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Streszczenie: W niniejszym artykule przedstawimy system uczenia 
głębokiego łączącego sieci neuronowe MLP z wielowymiarowymi 
dekompozycjami. Stanowi on rozwinięcie systemu dla poprawy wyników 
predykcji w ujęciu wielomodelowym wykorzystującym metody ICA, PCA 
oraz NMF, co można potraktować także jako metodę agregacji modeli lub 
wielowymiarową filtrację komponentów zakłócających wyniki prognoz. Cały 
proces przedstawimy w nawiązaniu po problemu ślepej separacji wskazując na 
możliwe użyteczne inspiracje jak i istotne ograniczenia takich interpretacji. 

Słowa kluczowe: predykcja, modele uczenia głębokiego, wielowymiarowe 
dekompozycje, sieci neuronowe 
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WPROWADZENIE 

Modele uczenia głębokiego często powstają w efekcie połącznia różnych 
technik, metod lub algorytmów stosowanych wcześniej odrębnie, choć często w 
ramach jednej badania lub procesu [Mallat 2016]. Takie podejście zastosujemy także 
w niniejszym artykule do metody poprawy predykcji za pomocą dekompozycji 
wielowymiarowych [Szupiluk 2013; Szupiluk i in. 2014]. Metodę tą najpierw 
rozszerzymy o etap neuronowego douczania, a następnie, biorąc pod uwagę cały 
proces analityczny, uogólnimy do postaci uniwersalnego regresyjnego/ 
klasyfikacyjnego systemu głębokiego uczenia. W ramach prowadzonych rozważań 
przedstawimy różne możliwości rozwoju całej koncepcji oraz jej związki 
z problemem ślepej separacji.  
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Będący punktem wyjścia system poprawy predykcji (SPP) za pomocą 
dekompozycji wielowymiarowych polega na dekompozycji zbioru prognoz na 
ukryte komponenty wśród których identyfikowane są, wiązane z błędami prognozy, 
komponenty destrukcyjne. Ich eliminacja a następnie wykonanie dekompozycji 
odwrotnej, prowadzić może do poprawy wyników predykcji. Cały proces SPP 
można także intepretować lub porównywać z problemem ślepej separacji (ang. Blind 
Signal Separation-BSS) .  

BSS jest to problem w którym odtwarzane są nieznane a priori sygnały 
źródłowe, zmieszane w także nieznanym systemie mieszającym [Cardoso 1998; 
Cichocki, Amari 2002]. Jednym z powodów analogii między  SPP oraz BSS są 
stosowane w obydwu przypadkach dekompozycja takie jak ICA, PCA lub NMF 
[Cardoso 1998; Comon, Jutten 2010; Cichocki i in. 2009]. Choć można potraktować 
je jako czysto analityczne reprezentacje danych, to są one silnie związane 
z problemem ślepej separacji lub w takich kategoriach mogą być rozważane. Stąd 
dość naturalne nawiązania między omawianą metodą poprawy predykcji 
a problemem BSS. 

Jednak głównym elementem niniejszej pracy jest generalizacja całej 
koncepcji na ogólny przypadek modelowania neuronowego z nauczycielem. W tym 
celu włączymy w ramy systemu także etap tworzenia samych modeli podstawowych 
(w SPP zakładaliśmy, że prognozy już posiadamy), zaś poszczególne etapy 
(warstwy) tego systemu będziemy starali się jak najbardziej uogólnić. W przypadku 
dekompozycji, będziemy się posługiwać pojęciem LCA (ang. Latent Component 
Analysis) mając na myśli dowolne metody identyfikujące ukryte komponenty o 
różnych charakterystykach. Stąd uogólniony system będzie określany jako LCA-
NN. 

WIELOWYMIAROWE ŁĄCZENIE MODELI 

Podstawową całej koncepcji jest system poprawy predykcji. Jego konstrukcja jest 
następująca. Zakładamy istnienie zbioru m rezultatów predykcji )(txi  
generowanych przez modele bazowe, gdzie mi ,...,1  oznacza numer modelu, zaś t 
jest indeksem czasu lub numerem obserwacji. Wyniki predykcji zbierane są w jednej 

wielowymiarowej zmiennej T
m1 t...,xt,xtxt )](),()([)( 2x , lub w zapisie 

macierzowym T
m,...,, ][ 21 xxxX  .  

