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Abstract: The purpose of the article was to investigate the possibility of 9 
increasing speed in transactions made within algorithmic and high-frequency 10 
trading. The analysis carried out for this purpose concerned the European 11 
options priced in the Heston model. Among issues being discussed, a new 12 
scheme of calculating Fourier and inverse Fourier transforms was proposed. 13 
It guarantees an increase of computational speed in relation to existing 14 
methods of generating final results. 15 
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INTRODUCTION 18 

In the financial literature algorithmic trading is variously defined. According 19 
to P. Teleaver, M. Galas and V. Lalchand [Teleaven et al. 2013] this term should 20 
be understood as any form of exchange of capital assets using advanced algorithms 21 
(computer systems) in order to automate entire or part of the transaction process. 22 
A. Cartea and S. Jaimungal [Cartea, Jaimungal 2013] are of a similar opinion. 23 
According to them algorithmic trading refers to the use of computer algorithms that 24 
make trading decisions, submit orders and manage those orders. In a slightly 25 
different way algorithmic trading is defined by A. P. Chaboud, B. Chiquoine, E. 26 
Hjalmarsson and C. Vega [Chaboud et al. 2014]. In their opinion this term is 27 
inextricably linked to the monitoring of markets, management and exchange of 28 
financial assets that are traded highly frequently. Such approach is in line with 29 
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views of M. A. Goldstein, P. Kumar and F. C. Graves [Goldstein et al. 2014], who 1 
directly associate algorithmic trading with submitting, executing and cancelling 2 
buy or sell orders, analyzing financial data to identify short-term price 3 
opportunities, and trading via computers. In distinguishing between algorithmic 4 
and high-frequency trading helps the U.S. Securities and Exchange Commission 5 
(SEC). In one of the researches carried out by the SEC it was pointed out that 6 
despite the lack of a precise definition of high-frequency trading, algorithmic 7 
trading is a superior category in relation to high-frequency trading1. In other studies 8 
performed by the SEC it is stated that high-frequency trading is a significant but 9 
not the only part of algorithmic and computer-aided trading2. In this approach 10 
algorithmic trading covers wide range of activities including execution of orders on 11 
behalf of institutional clients and market makers by algorithms. Due to the fact that 12 
placed orders are of a large value they are placed on the market after dividing them 13 
into smaller suborders (or child orders) using appropriately designed queuing 14 
systems. For the purpose of this article, however, it is assumed that algorithmic 15 
trading is a trading system based on precise, previously prepared computer 16 
instructions in the process of capital assets’ exchange [Yadav 2015]. 17 

The aim of the article is to show that there is still room for increasing speed 18 
in algorithmic and high-frequency trading. The article is organized as follows.  19 
In the first section development of algorithmic and high-frequency trading is 20 
presented. In the second section, the Heston model is briefly described. In the third 21 
section, some new approaches to the valuation of options in the Heston framework 22 
are proposed and an analysis of the speed of pricing European options is 23 
performed. Finally, in fourth section, the article is summarized and major 24 
conclusions are drawn.  25 

DEVELOPMENT OF ALGORITHMIC AND HIGH-FREQUENCY 26 

TRADING 27 

Algorithmic and high-frequency trading changed the functioning of 28 
contemporary capital markets. First of all, the automation of trades on stock 29 
exchanges significantly transformed the investment process. The involvement of 30 
financial resources in the transactions on the stock market to a lesser extent began 31 
to be related to the search for underestimated or overvalued securities and the 32 
selection of the appropriate moment of their purchase or sale. Greater weight began 33 
to be attributed to the continuous opening and closing positions at very short time 34 
intervals with the intention of generating short-term arbitrage profits. Secondly, 35 
some of the responsibilities related to making investment decisions were passed to 36 

                                                 
1 http://www.sec.gov/rules/concept/2010/34-61358.pdf [access: 10.02.2016]. 
2 https://www.sec.gov/marketstructure/research/hft_lit_review_march_2014.pdf [access: 

15.02.2016]. 



