 
one due to Ramsey and de Finetti. Brief discussions along with intuitive motivation 
of such probabilities are available in two recent papers (Lahiri 2023a, Lahiri 2023b). 
The Ramsey-de Finetti subjective probability of an “event” or “state of nature” (say 
E) that is assessed by an agent is the price (say p) that the agent would we willing to 
pay for a simple bet that returns one unit of money if state of nature ‘E’ occurs and 
nothing otherwise, so that the expected monetary value of the simple bet to the agent 
is zero. Thus, if the average utility of money in state of nature E is a constant, say  
> 0, then for one unit of money in state of nature E, the agent will be willing to forego 
p units of utility and for  units of money in state of nature E the agent will be 
willing to forego p units of utility, the latter being the utility the agent willingly 
forgoes for  simple bets of the type we have just discussed.  simple bets, each of 
which returns one unit of money if E occurs and nothing otherwise, is identical to a 
bet that returns  unit of money if E occurs and nothing otherwise. Thus, Ramsey-
de Finetti subjective probability fits comfortably with “expected utility theory” based 
on constant average state dependent utility. On the other hand, if the average utility 
in state of nature E is “non-constant”, then there exists  such that the average utility 
of  units of money is not equal to the average utility of p units of money. For a bet 
that returns  units of money in state of nature E and nothing otherwise, the agent 
will be “willingly foregoing” the utility of p units of money and not ‘p’ times the 
utility of  units of money, the latter being the expected utility of the bet to the agent. 
Hence, on the face of it, there seems to be a mismatch between Ramsey-de Finetti 
subjective probability and expected utility theory based on such an interpretation, if 
state-dependent average utility of money is “non-constant”.  

In this paper we attempt a reconciliation of Ramsey-de Finetti subjective 
probability with the kind of loss aversion that Kahneman and Tversky had suggested, 
by allowing an agent to sell a “simple bet on an event” at a higher price than what 
the agent would be willing to pay to buy it. Perhaps this price wedge reflects a 
“transaction cost” that the seller incurs. After all, transaction costs are not incurred 
in “thought experiments”- including the ones used for the purpose of evaluating 
Ramsey-de Finetti subjective probabilities. Alternatively, it could be the “normal 
profit” or “the opportunity cost of the seller’s labour time” as in microeconomics. 
Whether justified or not, such an argument is one way in which the conflict between 
“loss aversion” and Ramsey-de Finetti subjective probabilities can be resolved. This 
requires invoking “state-dependent linear utility functions for monetary gains and 
losses” while allowing for the average utility of losses to exceed the average utility 
of gains. This allows, decision analysis based on expected utility to fit meaningfully 
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with the concept of expected utility based on Ramsey-de Finetti probabilities as well 
as loss aversion, keeping in mind the “caveat” for the price wedge in terms of 
transaction costs or normal profits that we discussed earlier. A comprehensive 
exposition of the early stages of the analysis of decision making under uncertainty 
with state dependent preferences is available in the work of Karni (Karni 1985).    

In the next section of the paper, we provide a motivation for our discussion in 
the subsequent sections, by considering a “toy model” of insurance against a risky 
loss. We apply expected state dependent linear utility analysis in this model and 
show that insurance is possible under state-dependent “risk neutrality”. In the third 
section, we present the formal framework for “expected utility theory with state-
dependent linear utility functions for monetary returns”. Using concepts introduced 
in this section, in subsequent sections we introduce “first order stochastic 
dominance”, “mean-preserving spread”, “increasing-concave linear utility profiles” 
and “risk aversion”. As an application of the expected utility theory developed here, 
we analyze the contract that a monopolist would offer in an insurance market that 
allowed for partial coverage of loss.  

In what follows we often refer to “monetary gains and losses” as “monetary 
returns”. All proofs of major results are relegated to an appendix of this paper. We 
hope that with this paper, we are able to provide an incremental impetus for further 
development for decision analysis with linear utility functions for money. 

MOTIVATION- INSURING AGAINST RISKY LOSS 

Consider a situation with 2 states of nature 1,2, where an agent with initial 
wealth w > 0 may face a loss of L(0, w) units of money in the second SON. Let 
p(0,1) be the probability of loss. Suppose that his utility function for monetary 
returns in SON i, is a function of the above form with (𝑢௜

ି, 𝑢௜
ା) being the slopes for 

losses and gains respectively in SON ‘i’.  
There are two ways in which insurance can be introduced in this setting. First 

is a variant of the traditional textbook setting where we assume 𝑢ଶ
ି > 𝑢ଵ

ି. Even an 
individual who is not affected by the loss, would react to the news of the loss- by 
leaning closer towards caution and hence a higher marginal utility of money- than in 
the absence of such news, however small the difference in the marginal utilities may 
be. If one hears about frequent bicycle thefts in the neighbourhood that one lives in, 
then the same person is likely to be concerned more about the safety of his/her 
bicycle than he/she would be in the absence of such news, regardless of whether the 
person has been a victim of such theft or not. For an agent with a stake in the loss, 
the difference gets more pronounced.    

In the absence of an insurance policy the expected utility of the agent is – 
p𝑢ଶ

ିL. 
An insurance policy that provides complete coverage is available for a premium  
which if “actuarily fair” would satisfy  = pL. 



Loss Aversion and State-Dependent Linear Utility Functions … 25 

The expected utility from buying this policy is -[(1-p) 𝑢ଵ
ି + p𝑢ଶ

ି] = -p[(1-p) 
𝑢ଵ

ି + p𝑢ଶ
ି]L. 