Zakładając, że wyniki predykcji są użyteczne i prezentują akceptowalną 
jakość, można stwierdzić, iż prognozowane wartości w pewnym stopniu 
odpowiadają wartościom rzeczywistym (obserwowanym), a w pewnym się różnią. 
Można więc powiedzieć, że dany rezultat predykcji jest mieszaniną pewnych 
ukrytych komponentów konstruktywnych jŝ ,  pj ,...,1 oraz komponentów 

destrukcyjnych ls
~ , ql ,...,1 ,. Komponenty konstruktywne, związane są 

z podobieństwem wartości przewidywanych i obserwowanych. Komponenty 
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destrukcyjne, odpowiadają za różnice lub błędy predykcji. Owe konstruktywne oraz 
destrukcyjne komponenty źródłowe mogą być mieszane w różny sposób. 
W przypadku liniowego modelu (systemu) mieszania mamy   
     

)()( tt Asx   (1) 
 
gdzie macierz   nm

ij Ra A  reprezentuje system mieszający zaś wektor  

 
T

qppp
T

n tstststststst )](~)....,(~),(ˆ),...,(ˆ[)](),...,([)( 111 s , (2) 

 
gdzie,  qpn  zawiera zestaw komponentów źródłowych.  

Estymacja komponentów źródłowych jest kluczowym elementem całej 
koncepcji. Problem ten można przedstawić jako poszukiwanie transformacji 
odwrotnej do (1) tak, że 

 )()()( ttt sWxy  , (3) 

gdzie dla m=n macierz 1 AW  pełni rolę systemu separującego odwrotnego do A.  
Identyfikując system mieszający A oraz komponenty bazowe s oraz 

eliminując komponenty destrukcyjne  (stawiając odpowiednio 0~ ls ) otrzymuje się 
„poprawianą” wersją rezultatów predykcji x postaci 

 T
npp tttstsk )](0)....,(0),(ˆ),...,(ˆ[)(ˆ 11  Ax , (4) 

gdzie T
m1 x,...,x ]ˆˆ[ˆ x . Przy czym fakt poprawy jakości oraz jej stopień zależy od 

zawartości komponentów destrukcyjnych w poszczególnych prognozach.  Ten sam 
efekt poprawy zostanie osiągnięty w wyniku zastąpienia w macierzy mieszającej 

 naaaA ,...,, 21  odpowiedniej kolumny wektorami zer 

 nppp 000aaA ,...,,,,...,ˆ
211  , (5) 

co prowadzi do 

)(ˆ)( tt sAx  . (6) 

Kluczowym zagadnieniem w rozważanej procedurze, jest znalezienie takiej 
dekompozycji (transformacji), która prowadzi do dekompozycji danych x na 
komponenty konstruktywne i destrukcyjne. A następnie poprawne określenie, które 
komponenty są destrukcyjne. Pomijamy przy tym dyskusję o naturze tych 
komponentów w podziale na indywidualne czy wspólne dla modeli predykcyjnych. 
Indywidualne komponenty bazowe, związane ze specyfiką danego modelu będą 
dalej traktowane jako szczególny przypadek „komponentu wspólnego” o zerowym 
wpływie na wyniki innych modeli.  
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Naturalnymi propozycjami dekompozycji są metody związane z identyfikacją 
komponentów ukrytych, takie jak ICA, PCA, NMF, AMUSE itp. [Comon, Jutten 
2010]. Przyjmiemy, że ogólnie możemy je zaliczyć do klasy metod LCA. Przy 
czysto mechanicznym użyciu tych metod, mamy do czynienia z zasadniczo  
analityczną reprezentacją danych. Uzyskanych tak komponentów, nie wiążmy z 
fizycznymi sygnałami lub interpretowalnymi modelami generowania danych. Ową 
fizyczną interpretację można jednak próbować wykonać, nawiązując do problemu 
ślepej separacji, gdyż tam także mamy do czynienia z estymacją nieznanych 
zmiennych (sygnałów, komponentów) zmieszanych w nieznanym systemie.  