Is There Still Room for Increasing Speed … 37 

the algorithms, in particular in areas related to the analysis of data and the selection 1 
of information that is most important for future changes in the prices of financial 2 
instruments. What's more, algorithms responsible for the purchase and sale began 3 
to take into account the impact of orders placed by other market participants, as 4 
well as the consequences of the use of algorithms by the buyers and sellers for the 5 
valuation of individual assets. Thirdly, investing financial resources based on 6 
mathematical instructions reduced the role of the human factor in the investment 7 
process to the development of financial models and the programming of computers. 8 

The automation of stock trading, the use of algorithms to open and close 9 
positions, and the reduction of importance of the human factor in the investment 10 
process transformed algorithmic and high-frequency trading from a niche 11 
investment strategy into a dominant form of trade on many capital markets. This 12 
seems to be confirmed by M. A. Goldstein, P. Kumar and F. C. Graves [Goldstein 13 
et al. 2014]. According to them in the period of 2000-2012 the share of high-14 
frequency transactions on the U.S. stock market increased from less than 10% to 15 
over 50%. On other segments of U.S. financial market a similar phenomenon was 16 
observed. The volume of high-frequency trading on the U.S. option and currency 17 
markets at the end of 2012 fluctuated from 40% to 60% of the total volume. 18 
According to N. Popper [Popper 2012] a similar tendency was observed in the most 19 
developed countries of the European Union, Japan and the remaining part of Asia. 20 
In their case, in 2012, high-frequency trading was responsible for 45%, 40% and 21 
12% of stock trading respectively. 22 

Development of algorithmic and high-frequency trading increased the speed 23 
of trade and shortened the time of holding open positions in financial instruments. 24 
As noted by A. G. Haldane [Haldane 2016], within 15 years starting from 2000, the 25 
average length of time for stock ownership was reduced from a few seconds to  26 
a few milli- or even microseconds. Moreover, as was noted by M. Narang [Narang 27 
2016], the competition between traders on the financial market decreased the profit 28 
margin on the U.S. equity market to the value of one-tenth of a cent per share.  29 

According to N. Popper [Popper 2016], in recent years, the role of 30 
algorithmic and high-frequency trading on the U.S. capital market has been 31 
gradually decreasing. In the period of 2009-2012, the annual number of shares 32 
bought or sold in computer-assisted transactions decreased from around 6 billion to 33 
around 3 billion. This meant a decrease of the share of algorithmic and high-34 
frequency trading in the total volume from 61% to 51%. In the analyzed period, 35 
this phenomenon was accompanied by the decrease in profits of companies using 36 
these forms of trading from 4.9 billion USD in 2009 to 1.25 billion USD in 2012. It 37 
is worth noting that one of the reasons for the drop in profitability of algorithmic 38 
and high-frequency trading was the growing costs of both the maintenance of the 39 
ICT infrastructure and the acquisition and processing of market data. On the other 40 
side, in the period of 2009-2012, in the U.S., relatively stable increase in stock 41 
indices was observed. It was also a period of low market interest rates. Such 42 
circumstances could not ensure adequate profitability of momentum and reversal 43 
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strategies. In addition, as noted by L. Cardella, J. Hao, I. Kalcheva and Y. Ma 1 
[Cardella et al. 2014], the development of algorithmic and high-frequency trading 2 
and their profitability should be considered in a broader sense, i.e. they should 3 
include other financial instruments, and market segments. It was partly confirmed 4 
by N. Popper [Popper 2016] who observed an increase of the high-frequency 5 
trading in the total volume on the currency market (from 12% in 2009 to 28%  6 
in 2012). 7 

Higher frequency of stock exchange transactions, increase in the speed  8 
of trade and shortening the time of holding open positions as well as popularization 9 
of algorithmic and high-frequency trading influenced the level of both 10 
informational and operational efficiency of the financial market. 11 

In the next part of the article construction of the Heston model is briefly 12 
discussed and then alternative Fourier transform schemes are presented. 13 

THE HESTON MODEL 14 

There are two processes underlying the Heston model, i.e.: 15 

 𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + √𝜎𝑡
2𝑆𝑡𝑑𝑊1,𝑡,  (1) 16 

 𝑑𝜎𝑡
2 = 𝜅(𝜃 − 𝜎𝑡

2)𝑑𝑡 + 𝜐√𝜎𝑡
2𝑑𝑊2,𝑡,  (2) 17 

where: 𝑆𝑡 is the price of the underlying asset in period 𝑡, 𝜇 is the (constant) drift, 18 
𝜎𝑡