Since 𝑢ଶ
ି > 𝑢ଵ

ି> 0 and p(0,1), (1-p) 𝑢ଵ
ି + p𝑢ଶ

ି < 𝑢ଶ
ି and so -p[(1-p) 𝑢ଵ

ି + 
p𝑢ଶ

ି]L > – p𝑢ଶ
ିL.   

Actually, it would be more realistic to consider three SONs: 1-where there is 
no loss, 2- where there is a loss and the agent “has not” bought the insurance policy 
and 3- where there is a loss and the agent “has” bought the insurance policy, with 𝑢ଶ

ି 
> 𝑢ଷ

ି > 𝑢ଵ
ି> 0, since having bought the insurance policy, the agent is somewhat more 

relaxed than what it would be had it not purchased the insurance policy, but since 
recovering the insurance payment involves some transaction cost (e.g. paper work, 
etc.) the agent’s disutility from expenditure incurred on buying the premium could 
be expected to be higher than what it would be had there been no loss.      

A second way in which insurance can be introduced in this context, which 
may be more realistic is to assume that the seller of the insurance policy has recourse 
to an investment opportunity, which for some r > 0, returns 1 + r units of money for 
every unit of money invested in the current period. In this case, we can weaken the 
restriction on the slopes of the utility functions and assume 𝑢ଶ

ି  𝑢ଵ
ି, i.e., allow for 

𝑢ଶ
ି = 𝑢ଵ

ି. 
In this case an insurance policy that provides complete coverage for a 

premium , yields an expected return of (1+ r) - pL to the seller of the insurance 

policy which is non-negative if   
௣௅

ଵା௥
. Since r > 0, 

௣௅

ଵା௥
 < pL, so that the seller of 

the policy can make a profit by selling it for a premium (
௣௅

ଵା௥
, pL).  

In this case, the expected utility from buying this policy for a premium of  is 
-[(1-p) 𝑢ଵ

ି + p𝑢ଶ
ି] and -[(1-p) 𝑢ଵ

ି + p𝑢ଶ
ି] > – p𝑢ଶ

ିL, since 0 < (1-p) 𝑢ଵ
ି + p𝑢ଶ

ି  
𝑢ଶ

ି and  < pL.    
Now let us consider an agent whose initial monetary wealth is w > 0 and an 

investible amount I(0,w) can either be diversified equally between two-risky 
investment opportunities or invested entirely in one investment opportunity, with 
each investment opportunity having a probability p(0,1) of failing. 

This is a situation where there are three states of nature denoted by 1,2,3 with 
(𝑢௜

ି, 𝑢௜
ା) being the slopes for losses and gains respectively in SON ‘i’ being strictly 

positive. SON 1 is the situation where neither investment opportunity fails, SON 2 
is the situation where 50% of the invested amount is lost and SON 3 is the situation 
where the entire invested amount is lost. 
Suppose 0 < 𝑢ଵ

ି < 𝑢ଶ
ି < 𝑢ଷ

ି. 
Even if the agent was not an investor, the news of an investment opportunity 

crashing would very likely have the effect of increasing its disutility of expenditure 
and such disutility would further increase if it were to hear the news of two 
investment opportunities crashing simultaneously. In the case of an investor, the 
effect of such news could only be expected to be more pronounced.    
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If the agent invests the entire amount I in exactly one investment opportunity, then 
his expected utility is – p𝑢ଷ

ିI. 
If the agent spreads his investment opportunity equally between the 2 

investment opportunities, then his expected utility is -2p(1-p) 𝑢ଶ
ି ூ

ଶ
 - p2𝑢ଷ

ିI = -p[(1-

p) 𝑢ଶ
ି + p𝑢ଷ

ି]I. 
Since 𝑢ଷ

ି > (1-p) 𝑢ଶ
ି + p𝑢ଷ

ି, we have -p[(1-p) 𝑢ଶ
ି + p𝑢ଷ

ି]I > – p𝑢ଷ
ିI, and hence 

there is always an incentive for “spreading risks”.  

THE FRAMEWORK OF ANALYSIS 

Let us now set up the general framework of analysis with state-dependent 
linear utility functions for monetary returns. For a more general framework of 
analysis, one may refer to the book by Bonanno (Bonanno 2019). 

For some positive integer L  2, let {1, 2, …, L} denote the finite set of states 
of nature. As mentioned in the introduction, we will refer to a state of nature as 
SON and its plural as SONs.  

A (column) vector xℝ௅ where for each j{1, …, L}, the jth coordinate of x 
denotes the monetary return in SON j, is said to be a return vector. 

A (column) vector pℝାା
୐  satisfying ∑ 𝑝௝

௅
௝ୀଵ  = 1, such that for j{1, …, L}, 

pj is the probability of occurrence of SON j, is a probability vector.  
Given x, yℝ௅, let yTx denote ∑ 𝑦௝𝑥௝

௅
௝ୀଵ . 

A portfolio of risky assets (briefly referred to as PORA) is a pair (x, p) where 
x is a return vector and p is a probability vector. In what follows we will refer to 
portfolios of risky assets as PORAs.   

Given a PORA (x, p) with X denoting the random monetary return for (x, p) 
and ℝ, let {X = } denote the event that the realized SON yields a monetary 
return of , {X  } denote the event that the realized SON yields a monetary return 
less than or equal to , {X  } denote the event that the realized SON yields a 
monetary return greater than or equal to , {X < } denote the event that the realized 
SON yields a monetary return less than , {X > } denote the event that the realized 
SON yields a monetary return greater than . 