Przyjęcie interpretacji BSS oznacza założenie określonej charakterystyki 
sygnałów źródłowych oraz określonego sposobu ich mieszania. Od tych założeń 
zależy z kolei system separujący. Zakłada się, że przypadkowi liniowego mieszania 
powinien odpowiadać liniowy układ separujący, dynamicznemu mieszaniu 
dynamiczny separujący itp. [Cichocki 2013]. 

Jednak z praktycznego punktu widzenia, przyjmując określony model 
mieszania, należy mieć na uwadze, nie tylko zasadność założeń co do jego postaci, 
ale także istniejący stan wiedzy, na temat możliwości uzyskania skutecznego 
rozwiązania. Skuteczna estymacja komponentów źródłowych, na gruncie aktualnie 
znanych metod separacji, jest możliwa zasadniczo dla modelu liniowego [Hyvarinen 
i in. 2001; Mali, Mahajan 2024]. 

W większości algorytmów separacji, zakłada się także istotną relację między 
ilością sygnałów źródłowych a obserwowanych (zmieszanych). Przyjmuje się, że 
BSS jest możliwa gdy ilość sygnałów obserwowanych jest większa lub równa liczbie 
sygnałów źródłowych [Cardoso 1998]. W klasycznych algorytmach separacji jest to 
założenie kluczowe, odpowiadające za możliwość separacji [Araki i in. 2025]. 
Założenie to, o ile może to być spełnione w przypadkach technicznych lub 
fizycznych, to w przypadku danych z rynków finansowych sytuacja znacząco się 
komplikuje.  

W przypadku danych giełdowych, trudno, a w zasadzie niemożliwe, jest 
ustalenie jakiegoś ograniczonego zbioru sygnałów źródłowych z którego w wyniku 
mieszania powstają wartości wszelkich instrumentów finansowych. Można więc 
przyjąć, że wszelkie separacje (dekompozycje, transformacje) mają tu charakter 
analityczny. Jednocześnie jednak, nie sposób wykluczyć sytuacji kiedy 
zastosowanie różnych dekompozycji do różnych zbiorów instrumentów (wartości 
aktualnych lub ich predykcji) prowadzi do „wyłowienia” podobnych lub 
identycznych komponentów (lub komponentu). Mogłoby to sugerować identyfikację 
pewnego fizycznego komponentu źródłowego związanego z „jakimiś” realnym 
procesem ekonomicznym. Jednak na bazie dotychczasowych badań taką sytuację 
należy uznać za stosunkowo mało prawdopodobną, zaś jej pojawienie się należy 
wiązać raczej z jakimś szczególnym przypadkiem, niż efektem systematycznych 
poszukiwań. 

W efekcie można powiedzieć, że korzyści z analogii do problemu BSS wiążą 
się raczej z możliwościami użycia stosowanych tam metod niż z bezpośrednią 
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interpretacją estymacji komponentów źródłowych w kategoriach zagadnienia ślepej 
separacji.     

AGREGACJA NEURONOWA 

Opisana powyżej metoda może być rozważana i rozwijana w różnych 
aspektach. Przede wszystkim, wybór dekompozycji jest z reguły dość ograniczony i 
często motywowany ich popularnością w aspekcie teoretycznym oraz praktycznym. 
Należą one do standardowych metod analitycznych, zaś przesłanką do ich 
stosowania w prezentowanym systemie jest ich skuteczność w problemie BSS, który 
wydaje się najbliższą analogią dla naszego rozwiązania. Oznacza to, że w przypadku 
rozważanego systemu, podobnie jak w problemie separacji, stosowane 
dekompozycje mogą tylko pewnym stopniu odpowiadać „właściwym” formom 
estymacji komponentów źródłowych.  

