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Abstract: The purpose of the article was to investigate if it is posssible to 7 
speed up the process of pricing European options in the variance gamma 8 
setting. The analysis carried out for this purpose refers to the choice of the 9 
Fourier transform scheme, which allows to obtain accurately and fast the 10 
final result (theoretical value of the European option). The issues being 11 
discusses that refer to other methods of pricing options via Fourier transform 12 
are also briefly discussed. 13 
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INTRODUCTION 16 

The world’s most well-known options pricing model is the one discovered 17 
by F. Black and M. Scholes [Black, Scholes 1973]. The model is based on the 18 
assumption of existence of two types of financial assets. The first one is riskless, 19 
which means that its purchase guarantees achievement of predetermined benefits. 20 
With this in mind, it can be stated that the modeling of the price path of such an 21 
instrument (in practice it is a government bond) is possible with the use of a first 22 
order ordinary differential equation. The second type of assets are stocks which 23 
prices follow geometric Brownian motion. In consequence, their prices are 24 
assumed to be unpredictable (upward and downward movements in value of the 25 
securities are described by a stochastic differential equation). 26 

As part of the proposed theory, the following assumptions are introduced: 27 

 short-term interest rate is known and does not change over time, 28 

 shares’ prices follow random walk, 29 
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 variance of the returns on risky assets is constant, 1 

 conditional distribution of the market prices of risky assets is lognormal, 2 

 stocks do not generate dividends, 3 

 only European options are subject to analysis,  4 

 stocks are perfectly divisible, 5 

 short sale of both risky and risk-free assets is not restricted, 6 

 money can be borrowed and invested at the short-term risk-free interest rate. 7 

In order to better explain changes in the value of options, it is often assumed 8 
that the process responsible for movements of the underlying asset’s prices is 9 
discontinuous. In the literature [Tankov, Voltchkova 2009], extension of the 10 
diffusion process by a jump component is explained in many ways. According to 11 
the approach of F. Black and M. Scholes [Black, Scholes 1973], the probability of 12 
achieving large profits or incurring significant losses in short time intervals is much 13 
lower than it results from the analysis of empirical data. In consequence, on the 14 
basis of historical observations, it can be concluded that out-of the-money contracts 15 
which are close to expiration remain underestimated. Moreover, the diffusion 16 
model of option pricing is based on the concept of perfect hedging. In reality, 17 
however, perfect hedging is implausible, and one of the reasons may be the 18 
occurrence of jumps in the quotations of financial instruments. Among existing 19 
arguments supporting the inclusion of discontinuities into the models of option 20 
pricing are empirical observations confirming the occurrence of such phenomena 21 
on various segments of the financial market. 22 

Over time, jump-diffusion models were transformed into pure jump models 23 
in which diffusion component disappears and only the one referring to jumps 24 
remains. In consequence, nowadays, all models of option pricing with 25 
discontinuities can be divided into two groups: (1) finite activity models in which 26 
continuous changes in prices of the underlying assets are occasionally disturbed by 27 
jumps [Merton 1976, Kou 2002] and (2) infinite activity models in which only 28 
discrete changes (in values of the underlying asset) in a finite time interval appear 29 
[Barndorff et al. 1991, Carr et al. 2002, Eberlein et al. 1998, Madan et al. 1998, 30 
Madan et al. 1991]. Such classification is partly confirmed by W. Schoutens 31 
[2003]. 32 

The aim of the article is to show that properly chosen Fourier transform 33 
scheme can increase efficiency of the European option pricing in the variance 34 
gamma model. The article is organized as follows. In the first section definitions of 35 
the characteristic function and the Fourier transform are given. Moreover, 36 
characteristic functions of two pure jump models are presented. In the second 37 
section, the application of the variance gamma model to the valuation of the 38 
European options is briefly discussed. In the third section, efficiency of the 39 
valuation of the contracts in the variance gamma framework is analyzed. Finally, 40 
in fourth section, the article is summarized and major conclusions are drawn.  41 



Pricing European Options in the Variance … 47 

THE FOURIER TRANSFORM AND CHARACTERISTIC FUNCTION 1 

If 𝑓(𝑥) is a piecewise continuous real-valued function defined over the 2 
domain of real numbers which satisfies the following condition, then the Fourier 3 
transform of 𝑓(𝑥) is defined by: 4 