Thus, for all ℝ, Probability of {X  } = 1- Probability of {X > }  
The expected value of a PORA (x, p) denoted E(x, p) is pTx = ∑ 𝑝௝

௅
௝ୀଵ 𝑥௝. 

A generalization of the concept of portfolio of risky assets that can be inferred 
from the solution proposed by Gilboa and Schmeidler (see Gilboa and Schmeidler 
1989) as a response to the Ellsberg Paradox is the following.  

A generalized portfolio of risky assets (G-PORA) is a pair (, p) where 
pℝାା

୐  is a probability vector and for each j{1, …, L}, j is a non-empty closed 
and bounded set in ℝ denoting the set of possible returns in SON j, exactly one from 
which is realized if SON j occurs.  
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Unless j is a singleton, there is no known prior probability distribution over 
j.    

In order to incorporate “ambiguity aversion” one may associate with (, p), 
the min portfolio of risky assets (MIN-PORA) (min, p) which is defined as follows: 
for each j{1, …, L}, 

௝
௠௜௡ = min{| j}. For any x ℝ௅ satisfying xjj for all 

j{1, …, L}, the expected value of the PORA (x, p) can be defined as before, i.e., 
E(x, p) = pTx = ∑ 𝑝௝

௅
௝ୀଵ 𝑥௝. 

Thus, E(min, p) = ∑ 𝑝௝
௅
௝ୀଵ 

௝
௠௜௡.        

A linear utility profile is an L-tuple u = (u1, …, uL)(ℝାା
ଶ )L where for each 

j{1, …, L}, uj is a real valued function on ℝ determined by an ordered pair (𝑢௝
ି, 

𝑢௝
ା) ℝାା

ଶ  satisfies 𝑢௝
ି  𝑢௝

ା > 0, with the interpretation that for all j{1, …, L} and 

ℝ, uj() = 𝑢௝
ିmin{, 0} + 𝑢௝

ାmax{, 0} is the (Bernoulli) utility for  units of 
monetary returns (gains or losses) in SON j. 

We allow for the set {j|𝑢௝
ି= 𝑢௝

ା} to be {1, …, L} or a proper subset of it, 
including the null set . 

A similar definition of a linear utility profile has been used in Lahiri (2024) 
for the purpose of extending the “Arbitrage Theorem” from its usual framework to a 
one in which state-dependent linear utility functions may allow loss aversion.   

Given a linear utility profile u(ℝାା
ଶ )L, we will use u- to denote the vector 

(𝑢ଵ
ି, …, 𝑢௅

ି) ℝାା
௅  and u+ to denote the vector (𝑢ଵ

ା, …, 𝑢௅
ା) ℝାା

௅     
Given a linear utility profile u and a PORA (x, p) the expected utility of (x, 

p) for u, denoted by Eu(x, p) is ∑ 𝑝௝[𝑢௝
ି min௅

௝ୀଵ {𝑥௝, 0} + 𝑢௝
ାmax{𝑥௝, 0}]. 

Clearly Eu(x, p) = p1(u1(x1) – u2(x2)) + (p1 + p2)(u2(x2) – u3(x3)) + (p1 + p2 + 
p3)(u3(x3) – u4(x4)) + … + (p1 + … + pL-1)(uL-1(xL-1) – uL(xL)) + (p1 + p2 + … + 

pL)uL(xL
) =  ∑ (∑ 𝑝௞)

௝
௞ୀଵ (𝑢௝(௅ିଵ

௝ୀଵ 𝑥௝) − 𝑢௝ାଵ(𝑥௝ାଵ) ) + (∑ 𝑝௞)௅
௞ୀଵ uL(xL) = 

∑ (∑ 𝑝௞)
௝
௞ୀଵ (𝑢௝(௅ିଵ

௝ୀଵ 𝑥௝) − 𝑢௝ାଵ(𝑥௝ାଵ) ) + uL(xL). 
Given a linear utility profile u and a PORA (x,p) the certainty equivalent of 

(x,p) for u, denoted by CE(u, x, p) is the scalar that satisfies 
∑ 𝑝௝[𝑢௝

ି min௅
௝ୀଵ {𝐶𝐸(𝑢, 𝑥, 𝑝), 0} + 𝑢௝

ାmax{CE(u,x,p), 0}] = Eu(x, p), i.e. CE(u,x,p) 

= 
ா௨(௫,௣)

∑ ௣ೕ௨ೕ
శ ಽ

ೕసభ

 = 
ா௨(௫,௣)

௣೅௨శ  if Eu(x, p)  0 and CE(u,x,p) = 
ா௨(௫,௣)

∑ ௣ೕ௨ೕ
ష ಽ

ೕసభ

 = = 
ா௨(௫,௣)

௣೅௨ష  if Eu(x, p) 

< 0.  
Suppose that (x, p) is a PORA satisfying xj < xj+1 for all j{1, …, L-1}.Then, 

for all k{1, …, L-1} and , (xk, xk+1), Probability of {X > } = Probability of 
{X > xk} = Probability of {X > } and Probability of {X  } = Probability of {X  
xk} = Probability of {X  }. 
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FIRST ORDER STOCHASTIC DOMINANCE 

Given two PORAs (x, p) and (y, q) with X denoting the random monetary 
return for (x, p) and Y denoting the random monetary return for (y, q), we say that 
(x, p) stochastically dominates (y, q) in the first order, denoted by (x, p) >FSD (y,q) 
if for all ℝ, Probability of {X > }  Probability of {Y > } and for some ℝ, 
Probability of {X > } > Probability of {Y > }. 