Kolejną kwestią jest identyfikacja komponentów destrukcyjnych. Metodą 
dającą jednoznaczne wyniki jest mechaniczna eliminacja każdego komponentu, 
dokonanie transformacji odwrotnej i ocena wyników prognozy. Przy czym należy 
mieć na uwadze, że możemy otrzymać komponenty o niejednoznacznym znaczeniu 
np. pojedyncze komponenty mogą mieć negatywny wpływ na wyniki predykcji ale 
ich kombinacje już pozytywny. Wykonalność takiego zadania jest ściśle związana z 
ilością badanych modeli predykcyjnych a w konsekwencji z ilością komponentów 
źródłowych. W efekcie, należy zbadań wpływ nie tylko eliminacji pojedynczych 
komponentów, ale wszystkich podzbiorów (2n). W przypadku dużej liczby 
komponentów źródłowych możliwe są też aprioryczne oceny ich jakości [Szupiluk, 
Rubach 2017] 

Jednak taka ostra (tak/nie) klasyfikacja komponentów źródłowych nie zawsze 
musi być optymalna. Określone komponenty także mieć konstruktywny wpływ na 
pewne modele a destrukcyjny na pozostałe. W takich przypadkach, prosta zero-
jedynkowa interpretacja poszczególnych komponentów źródłowych może być 
niemożliwa. Także nie zawsze optymalna może być pełna eliminacja komponentu 
destrukcyjnego, czasem lepsze może być jego stłumienie (lecz nie zerowanie).   

Ze względu na możliwą „nieostrą” klasyfikację danego komponentu 
źródłowego jako destrukcyjny lub konstruktywny, zastosujemy ich ważenie w 
pewnym ogólnym systemie mieszającym, którym zastąpimy transformację 
odwrotną. Będzie to system neuronowy z nauczycielem w postaci targetu z 
bazowych modeli predykcyjnych.  Przyjmiemy, że będzie to sieć neuronowa typu 
MLP. Jednak podanie na wejście takiego systemu bezpośrednio komponentów 
źródłowych s oznacza w istocie czystą agregacje neuronową modeli bazowych 
transformowanych przez macierz wynikająca z dekompozycji separującej. Byłby to 
typowy preprocessing PCA lub ICA gdzie główną korzyścią jest dekorelacja 
(liniowa lub nieliniowa) danych wejściowych dla sieci neuronowej. Aby 
wykorzystać informacje pozyskane w wyniku identyfikacji komponentów 
destrukcyjnych przyjmiemy, że punktem startowym dla wag sieci neuronowej 
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(przynajmniej jednej z warstw) będzie macierz Â   określona przez (5), czyli 
najlepsza macierz jaką można otrzymać poprzez pełną eliminację komponentów 
destrukcyjnych. Dla sieci typu wielowarstwowy perceptron (ang. Multilayer 
Perceptron -MLP) typu MLP(n,n,n)   

))]([(ˆ 211122 bbsBgBgx  , (7) 

gdzie (.)ig  jest wektorem nieliniowości, iB  jest macierzą wag i ib  jest wektorem 
przesunięcia odpowiednio dla i-tej warstwy, i=1,2. W przypadku braku uczenia, sieć 

neuronowa (7) jest tożsama z (6), jeżeli ograniczymy się do jednej warstwy  AB ˆ
1 

, 0b i  oraz liniowych funkcji aktywacji. Jest jednak wysoce prawdopodobne, że 
jeżeli uczenie sieci neuronowej zaczniemy od punktu do którego doprowadza nas 

etap dekompozycji (wartości początkowe pierwszej warstwy ukrytej AB ˆ)0(1  ) to 
osiągnięte wyniki będą lepsze niż z samej rekompozycji (dekompozycji odwrotnej). 
Możemy ten sposób rozumowania rozszerzyć na kolejne warstwy oraz przyjąć, że 

wagi we wszystkich warstwach startują od wartości Â , czyli mamy 

ABBsBgBgx ˆ)0()0( gdzie    )]),([(ˆ 211122  . (8) 

Dalsze uogólnienie może polegać na dowolnej architekturze MLP 

wykorzystującej macierz  Â  oraz dane wejściowe s 

)ˆ,MLP(ˆ Asx  , (9) 

gdzie formuła (9) oznacza wykorzystanie dowolnej architektury MLP z 
sygnałami wejściowymi s (komponenty źródłowe) oraz dowolnymi 
warstwami wag startującymi od wartości macierzy Â . Dalsze modyfikacje 
mogą polegać na wykorzystaniu innych typów sieci neuronowych np. RBF, CNN. 
LSTM. 