2 is the variance of the rates of return on the underlying asset, 𝜅 is the mean-19 
reverting speed, 𝜃 is the average long-term variance of the rate of return on 20 
underlying asset (long-run mean), 𝜐 is the volatility of volatility, and 𝑊1,𝑡, 𝑊2,𝑡 are 21 

two correlated Wiener processes such that 𝐸(𝑊1,𝑡𝑊2,𝑡) = 𝜌. 22 
From eq. 2 it can be easily concluded that the main difference between the 23 

Black-Scholes [Black, Scholes 1973] and the Heston models [Heston 1993] refers 24 
to the variance of the rate of return on the underlying asset. In the Black-Scholes 25 
model volatility is fixed over time, while in the Heston model it is stochastic and 26 
given by the CIR process. 27 

Pricing European options in the Heston model is based on the martingale 28 
approach to determining theoretical values of the contracts, i.e.: 29 

𝐶(𝑆, 𝜎2, 𝑡) = 𝑒−𝑟(𝑇−𝑡)𝐸ℚ𝐻
((𝑆𝑇 − 𝐾)+) = 30 

= 𝑒−𝑟𝜏𝐸ℚ𝐻
(𝑆𝑇1𝑆𝑇>𝐾) − 𝑒−𝑟𝜏𝐾𝐸ℚ𝐻

(1𝑆𝑇>𝐾) = 31 

 = 𝑒𝑥𝑡𝑃1(𝑥, 𝜎2, 𝜏) − 𝑒−𝑟𝜏𝐾𝑃2(𝑥, 𝜎2, 𝜏),  (3) 32 

where: 𝜏 = 𝑇 − 𝑡, 𝑟 is the risk-free rate, 𝐾 is the exercise price, ℚ𝐻 is a martingale 33 
measure in the Heston model, 𝑃1(𝑥, 𝜎2, 𝜏), 𝑃2(𝑥, 𝜎2, 𝜏) are probabilities of expiring 34 
options in-the-money and the remaining notation is consistent with previously 35 
introduced. 36 
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According to S. L. Heston [Heston 1993], analytical formulas for 1 
𝑃1(𝑥, 𝜎2, 𝜏) and 𝑃2(𝑥, 𝜎2, 𝜏) are not known. However, it can be concluded that the 2 
knowledge of the characteristic functions 𝜙1(𝜉, 𝑥, 𝜎2) and 𝜙2(𝜉, 𝑥, 𝜎2) 3 
corresponding to 𝑃𝑗, for 𝑗 = 1,2, allows to calculate 𝑃1(𝑥, 𝜎2, 𝜏) and 𝑃2(𝑥, 𝜎2, 𝜏). 4 

For this purpose, it is enough to calculate the inverse Fourier transforms according 5 
to the following formula (the method is referred to as H-H): 6 

 𝑃𝑗 =
1

2
+

1

𝜋
∫ ℜ (

𝑒−𝕀𝜉𝑙𝑛𝐾𝜙𝑗(𝜉,𝑥,𝜎2)

𝕀𝜉
) 𝑑𝜉

∞

0
,  (4) 7 

where: ℜ(. ) is the real part of the subintegral function, 𝕀 is the imaginary part  8 
of the complex number and the remaining notation is consistent with previously 9 
introduced. 10 

In order to find the formula for the price of the European option it is 11 
necessary to introduce assumption concerning general form of the characteristic 12 
function corresponding to the probabilities 𝑃𝑗, for 𝑗 = 1,2, i.e.: 13 