The intuitive interpretation of (x, p) >FSD (y,q) is that given any monetary 
return , the probability that the monetary return from (x, p) is greater than  is 
greater than or equal to the probability that the monetary return from (y, q) is at 
greater , and for some monetary return the first probability is strictly greater than 
the second probability i.e., (x, p) is consistently “more likely” to yield better rewards 
better than (y, q).    
We know that for a linear utility profile and a PORA (x, p), Eu(x, p) = 
∑ (∑ 𝑝௞)

௝
௞ୀଵ (𝑢௝

௅ିଵ
௝ୀଵ (𝑥௝) − 𝑢௝ାଵ(𝑥௝ାଵ) ) + uL(xL). 

Proposition 1: Let (x, p) and (x, q) be two PORAs satisfying xj < xj+1 for all j{1, 
…, L-1}. Then (x, p) >FSD (x, q) if and only if [Eu(x, p) > Eu(x, q) for all linear utility 
profile u satisfying uj(xj) < uj+1(xj+1) for all j{1, …, L-1}]. 

MEAN-PRESERVING SPREAD AND INCREASING-CONCAVE 
LINEAR UTILITY PROFILES: 

For this section assume L  3. 
Given a return vector x satisfying xj < xj+1 for all j{1, …, L-1}, a linear utility 

profile u is said to be increasing-concave with respect to x, if for all j{1, …, L-
1}, uj(xj) < uj+1(xj+1) and for all i, j, k{1, 2, …, L} with i < j < k, uj(xj) > (1-)ui(xi) 
+ uk(xk) where (0,1) satisfies xj = (1-)xi + xk. 

Clearly,  = 
௫ೕି௫೔

௫ೖି௫೔
  and 0 < xj – xi < xk – xi. 

Given a return vector x satisfying xj < xj+1 for all j{1, …, L-1}, PORA (x, q) 
is said to be obtained by a mean-preserving spread from PORA (x, p), denoted 
(x, p) MSP (x, q), if E(x, p) = E(x, q) and there exists i, j, k{1, 2, …, L} satisfying 
i < j < k such that qi > pi, qj < pj, qk > pk and ph = qh for h{1, 2, …, L}\{i,j,k}. 
[E(x, p) = E(x, q) and there exists i, j, k{1, 2, …, L} satisfying i < j < k such that 
qi > pi, qj < pj, qk > pk and ph = qh for h{1, 2, …, L}\{i,j,k}] if and only if [there 
exists i, j, k{1, 2, …, L} satisfying i < j < k such that qi > pi, qj < pj, qk > pk, ph = 
qh for h{1, 2, …, L}\{i,j,k} and (pj-qj)xj = (qi- pi)xi + (qk – pk)xk]  
[there exists i, j, k{1, 2, …, L} satisfying i < j < k such that qi > pi, qj < pj, qk > pk 
and ph = qh for h{1, 2, …, L}\{i,j,k}and (pj-qj)xj = (qi- pi)xi + (qk – pk)xk] is 
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equivalent to [there exists i, j, k{1, 2, …, L} satisfying i < j < k such that qi > pi, 
qj < pj, qk > pk, ph = qh for h{1, 2, …, L}\{i,j,k} and xj = 

௤೔ି௣೔

௣ೕି௤ೕ
 xi + 

௤ೖି௣ೖ

௣ೕି௤ೕ
xk]. 

Thus, (x, p) MSP (x, q) if and only if [there exists i, j, k{1, 2, …, L} 
satisfying i < j < k such that qi > pi, qj < pj, qk > pk, ph = qh for h{1, 2, …, L}\{i,j,k} 
and xj = 

௤೔ି௣೔

௣ೕି௤ೕ
 xi + 

௤ೖି௣ೖ

௣ೕି௤ೕ
xk].  

Proposition 2: Let (x, p) and (x, q) be two PORAs satisfying xj < xj+1 for all j{1, 
…, L-1}. 

(a) If (x, p) MSP (x, q) then [Eu(x, p) > Eu(x, q) for all linear utility profile u which 
is increasing-concave with respect to x]. 

(b) If L = 3, p2  q2 and [Eu(x, p) > Eu(x, q) for all linear utility profile u which is 
increasing-concave with respect to x] then [(x, p) MSP (x, q)].  

RISK AVERSION 

Given a PORA (x, p), an agent with linear utility profile u is said to be: 
(i) Risk Averse relative to (x,p) if E(x, p) > CE(u, x, p);  
(ii) Risk Neutral relative to (x,p) if E(x, p) = CE(u, x, p); 
(iii) Risk Loving/Seeking relative to (x, p) if E(x, p) < CE(u, x, p). 

Example 1: Let L = 2, u1 = (1, 1) and let u2 = (2, 2). 

Let (x, p) = ((2,0), (
ଵ

ଶ
, 

ଵ

ଶ
)). Thus, E(x, p) = 1. 

In this case, Eu(x,p) = 1 and pTu+ = 
ଷ

ଶ
, so that CE(u, x, p) = 

ଶ

ଷ
 < 1 = E(x,p).  

Thus, the agent is risk averse relative to ((2,0), (
ଵ

ଶ
, 

ଵ

ଶ
)). 

Now let (x, p) = ((0,2), (
ଵ

ଶ
, 

ଵ

ଶ
)). Once again, E(x, p) = 1.  