MODEL UCZENIA GŁĘBOKIEGO LCA-NN 

W dotychczasowych rozważaniach bazowaliśmy na założeniu, że już posiadamy 
wyniki z modeli predykcyjnych. Obecnie także ten etap, tworzenia modeli 
predykcyjnych oraz generowania przez nie wyników, włączymy do naszych 
rozważań. Analizując cały proces można zauważyć, że otrzymamy pełny system 
modelowania danych (regresja, klasyfikacja), który może spełniać różne role i nie 
musi się ograniczać do poprawy predykcji. Może on stanowić uniwersalny model 
neuronowy z nauczycielem, w którym występują etapy (lub inaczej warstwy): 
tworzenia podstawowych modeli regresyjnych lub klasyfikacyjnych (predykcje), 
następnie etap dekompozycji odpowiedzialny za oczyszczenie uzyskanych wyników 
z komponentów zakłócających i kolejny etap neuronowy mający za zadanie 
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douczanie całego systemu. Ze względu na możliwość użycia różnych dekompozycji 
prowadzących do różnego typu ukrytych komponentów źródłowych, ten aspekt 
funkcjonowania systemu określimy mianem LCA (ang, Latent Component 
Anlaysis), zaś cały system, prezentowany na rysunku 1, zdefiniujemy jako LCA-
NN.  

Rysunek 1. Sieć neuronowa LCA-NN   

 
Źródło: opracowanie własne 

Cały proces ma następującą postać: 

Warstwa 1. Tworzymy modele predykcyjne w oparciu o sieci neuronowe MLP. 
Zestaw wyników z modeli neuronowych zbieramy w jednej zmiennej 
wielowymiarowej x.  

Warstwa 2. Wykonujemy dekompozycję LCA (ICA, PCA, SMA, NMF, AMUSE 
itp.). Zmienną x poddajemy transformacji LCA otrzymując komponenty źródłowe s 

Warstwa 3. Identyfikujemy komponenty destrukcyjne. 

Warstwa 4. Dokonujemy uogólnionej transformacji odwrotnej. Zastępujemy, 
wartości komponentu destrukcyjnego zerami lub niwelujemy jego wpływ 
odpowiednimi parametrami w transformacja odwrotnej. 

Warstwa 5. Wykonujemy douczanie neuronowe siecią MLP. Wartości początkowe 
warstw sieci MLP stanowią wartości z macierzy transformacji odwrotnej 
z zerowymi wartościami dla zidentyfikowanych komponentów destrukcyjnych.         

Wyjście. Otrzymujemy sygnały wyjściowe. 

Ze względu na wykorzystanie metod LCA, cała metoda jest domyślnie 
wielomodelowa, jednak nie oznacza to konieczności tworzenia całkowicie 
odrębnych modeli. Możliwe jest generowanie wielu rozwiązań tym samym modelem 
(to jest o tej samej architekturze, a także parametrach) na różnych podzbiorach 
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uczących. W efekcie całe rozwiązanie można także rozpatrywać w kategoriach 
metody agregacji modeli (ang. ensemble methods). 

BADANIE PRAKTYCZNE 

Niniejszy artykuł ma główne charakter ideowy oraz metodologiczny. Jednak 
aby pokazać zasadność i skuteczność podstawowej koncepcji przedstawimy krótko 
eksperyment przewidywania zużycia energii elektrycznej sformułowany jako 
predykcja godzinnego obciążenia dokonywana z wyprzedzeniem 24 godzin. Dane 
wejściowe dla predykcyjnych modeli neuronowych obejmują informacje o 
godzinnym zużyciu energii w ciągu ostatnich 24 godzin, jak również dane 
kalendarzowe typu: dzień, miesiąc, dzień tygodnia, indykator dnia. Dla tak 
postawionego problemu, opracowano pięć modeli neuronowych typu MLP o 20, 26, 
28, 30, 35 neuronach w warstwie ukrytej, oznaczonych odpowiedni jako 
M1:MLP20, M2:MLP26, M3:MLP28, M4:MLP30, M5:MLP35. 