 𝜙𝑗(𝜉, 𝑥, 𝜎) = 𝑒𝐶𝑗(𝜉,𝜏)+𝐷𝑗(𝜉,𝜏)𝜎2+𝕀𝜉𝑥  , (5) 14 

where:  15 

 𝐶𝑗(𝜉, 𝜏) = 𝑟𝕀𝜉𝜏 +
𝑎

𝜐2 [(𝑏𝑗 − 𝜐𝜌𝕀𝜉 + 𝑑𝑗)𝜏 − 2𝑙𝑛 (
1−𝑔𝑗𝑒

𝑑𝑗𝜏

1−𝑔𝑗
)],  (6) 16 

 𝐷𝑗(𝜉, 𝜏) =
𝑏𝑗−𝜐𝜌𝕀𝜉+𝑑𝑗

𝜐2 (
1−𝑒

𝑑𝑗𝜏

1−𝑔𝑗𝑒
𝑑𝑗𝜏),  (7) 17 

 𝑢1 =
1

2
 , (8) 18 

  𝑢2 = −
1

2
 , (9) 19 

  𝑎 = 𝜅𝜃,  (10) 20 

  𝑏1 = 𝜅 + 𝜆 − 𝜐𝜌,  (11) 21 

  𝑏2 = 𝜅 + 𝜆,  (12) 22 

  𝑔𝑗 =
𝑏𝑗−𝜐𝜌𝕀𝜉+𝑑𝑗

𝑏𝑗−𝜐𝜌𝕀𝜉−𝑑𝑗
 , (13) 23 

 𝑑𝑗 = √(𝜐𝜌𝕀𝜉 − 𝑏𝑗)
2

− 𝜐2(2𝑢𝑗𝕀𝜉 − 𝜉2) . (14)   24 

The payoff functions of the analyzed derivatives are presented in Figure 1. 25 
The figure is prepared assuming that: 𝑆 ∈ [20,80], 𝐾 = 50, 𝜎2 = 0.2, 𝑟 = 5% 26 
𝑇−𝑡

𝑇
∈ {0.01, 0.3, 0.6, 0.9}, 𝜅 = 0.05, 𝜆 = 0.08, 𝜃 = 0.15, and 𝜌 = 0.8. 27 
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Figure 1. Payoff functions of the European call in the Heston model assuming that: 𝜅 =1 

0.05, 𝜆 = 0.08, 𝜃 = 0.15, 𝜌 = 0.8 and 𝜐 takes various values for: (a) 
𝑇−𝑡

𝑇
= 0.01, 2 

(b) 
𝑇−𝑡

𝑇
= 0.3, (c) 

𝑇−𝑡

𝑇
= 0.6 i (d)  

𝑇−𝑡

𝑇
= 0.9 3 

 4 

 5 

 6 

 7 
Source: own elaboration 8 
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SCHEMES OF THE FOURIER TRANSFORM  1 

There are many methods of calculating the Fourier and inverse Fourier 2 
transforms. In consequence, there are many ways of determining value of the 3 
European options in the Heston model. In the article special attention in this matter 4 
will be directed to the formulas developed by P. Carr and D. Madan [Carr, Madan 5 
1999], G. Bakshi and D. Madan [Bakshi, Madan 2000], M. Attari [Attari 2004], 6 
and A. Orzechowski [Orzechowski 2018], i.e.: 7 

1. P. Carr and D. Madan [Carr, Madan 1999] for 𝛼 = 1 (the method is referred to 8 
as H-CM): 9 

 𝐶(𝑆𝑡, 𝑡) =
𝑒−𝛼𝑘

𝜋
∫ ℜ (𝑒−𝕀𝜉𝑘 𝑒−𝑟𝜏𝜙2(𝜉−(𝛼+1)𝕀,𝑥,𝜎2)

𝛼2+𝛼−𝜉2+𝕀(2𝛼+1)𝜉
)

∞

0
𝑑𝜉.  (15) 10 

2. P. Carr and D. Madan [Carr, Madan 1999] for 𝛼 = 1 (the method is referred to 11 
as H-CMTV): 12 

 𝐶(𝑆𝑡, 𝑡) =
1

sinh(𝛼𝑘)

1

𝜋
∫ ℜ (𝑒−𝕀𝜉𝑘 Ϛ(𝜉−𝕀𝛼,𝑥,𝜎2)+Ϛ(𝜉+𝕀𝛼,𝑥,𝜎2)

2
)

∞

0
𝑑𝜉,  (16) 13 

where: Ϛ(𝜉, 𝑥, 𝜎2) = 𝑒−𝑟𝜏 (
1

1+𝕀𝜉
−

𝜙2(−𝕀,𝑥,𝜎2)

𝕀𝜉
+

𝜙2(𝜉−𝕀,𝑥,𝜎2)

𝕀𝜉(1+𝕀𝜉)
). 14 

3. G. Bakshi and D. Madan [Bakshi, Madan 2000] (the method is referred to as  15 
H-BM): 16 

 𝐶(𝑆𝑡, 𝑡) =
1

2
(𝑆t − 𝐾𝑒−𝑟𝜏) +

𝑆t

𝜋
∫ ℜ (

𝑒−𝕀𝜉𝑘𝜙1(𝜉,𝑥,𝜎2)