Now, Eu(x,p) = 2 and since pTu+ = 
ଷ

ଶ
, we have CE(u, x, p) = 

ସ

ଷ
 > 1 = E(x, p). 

Thus, the same agent is risk loving/seeking relative to ((0,2), (
ଵ

ଶ
, 

ଵ

ଶ
)).  

Now suppose (x, p) = ((1,1), (
ଵ

ଶ
, 

ଵ

ଶ
)). Once again, E(x, p) = 1. 

Now, Eu(x,p) = 
ଷ

ଶ
 and since pTu+ = 

ଷ

ଶ
, we have CE(u, x, p) = 1 = E(x, p).  

Thus, the same agent is now risk neutral relative to ((1,1), (
ଵ

ଶ
, 

ଵ

ଶ
)).  

Given a PORA (x,p) and a linear utility profile u, the risk premium relative 
to (x,p) denoted R(u, x, p) = E(x, p) – CE(u, x, p). 
Thus, ∑ 𝑝௝𝑢௝

௅
௝ୀଵ (𝐸(𝑥, 𝑝) − 𝑅(𝑢, 𝑥, 𝑝)) = ∑ 𝑝௝𝑢௝

௅
௝ୀଵ (𝐶𝐸(𝑢, 𝑥, 𝑝)) = Eu(x, p). 

If the agent is: 
(i) Risk Averse relative to (x, p), then R(u, x, p) > 0; 
(ii) Risk Loving/Seeking relative to (x, p), then R(u, x, p) < 0; 
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(iii) Risk Neutral relative to (x, p), then R(u, x, p) = 0.  
Given two linear utility profiles u, v and two PORAs (x, p), (y, q) we say that 

u relative to (x, p) is more risk averse than v relative to (y, q) if R(u, x, p) > R(v, 
y, q).   

INSURANCE CONTRACTS WITH THE POSSIBILITY OF PARTIAL 
COVERAGE 

As before consider a situation with 2 states of nature 1,2, where an agent with 
initial wealth w > 0 may face a loss of L(0, w) units of money in the second SON. 
Let p(0,1) be the probability of loss. Suppose that the agent’s linear utility profile 
is (u1, u2) is such that with 0 < 𝑢ଵ

ି < 𝑢ଶ
ି. 

The expected value of the “risk” is -pL 
In the absence of an insurance policy the expected utility of the agent is – 

p𝑢ଶ
ିL. 

If CE1 is the certainty equivalent in the absence of any insurance policy, then 
[(1-p) 𝑢ଵ

ି + p𝑢ଶ
ି]CE1 = -p𝑢ଶ

ିL. 

Thus, CE1 = 
ି௣௨మ

ష௅

(ଵି୮) ௨భ
ష ା ୮௨మ

ష = -pL
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮௨మ

ష 

An insurance policy with a deductible d[0,L) (i.e., in case of loss, the insurer 
pays L-d to the agent) is available for a premium . 
Hence the expected profit of the insurer is  - p(L-d).  
For the insurer to voluntarily sell the insurance, it must be “profitable”, i.e.,  - 
p(L-d)  0. 
Thus, profitability is equivalent to the condition - pL  - ( + pd). 
The expected value of this policy to the agent is – ( + pd). 
The expected utility of the agent from buying this policy is -(1-p) 𝑢ଵ

ି - p𝑢ଶ
ି ( + d) 

= -[(1-p) 𝑢ଵ
ି + p 𝑢ଶ

ି] - p𝑢ଶ
ିd. 

For the agent to voluntarily buy the insurance, it must be the case that -[(1-p) 𝑢ଵ
ି + p 

𝑢ଶ
ି] - p𝑢ଶ

ିd  – p𝑢ଶ
ିL, i.e., - -  

௨మ
ష

(ଵି୮) ௨భ
ష ା ୮௨మ

ష pd  CE1. 

- -  
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮௨మ

ష pd = – ( + pd) + pd[1-
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮௨మ

ష]. 

Thus the agent will voluntarily buy the insurance policy if and only if  - ( + pd) + 

pd[1-
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮௨మ

ష]  CE1.  

A profit maximizing insurer will choose an insurance contract, i.e., a pair (, d) 
that maximizes  - p(L-d), subject to  - p(L-d)  0, -[(1-p) 𝑢ଵ

ି + p 𝑢ଶ
ି] - p𝑢ଶ

ିd  – 
p𝑢ଶ

ିL and d[0,L). 
The above problem is equivalent to choosing a pair (, d) that maximizes  + 

pd, subject to  + pd  pL, [(1-p) 𝑢ଵ
ି + p 𝑢ଶ

ି] + p𝑢ଶ
ିd   p𝑢ଶ

ିL and d[0,L). 
It is easy to see that at an optimal solution, [(1-p) 𝑢ଵ

ି + p 𝑢ଶ
ି] + p𝑢ଶ

ିd =  p𝑢ଶ
ିL. 
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Thus,  = 
௣௨మ

ష(௅ିௗ)

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష. 

Thus,  + pd = p[
௨మ

ష(௅ିௗ)

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష + d] = pd[1 - 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష] + 
௣௨మ

ష௅

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష. 

Since 𝑢ଶ
ି > 𝑢ଶ

ଵ, we have 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష > 1 and hence 1 - 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష < 0. 

Thus, pd[1 - 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష] + 
௣௨మ

ష௅

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష is maximized at d = 0, thereby 

implying  = 
௣௨మ

ష௅

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష. 

Since 
௣௨మ

ష௅

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష = (
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష)pL and  
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష > 1, we have  > pL. 