 ℱ[𝑓(𝑥)] = ∫ 𝑒𝕀𝜉𝑥∞

−∞
𝑓(𝑥)𝑑𝑥,  (1) 5 

where: 𝕀 is the imaginary part of the complex number and 𝜉 ∈ ℝ. 6 
If 𝑋 is a random variable having the density function 𝑔(𝑥), then the 7 

characteristic function of 𝑋 is defines by: 8 

 𝜙𝑋(𝜉) = ∫ 𝑒𝕀𝜉𝑥∞

−∞
𝑔(𝑥)𝑑𝑥,  (2) 9 

where the notation is consistent with previously introduced. 10 

If 𝐺𝑡 is a gamma process with parameters 𝛼 = 𝛽 =
1

𝜈
, where 𝜈 is the 11 

volatility of the time change, then 𝑋𝑡 is the variance gamma process with infinite 12 
number of jumps in the finite time interval, i.e.: 13 

 𝑋𝑡 = 𝜃𝐺𝑡 + 𝜎𝐵𝐺𝑡
,  (3) 14 

where 𝜃 is a skewness parameter, 𝜎 is a variance, 𝐵𝐺𝑡
 is a subordinated Brownian 15 

motion and the remaining notation is consistent with previously introduced. 16 
The distribution of the process is negatively and positively skewed when 17 

𝜃 < 0 and 𝜃 > 0 respectively. Moreover, it is infinitely divisible and has stationary 18 
and independent increments. 19 

The characteristic function of 𝑋 is given by: 20 

 𝜙𝑋(𝜉) = (1 − 𝕀𝜃𝜈𝜉 +
1

2
𝜎2𝜈𝜉2)

−
1

𝜈
 (4) 21 

and the characteristic function of 𝑋𝑡 is expressed by the formula: 22 

 𝜙𝑋𝑡
(𝜉) = (1 − 𝕀𝜃𝜈𝜉 +

1

2
𝜎2𝜈𝜉2)

−
𝑡

𝜈
 , (5) 23 

where the notation is consistent with previously introduced. 24 
If 𝑋𝑡 is a normal inverse Gaussian process with parametrs 𝛼 > 0, −𝛼 < 𝛽 <25 

𝛼 and 𝛿 > 0, then it can be treated as an inverse Gaussian subordinated Brownian 26 
motion with a drift. If  𝐼𝑡 is an inverse Gaussian process with parameters 𝛼 = 1  27 

and 𝑏 = 𝛿√𝛼2 − 𝛽2, then 𝑋𝑡 can be expressed by the following equation 28 

 𝑋𝑡 = 𝛽𝛿2𝐼𝑡 + 𝛿𝐵𝐼𝑡
. (6) 29 

The characteristic function of 𝑋 is given by: 30 

 𝜙𝑋(𝜉) = 𝑒
−𝛿(√𝛼2−(𝛽+𝕀𝜉)2−√𝛼2−𝛽2)

 (7) 31 

and the characteristic function of 𝑋𝑡 is expressed by the formula: 32 

 𝜙𝑋𝑡
(𝜉) = 𝑒

−𝛿𝑡(√𝛼2−(𝛽+𝕀𝜉)2−√𝛼2−𝛽2)
, (8) 33 

where the notation is consistent with previously introduced. 34 
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Although normal inverse Gaussian processes can be applied to pricing 1 
option they are left for later analysis. In the remaining part of the article only 2 
variance gamma processes are of special interest.  3 

PRICING EUROPEAN OPTIONS VIA FOURIER TRANSFORM  4 

If the general form of the characteristic function of a variable identified with 5 
log-price of the underlying asset is known, then the price of the European option 6 
can be easily determined. As there are many approaches to the calculation of the 7 
Fourier and inverse Fourier transforms final formulas for the theoretical price of 8 
the European option can take different forms. Assuming that 𝑇 is the moment of 9 
option’s expiration and 𝑡 is the moment of option’s pricing characteristic function 10 
of the natural logarithm of the spot price of the underlying asset is given by: 11 

 𝜙(𝜉) = (1 − 𝕀𝜃𝜈𝜉 +
1

2
𝜎2𝜈𝜉2)

−
(𝑇−𝑡)

𝜈
𝑒

𝕀𝜉(𝑠𝑡+(𝑇−𝑡)(𝑟+
1

𝜈
𝑙𝑛(1−𝜃𝜈−

1

2
𝜎2𝜈)))

, (9) 12 

where: 𝑠𝑡 = 𝑙𝑛(𝑆𝑡) and the remaining notation is consistent with previously 13 
introduced. 14 