𝕀𝜉
) 𝑑𝜉

∞

0
+   17 

 −𝐾𝑒−𝑟𝜏 1

𝜋
∫ ℜ (

𝑒−𝕀𝜉𝑘𝜙2(𝜉,𝑥,𝜎2)

𝕀𝜉
) 𝑑𝜉

∞

0
.  (17) 18 

4. M. Attari [Attari 2004] (the method is referred to as H-A): 19 

 𝐶(𝑆𝑡, 𝑡) = 𝑆𝑡 (1 +
𝑒𝑙

𝜋
∫ ℜ (

𝑒−𝕀𝜉𝑙

𝕀(𝜉+𝕀)
𝜙3(𝜉, 𝑥, 𝜎2)) 𝑑𝜉

∞

0
) +  20 

 −𝑒−𝑟𝜏𝐾 (
1

2
+

1

𝜋
∫ ℜ (

𝑒−𝕀𝜉𝑙

𝕀𝜉
𝜙3(𝜉, 𝑥, 𝜎2)) 𝑑𝜉

∞

0
), (18) 21 

where: 𝜙3(𝜉, 𝑥, 𝜐) = 𝑒𝐶2(𝜉,𝜏)+𝐷2(𝜉,𝜏)𝜎2+𝕀𝜉𝑟𝜏, and 𝑙 =
𝐾

𝑆𝑡𝑒𝑟𝜏. 22 

5. A. Orzechowski [Orzechowski 2018] (the method is referred to as H-Au1): 23 

 𝐶(𝑆𝑡, 𝑡) =
1

2
𝑆𝑡 − 𝑒−𝑟𝜏 1

𝜋
∫ ℜ (𝑒−𝕀𝜉𝑘 𝜙2(𝜉−𝕀,𝑥,𝜎2)

𝕀𝜉(𝕀𝜉+1)
) 𝑑𝜉

∞

0
.  (19) 24 

It is worth noting that above mentioned schemes can be applied to pricing 25 
options in diffusion, jump-diffusion as well as pure jump models. 26 

In order to investigate which of the methods described above is the best  27 
in terms of computational speed, appropriate codes are developed in the 28 
Mathematica 10.2. The package being used is run on a computer with Intel i5-29 
4210U CPU @ 1.70 GHz processor with RAM memory of 6 GB. It is important 30 
that each time, before the codes are started, cache memory is deleted. It is done in 31 
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order to force the written blocks of commands to be restarted by the computer. The 1 
results of the tests carried out are expressed in the graphical form - see Figure 2. 2 

Figure 2. Computational speed in the Heston model assuming that: 𝜅 = 0.05, 𝜆 = 0.08, 3 

𝜃 = 0.15, 𝜌 = 0.8 and 𝜐 = 0.2 for: (a) 
𝑇−𝑡

𝑇
= 0.01, (b) 

𝑇−𝑡

𝑇
= 0.3, (c) 

𝑇−𝑡

𝑇
= 0.6  4 

i (d)  
𝑇−𝑡

𝑇
= 0.9 5 

 6 

 7 

 8 

 9 
Source: own elaboration 10 
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Based on obtained results it can be easily seen that the slowest methods  1 
of pricing European options in the Heston model are H-H, H-CMTV, H-BM and 2 
H-A. It should be noted that in the case of H-CMTV the number of bisections in 3 
the implemented numerical scheme is reduced in relation to other methods. The  4 
H-CM, and H-Au1 methods are among the fastest methods of determining 5 
theoretical values of the European options (the second one is slightly faster) 6 
regardless of the the time remaining to expiration and the moneyness of the 7 
contracts. It is impossible to disregard the fact that the fastest methods of pricing 8 
European options have two common features, i.e.: one characteristic function of the 9 
variable 𝑆𝑡 in the formula for the price of the option and the value 𝜉 in the 10 
denominator of the subintegral function squared. 11 

SUMMARY 12 

The main purpose of this article was to show that the pricing of the European 13 
options can be speeded up. Information of how to do it can be important for the 14 
possibility of developing high-frequency and algorithmic trading strategies. What 15 
is especially important is that the increase in the computational speed of the pricing 16 
of the European options is obtained not via technological advances in the computer 17 
hardware, information processing or telecommunications but by developing new 18 
method of calculating the Fourier and inverse Fourier transforms. It is also worth 19 
noting that the results can be used to develop numerical schemes based of the 20 
Fourier transform, i.e. the descrete and fast Fourier transforms. 21 
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