Since d = 0,  + pd > pL. 

Hence, the optimal contract is the pair (
௣௨మ

ష௅

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష, 0), with the “expected profit 

of the insurer” being 
௣௨మ

ష௅

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష – pL = pL(
௨మ

షି(ଵି୮)௨భ
షି ୮ ௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష ) = 
௣(ଵି௣)(௨మ

షି௨భ
ష)௅

(ଵି௣)௨భା௣௨మ
ష  

> 0.   

Note:  = 
௣௨మ

ష(௅ିௗ)

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష implies - -  
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష pd = - 
௣௨మ

ష௅

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష = CE1. 

We know that - -  
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష pd = - ( + pd) + pd[ 1-
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష]. 

Thus, at an optimal solution - ( + pd) + pd[ 1-
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష] = CE1. 

“Strict Profitability” is equivalent to the condition - pL > - ( + pd) which now 
reduces to  

-pL + pd[ 1- 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష] > CE1 = - 
௣௨మ

ష௅

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష. 

Thus strict profitability is equivalent to -pL[1-
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష] + pd[1-
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష] > 0, i.e. p(d-L)[1-
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష]  0.  

Since d[0, L), this is possible if and only if 1- 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష < 0, i.e. 1 < 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష 

Multiplying throughout by pL which is strictly positive, we get 1 < 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష if 

and only if  pL < 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

షpL, the latter being equivalent to - 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

షpL 

< -pL. 

Since CE1 = - 
௨మ

ష

(ଵି୮) ௨భ
ష ା ୮ ௨మ

ష pL and -pL is the expected value of the “risk”, the 

agent is risk averse relative to ((-L, 0), (p, 1-p)).  
Thus “Strict Profitability” is equivalent to the requirement that the agent is risk 
averse relative to ((-L, 0), (p, 1-p)).   

Let us now consider the somewhat more realistic situation with three SONs: 
1-where there is no loss, 2- where there is a loss and the agent “has not” bought the 
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insurance policy and 3- where there is a loss and the agent “has” bought the insurance 
policy, with 𝑢ଶ

ି > 𝑢ଷ
ି > 𝑢ଵ

ି > 0. 
Then, the expected utility of the agent from buying this policy is -(1-p) 𝑢ଵ

ି - p𝑢ଷ
ି 

( + d) = -[(1-p) 𝑢ଵ
ି + p𝑢ଷ

ି] - p𝑢ଷ
ିd. 

Since 𝑢ଶ
ି > 𝑢ଷ

ି, - (1-p)𝑢ଵ
ି - p𝑢ଷ

ି( + d) > - (1-p) 𝑢ଵ
ି - p𝑢ଶ

ି( + d). 
A profit maximizing insurer will choose an insurance contract, i.e., a pair (, d) 
that maximizes  - p(L-d) subject to  - p(L-d)  0, -[(1-p) 𝑢ଵ

ି + p𝑢ଷ
ି] - p𝑢ଷ

ିd  – 
p𝑢ଶ

ିL and d[0,L]. 
The above problem is equivalent to choosing a pair (, d) that maximizes  + 

pd subject to  + pd  pL, [(1-p) 𝑢ଵ
ି + p𝑢ଷ

ି] + p𝑢ଷ
ିd  p𝑢ଶ

ିL and d[0,L]. 
It is easy to see that at an optimal solution, [(1-p)𝑢ଵ

ି + p𝑢ଷ
ି] + p𝑢ଷ

ିd = p𝑢ଶ
ିL. 

Thus,  = 
௣(௨మ

ష௅ି௨య
షௗ)

(ଵି୮) ௨భ
ష ା ୮௨య

ష. 

Thus,  + pd = p[
(௨మ

ష௅ି௨య
షௗ)

(ଵି୮) ௨భ
ష ା ୮௨య

ష+ d] = pd[1 - 
௨య

ష

(ଵି୮)௨భ
ష ା ୮௨య

ష] + 
௣௨మ

ష௅

(ଵି୮)௨భ
ష ା ୮௨య

ష.  

Since 𝑢ଷ
ି > 𝑢ଷ

ଵ, we have 
௨య

ష

(ଵି୮)௨భ
ష ା ୮௨య

ష > 1 and hence 1 - 
௨య

ష

(ଵି୮)௨భ
ష ା ୮௨య

ష < 0. 

Thus, pd[1 - 
௨య

ష

(ଵି୮)௨భ
ష ା ୮௨య

ష] + 
௣௨మ

ష௅

(ଵି୮)௨భ
ష ା ୮௨య

ష is maximized at d = 0, thereby implying 

 = 
௣௨మ

ష௅

(ଵି୮)௨భ
ష ା ୮௨య

ష > 
௣௨య

ష௅

(ଵି୮)௨భ
ష ା ୮௨య

ష , since 𝑢ଶ
ି > 𝑢ଷ

ି. 

Since d = 0,  + pd = 
௣௨మ

ష௅

(ଵି୮)௨భ
ష ା ୮௨య

ష > pL. 

Hence, the optimal contract is the pair (
௣௨మ

ష௅

(ଵି୮)௨భ
ష ା ୮௨య

ష, 0), with the “expected profit 

of the insurer” being 
௣௨మ

ష௅

(ଵି୮)௨భ
ష ା ୮௨య

ష – pL > 
௣௨య

ష௅

(ଵି୮)௨భ
ష ା ୮௨య

ష – pL.   