W ramach badań wykorzystano dekompozycje PCA oraz ICA (algorytm 
Jade). Badanie przeprowadzono z wykorzystaniem samych dekompozycji jak i 
douczania neuronowego. Uzyskane wyniki prezentuje Tabela 1.  

Tabela 1. Prognozowanie zużycia energii-wyniki modeli   

 
M1 M2 M3 M4 M5 

Modele podstawowe 23,73 23,44 23,71 24,01 24,13 

PCA 22,87 22,45 22,79 22,57 22,51 

ICA 23,69 22,41 22,57 23,34 22,98 

PCA&NN 22,53 22,20 22,49 22,48 22,21 

ICA&NN 22,17 22,38 22,51 22,71 21,16 

Źródło: opracowanie własne 

Jako kryterium jakości przyjęto błąd 𝑀𝐴𝑃𝐸 =
ଵ

ே
⋅ ∑

|ఌ೔|

௦೔

ே
௜ୀଵ , gdzie 𝑠௜ oznacza 

wartość rzeczywistą (target) zaś 𝜀௜błąd prognozy. W większości modeli uzyskano 
poprawę już przy wykorzystaniu samych dekompozycji na poziomie od 3,6 do 6,7 
procent. W przypadku agregacji neuronowej poprawy jakości predykcji wynoszą od 
5,0 do 12,03 procent. 

PODSUMOWANIE 

Prezentowane w artykule rozważania odnoszą się do koncepcji, która bazuje 
na systemie poprawy predykcji, dla której zaproponowaliśmy szersze rozwinięcia 
neuronowe. Takie podejście otwiera także drogę do bardziej ogólnego punktu 
widzenia i wyjścia poza schemat systemu poprawy predykcji, np. potraktowanie 
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całego procesu jako uniwersalnego sytemu neuronowego z nauczycielem, który 
może być stosowany do dowolnego zagadnienia klasyfikacji lub regresji. Złożoność 
całego systemu uzasadnia określenie go jako system głębokiego uczenia. 

 Poszczególne etapy związane z dekompozycjami wielowymiarowymi oraz 
identyfikacją komponentów destrukcyjnych mogą być rozważane w kategoriach 
problemu ślepej separacji dając możliwość lepszego dopasowania stosowanych 
dekompozycji do badanego problemu oraz głębszej jego interpretacji. Wiązanie 
jednak działania dekompozycji z BSS nie jest jednak konieczne ani czasem możliwe, 
w takiej sytuacji traktujemy te przekształcenia LCA w kategoriach reprezentacji 
analitycznych. 

Zarówno w przypadku systemu poprawy predykcji jak i sytemu LCA-NN, ze 
względu na identyfikację ukrytych komponentów możemy wiązać ten etap 
(warstwę) z problemem ślepej separacji, wykorzystując rozwiązania z tego obszaru, 
Należy jednak mieć na uwadze, że zbyt bliskie wiązanie podstawowego procesu 
poprawy predykcji oraz LCA-NN z BSS niesie z sobą także liczne trudności 
interpretacyjne i metodyczne, które trudno przekonująco rozstrzygać lub wprost 
akceptować. Także wprowadzeni etapu agregacji neuronowej, oddala cały proces od 
bezpośredniej interpretacji w kategoriach BSS.  
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LCA-NN DEEP LEARNING MODEL BASED ON PREDICTION 
IMPROVEMENT SYSTEM USING MULTIVARIATE 

DECOMPOSITION 

Abstract: In this article, we present a deep learning system that combines MLP 
neural networks with multivariate decompositions. It is an extension of the 
system for improving prediction results in a multi-model approach using ICA, 
PCA, and NMF methods. This can also be considered a method for model 
aggregation or multidimensional filtering of components that interfere with 
forecast results. We present the entire process in connection with the blind 
separation problem, pointing out possible useful inspirations and significant 
limitations of such interpretations. 

Keywords: prediction, deep learning models, multidimensional 
decompositions, neural networks 
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