Assuming 𝑘 is the natural logarithm the exercise price 𝐾, 𝑆0 is the price of 15 
the underlying asset at time 𝑡 = 0 and 𝑟 is the risk-free rate of return, the formulas 16 
for the price of the European call in the methods of P. Carr and D. Madan [Carr, 17 
Madan 1999], G. Bakshi and D. Madan [Bakshi, Madan 2000], M. Attari [Attari 18 
2004], and A. Orzechowski [Orzechowski 2018] are the following: 19 

1. P. Carr and D. Madan [1999] for 𝛼 = 1 (the method is referred to as VG-CM): 20 

 𝐶(𝑆0, 0) =
𝑒−𝛼𝑘

𝜋
∫ ℜ (𝑒−𝕀𝜉𝑘 𝑒−𝑟𝑇𝜙(𝜉−(𝛼+1)𝕀)

𝛼2+𝛼−𝜉2+𝕀(2𝛼+1)𝜉
)

∞

0
𝑑𝜉.  (10) 21 

2. P. Carr and D. Madan [1999] for 𝛼 = 1 (the method is referred to as VG-22 
CMTV): 23 

 𝐶(𝑆0, 0) =
1

sinh(𝛼𝑘)

1

𝜋
∫ ℜ (𝑒−𝕀𝜉𝑘 Ϛ(𝜉−𝕀𝛼)+Ϛ(𝜉+𝕀𝛼)

2
)

∞

0
𝑑𝜉, (11) 24 

where: Ϛ(𝜉) = 𝑒−𝑟𝑇 (
1

1+𝕀𝜉
−

𝜙(−𝕀)

𝕀𝜉
+

𝜙(𝜉−𝕀)

𝕀𝜉(1+𝕀𝜉)
). 25 

3. G. Bakshi and D. Madan [2000] (the method is referred to as VG-BM): 26 

 𝐶(𝑆0, 0) =
1

2
(𝑆0 − 𝐾𝑒−𝑟𝑇) +

𝑆0

𝜋
∫ ℜ (

𝑒−𝕀𝜉𝑘𝜙(𝜉−𝕀)

𝕀𝜉𝜙(−𝕀)
) 𝑑𝜉

∞

0
+   27 

 −𝐾𝑒−𝑟𝑇 1

𝜋
∫ ℜ (

𝑒−𝕀𝜉𝑘𝜙(𝜉)

𝕀𝜉
) 𝑑𝜉.

∞

0
  (12) 28 

4. M. Attari [2004] (the method is referred to as VG-A): 29 

 𝐶(𝑆0, 0) = 𝑆0 (1 +
𝑒𝑙

𝜋
∫ ℜ (

𝑒−𝕀𝜉𝑙

𝕀(𝜉+𝕀)
𝜙1(𝜉)) 𝑑𝜉

∞

0
) +  30 

 −𝑒−𝑟𝑇𝐾 (
1

2
+

1

𝜋
∫ ℜ (

𝑒−𝕀𝜉𝑙

𝕀𝜉
𝜙1(𝜉)) 𝑑𝜉

∞

0
), (13) 31 
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where: 𝜙1(𝜉) = (1 − 𝕀𝜃𝜈𝜉 +
1

2
𝜎2𝜈𝜉2)

−
𝑡

𝜈
𝑒

𝕀𝜉(𝑡(
1

𝜈
𝑙𝑛(1−𝜃𝜈−

1

2
𝜎2𝜈)))

, and 𝑙 =
𝐾

𝑆𝑡𝑒𝑟𝑇. 1 

5. D. S. Bates [2006] (the method is referred to as VG-B): 2 

 𝐶(𝑆0, 0) = 𝑆0 − 𝑒−𝑟𝑇𝐾 (
1

2
+

1

𝜋
∫ ℜ (

𝑒−𝕀𝜉𝑘

𝕀𝜉(1−𝕀𝜉)
) 𝜙(𝜉)𝑑𝜉

∞

0
). (14) 3 

6. A. Lewis [2001] and A. Lipton [2002] (the method is referred to as VG-LL): 4 

 𝐶(𝑆0, 0) = 𝑆0 −
√𝑆0𝐾𝑒

−
𝑟𝑇
2

𝜋
∫ ℜ (𝜙 (𝜉 −

𝕀

2
)

𝑒𝕀𝑢(𝑠0−𝑘+𝑟𝑇)