Thus, the expected profit of the insurer is higher in this more realistic situation 
than in the earlier situation. 
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APPENDIX 

Proof of Proposition 1: Eu(x, p) – Eu(x, q) = [∑ (∑ 𝑝௞)
௝
௞ୀଵ (𝑢௝

௅ିଵ
௝ୀଵ (𝑥௝) −

𝑢௝ାଵ(𝑥௝ାଵ) ) + uL(xL)] – [∑ (∑ 𝑞௞)
௝
௞ୀଵ (𝑢௝

௅ିଵ
௝ୀଵ (𝑥௝) − 𝑢௝ାଵ(𝑥௝ାଵ) ) + (∑ 𝑞௞)௅

௞ୀଵ  

uL(xL)] = ∑ (∑ 𝑝௞ − ∑ 𝑞௞
௝
௞ୀଵ )

௝
௞ୀଵ (𝑢௝

௅ିଵ
௝ୀଵ (𝑥௝) − 𝑢௝ାଵ(𝑥௝ାଵ) ), since ∑ 𝑝௞ = 1 =௅

௞ୀଵ

∑ 𝑞௞
௅
௞ୀଵ . 

Suppose (x, p) >FSD (x, q). Then, ∑ 𝑝௞ − ∑ 𝑞௞
௝
௞ୀଵ

௝
௞ୀଵ   0 for all j{1, …, L}, with 

strict inequality for at least one j{1, …, L-1}, since ∑ 𝑝௞ = 1 = ∑ 𝑞௞
௅
௞ୀଵ

௅
௞ୀଵ .  

If u is a linear utility profile satisfying uj(xj) < uj+1(xj+1) for all j{1, …, L-1}, then 
∑ (∑ 𝑝௞ − ∑ 𝑞௞

௝
௞ୀଵ )

௝
௞ୀଵ (𝑢௝

௅ିଵ
௝ୀଵ (𝑥௝) − 𝑢௝ାଵ(𝑥௝ାଵ) ) > 0. 

Thus, Eu(x, p) – Eu(x, q) > 0, i.e., Eu(x, p) > Eu(x, q). 
Now suppose that it is not the case that (x, p) >FSD (x, q). 

Thus, {j{1, …, L-1}| ∑ 𝑝௞ − ∑ 𝑞௞
௝
௞ୀଵ

௝
௞ୀଵ  > 0}  . Let  = min{∑ 𝑝௞ −

௝
௞ୀଵ

∑ 𝑞௞
௝
௞ୀଵ | ∑ 𝑝௞ − ∑ 𝑞௞

௝
௞ୀଵ

௝
௞ୀଵ > 0}. 

Let u1 = (1, 1). Having defined uj = (𝑢௝
ି, 𝑢௝

ା) ℝାା
ଶ  satisfying 𝑢௝

ି = 𝑢௝
ା > 0, let uj+1 

= (𝑢௝ାଵ
ି , 𝑢௝ାଵ

ା ) ℝାା
ଶ  satisfying 𝑢௝ାଵ

ି  = 𝑢௝ାଵ
ା   > 0 be such that uj+1(xj+1) – uj(xj) = 

ଶ


 

if ∑ 𝑝௞ − ∑ 𝑞௞
௝
௞ୀଵ

௝
௞ୀଵ  > 0 and 

ଵ

ଶ௅
 > uj+1(xj+1) – uj(xj) > 0, otherwise. This is possible, 

since xj+1 > xj implies that it is not possible for both xj+1 and xj to be zero.  

Thus, Eu(x, p) – Eu(x, q) = - 
ଶ


∑ ∑ 𝑝௞ −௛

௞ୀଵ௛{{୨{ଵ,…,୐ିଵ}| ∑ ௣ೖି∑ ௤ೖ
ೕ
ೖసభ

ೕ
ೖసభ

 வ ଴}

∑ 𝑞௞
௛
௞ୀଵ  + ∑ (∑ 𝑝௞ − ∑ 𝑞௞)௛

௞ୀଵ
௛
௞ୀଵ௛൜{୨{ଵ,…,୐ିଵ}| ∑ ௣ೖି∑ ௤ೖ

ೕ
ೖసభ

ೕ
ೖసభ

  ଴ൠ
(𝑢௛(𝑥௛)- 

𝑢௛ାଵ(𝑥௛ାଵ)) =  −
ଶ


∑ ∑ 𝑝௞ − ∑ 𝑞௞

௛
௞ୀଵ

௛
௞ୀଵ௛{{୨{ଵ,…,୐ିଵ}| ∑ ௣ೖି∑ ௤ೖ

ೕ
ೖసభ

ೕ
ೖసభ

 வ ଴}
 + 
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∑ (∑ 𝑞௞ − ∑ 𝑝௞)௛
௞ୀଵ

௛
௞ୀଵ௛൜{୨{ଵ,…,୐ିଵ}| ∑ ௣ೖି∑ ௤ೖ

ೕ
ೖసభ

ೕ
ೖసభ

  ଴ൠ
(𝑢௛ାଵ(𝑥௛ାଵ) - 𝑢௛(𝑥௛)) -

2 + (L-1) 
ଵ

ଶ௅
  -2 +  

ଵ

ଶ
 = -  

ଷ

ଶ
 < 0. 

Thus, [Eu(x, p) > Eu(x, q) for all linear utility profile u satisfying uj(xj) < uj+1(xj+1) 
for all j{1, …, L-1}] implies (x, p) >FSD (x, q). Q.E.D. 

Proof of Proposition 2: (a) Suppose (x, p) MSP (x, q) and let u be an increasing-
concave linear utility profile with respect to x. 
Hence, there exists i, j, k{1, 2, …, L} satisfying i < j < k such that qi > pi, qj < pj, 
qk > pk and ph = qh for h{1, 2, …, L}\{i,j,k}and (pj-qj)xj = (qi- pi)xi + (qk – pk)xk] 
is equivalent to [there exists i, j, k{1, 2, …, L} satisfying i < j < k such that qi > 
pi, qj < pj, qk > pk, ph = qh for h{1, 2, …, L}\{i,j,k} and xj = 

௤೔ି௣೔

௣ೕି௤ೕ
 xi + 

௤ೖି௣ೖ

௣ೕି௤ೕ
xk. 

However, xj = (1-)xi + xk where  = 
௫ೕି௫೔

௫ೖି௫೔
(0, 1). 

Further pi + pj + pk = qi + qj + qk implies pj – qj = (qi – pi) + (qk – pk). 
Thus, 

௤೔ି௣೔

௣ೕି௤ೕ
 + 

௤ೖି௣ೖ

௣ೕି௤ೕ
 = 1 with 

௤೔ି௣೔

௣ೕି௤ೕ
 > 0 and 

௤ೖି௣ೖ

௣ೕି௤ೕ
 > 0.  

Hence, 
௤ೖି௣ೖ

௣ೕି௤ೕ
 =  and 

௤೔ି௣೔

௣ೕି௤ೕ
 = 1- . 

Since u is increasing-concave uj(xj) > (1-)ui(xi) + uk(xk). 
Thus, (pj – qj)uj(xj) > (qi – pi)ui(xi) + (qk – pk)uk(xk), i.e., piui(xi) + pjuj(xj) + pkuk(xk) 
> qiui(xi) + qjuj(xj) + qkuk(xk). 
Since, ph = qh for h{1, 2, …, L}\{i,j,k}, we get Eu(x, p) > Eu(x, q). 
(b) Now suppose L = 3 and x1 < x2 < x3 and p2  q2. 
We have p1 + p2 + p3 = q1 + q2 + q3 = 1. 
Suppose, E(x, p) = E(x, q). Thus, p1x1 + p2x2 + p3x3 = q1x1 + q2x2 + q3x3. 
Suppose, Eu(x, p) > Eu(x, q) for all linear utility profiles satisfying u1(x1) < u2(x2) 
< u3(x3) and u2(x2) > (1-)u1(x1) + u3(x3), where x2 = (1-)x1 + x3. 
Since p2 – q2  0, (p2-q2)x2 = (q1 – p1)x1 + (q3 – p3)x3 implies x2 = 

௤భି௣భ

௣మି௤మ
x1 + 

௤యି௣య

௣మି௤మ
x3 

= 
௤భି௣భ

௣మି௤మ
x1 + 

(ଵି௤భି௤మ)ି(ଵି௣భି௣మ) 

௣మି௤మ
x3 = 

௤భି௣భ

௣మି௤మ
x1 + 

(௣మି௤మ)ି(௤భି௣భ) 

௣మି௤మ
x3 = x3 - 

௤భି௣భ

௣మି௤మ
(x3 – 

x1), i.e., x2 = x3 - 
௤భି௣భ

௣మି௤మ
(x3 – x1). 

x2 < x3 and x3 > x1 implies 
௤భି௣భ

௣మି௤మ
 > 0. 

Similarly, x2 = 
௤భି௣భ

௣మି௤మ
x1 + 

௤యି௣య

௣మି௤మ
x3 = 

(ଵି௤మି௤య)ି(ଵି௣మି௣య) 

௣మି௤మ
x1 + 

௤యି௣య

௣మି௤మ
x3 = 

(௣మି௤మ)ି(௤యି௣య) 

௣మି௤మ
x1 + 

௤యି௣య

௣మି௤మ
x3 = x1 + 

௤యି௣య

௣మି௤మ
(x3 – x1). 

x2 > x1 and x3 > x1 implies 
௤యି௣య

௣మି௤మ
 > 0. 

Thus, x2 = 
௤భି௣భ

௣మି௤మ
x1 + 

௤యି௣య

௣మି௤మ
x3, x2 = (1-)x1 + x3,  > 0, 1-  > 0, 

௤యି௣య

௣మି௤మ
 > 0, 

௤భି௣భ

௣మି௤మ
 > 

0 and x1 < x2 < x3 implies  = 
௤యି௣య

௣మି௤మ
 and 1-  = 

௤భି௣భ

௣మି௤మ
. 
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Thus, u2(x2) >
௤భି௣భ

௣మି௤మ
 u1(x1) + 

௤యି௣య

௣మି௤మ
 u3(x3). 

If p2 < q2, then (p2-q2)u2(x2) < (q1- p1)u1(x1) + (q3 – p3)u3(x3) and thus, Eu(x, p) = 
p1u1(x1) + p2u2(x2) + p3u3(x3) < q1u1(x1) + q2u2(x2) + q3u3(x3) = Eu(x, q), leading to 
a contradiction. 
Thus, it must be the case that p2 > q2. 
Hence, 

௤భି௣భ

௣మି௤మ
 > 0 implies q1 > p1 and 

௤యି௣య

௣మି௤మ
 > 0 implies q3 > p3. 

Thus, we have (x, p) MSP (x, q). Q.E.D. 

Note: The proof of part (b) in Proposition 2, can very likely be extended to L > 3.    
 