𝜉2+
1

4

) 𝑑𝜉.
∞

0
 (15) 5 

7. A. Orzechowski [2018] (the method is referred to as VG-Au): 6 

 𝐶(𝑆𝑜, 0) =
1

2
𝑆𝑜 − 𝑒−𝑟𝑇 1

𝜋
∫ ℜ (𝑒−𝕀𝜉𝑘 𝜙(𝜉−𝕀)

𝕀𝜉(𝕀𝜉+1)
) 𝑑𝜉

∞

0
.  (16) 7 

As no analytical methods of the European options’ pricing were included in 8 
the article computational speed and accuracy are investigated with respect to the 9 
VG-CM method.  10 

Computational accuracy is analyzed by comparing deviations of the 11 
theoretical prices of the European calls in the VG-CMTV, VG-BM, VG-A, VG-B, 12 
VG-LL, VG-Au methods from the theoretical values of the contracts in the  13 
VG-CMTV method. In every case it is assumed that: 𝐾 = 100, 𝑟 = 5%, 𝜎 = 20%, 14 
𝜃 = −0.06, 𝜈 = 1.44 and 𝑆 ∈ [60, 140]. Obtained results are presented  15 
in Figure 1.  16 

Figure 1. Computational accuracy in the variance gamma model assuming that: 𝜃 = −0.06, 17 
𝜈 = 1.44 in VG-CMTV, VG-BM, VG-A, VG-B, VG-LL, VG-Au methods 18 
comparing to VG-CMTV method 19 

 20 
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 6 

 7 



Pricing European Options in the Variance … 51 

 1 
Source: own elaboration 2 

From Figure 1 it can be easily concluded that all methods of pricing 3 
European options based on the Fourier transform are relatively well convergent to 4 
the VG-CM method. It means that all approaches to the valuation of options are 5 
comparable is terms of computational accuracy.  6 

In order to investigate computational speed of the contracts’ valuation, 7 
appropriate codes are developed in Mathematica 10.2. The package being used is 8 
run on a computer with Intel i5-4210U CPU @ 1.70 GHz processor with RAM 9 
memory of 6 GB. Each time, before the codes are started, cache memory is deleted. 10 
It is done in order to force the written blocks of commands to be restarted by the 11 
computer. The results of the tests carried out are expressed in the graphic form - 12 
see Figure 2. 13 

Figure 2. Computational accuracy in the variance gamma model assuming that: 𝜃 = −0.06, 14 

𝜈 = 1.44 for: (a) 
𝑇−𝑡

𝑇
= 0.01, (b) 

𝑇−𝑡

𝑇
= 0.5 i (c)  

𝑇−𝑡

𝑇
= 0.99 15 

 16 



52 Arkadiusz Orzechowski 

 1 

 2 
Source: own elaboration 3 

Obtained results are ambiguous for the contracts which are close to 4 
expiration. In other cases, however, it can be easily concluded that the slowest 5 
methods of pricing European options in the variance gamma setting are: VG-6 
CMTV, VG-BM and VG-A. A little faster is the VG-CM method and the fastest 7 
methods of pricing European options are: VG-B, VG-LL and VG-Au. In their cases 8 
parameter 𝜉 in the denominator of the subintegral function is squared and there is 9 
only one characteristic function of the variable 𝑆𝑡 in the subintegral function of the 10 
final formula for the price of the European call.  11 

SUMMARY 12 

In the finance industry more and more important is the speed of valuation of 13 
all instruments listed on the stock exchanges. This happens because developing 14 
computer technologies strongly affect the time of obtaining and processing market 15 
information. In consequence, investment strategies that are implemented by 16 
investors to a greater extent are focused on searching and immediately discounting 17 
every relevant piece of news appearing on the market. Sometimes the strategies are 18 
implemented to the high-frequency or algorithmic trading. 19 

In the article, it was shown that the right choice of the Fourier transform 20 
scheme is needed to price the European options in variance gamma model. The 21 
scheme of the Fourier transform plays a key role in the effectiveness of the 22 
valuation of the analyzed contracts. Moreover, it was proved that the approach 23 
proposed by the author of the article, i.e. VG-Au, belongs to the group of methods 24 
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that are equally accurate as VG-CM, VG-CMTV, VG-BM, VG-A, VG-B,  1 
and VG-LL methods. At the same time, the method allows to speed up calculations 2 
comparing to some of the existing approaches to the valuation of the European 3 
options.  4 
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