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Abstract: Multidimensional analysis uses various measures for assessing 14 
economic effects. However, no single synthetic measure, regardless how 15 
popular, can give a satisfactory solution to the above problem. In general, 16 
various approaches of combining measures can lead to stable outcomes. 17 
Nevertheless, when combining "weak" classifiers one can obtain inevitably 18 
poorer  classification. We propose here a new approach to construct doubly 19 
synthetic measures. The main goal of this work is to analyse the influence these 20 
new synthetic measures on the ranking of multidimensional objects.  21 

Keywords: multidimensional analysis, synthetic measure, ranking methods 22 

INTRODUCTION 23 

Many scientific studies use multidimensional analysis to process their 24 
empirical data. It is also widely used in an enterprise environment. It is applied to 25 
compare objects defined as a set of n-indicator variables. Usually, the goal of such 26 
analysis is to reduce a large quantity of gathered data to a small number of simple 27 
categories (a few synthetic indicators) which is a subject to further analysis and 28 
allows the creation of uniform groups obtained and defined by the values of these 29 
categories. The bibliography in this area is extensive (i.a. Aczel 1989, Morrison 30 
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1990, Hair et al. 1995). Among the group of methods discussed in the related 1 
literature, the basic group contains the methods that utilize the so called model 2 
objects. Breiman proved in his works [Breiman, 1994, 1996, 1998] that using a single 3 
synthetic measure to either rank objects or to classify those objects can be far from 4 
optimal. Furthermore, a superposition of many measures gives a stable and close to 5 
optimal result. It should be noted, however when combining "weaker" classifiers one 6 
can obtain weaker classifier either. 7 

According to Jackson [Jackson 1969, 1969a, 1970] our problem is correctly 8 
stated when: 9 
- as a result of the applied algorithm we obtain a single result, 10 
- the resulting classification is stable. The latter means that the resulting 11 

classification or order does not change "drastically" when the inputs are slightly 12 
varied, 13 

- the applied algorithm is invariant with respect to the permutation of variables and 14 
names of objects that are to be ordered and classified, 15 

- the applied algorithm scale insensitive in all cases when the values of variables 16 
belong to a scale with an absolute zero. The latter means that the algorithm is 17 
indifferent to multiplication of the matrix of distances. 18 

In general, ranking methods can be split into model and non-model ones. 19 
Non-model methods rely on constructing a synthetic aggregate measure based 20 

only on normalized values of features. Model methods rely on constructing 21 
taxonomic measures of growth (artificial reference points) and measuring distances 22 
from these models and on are based on creating a synthetic measure. 23 

Naturally, models can also play an important part in normalization of variables 24 
(see [Kukula 2000]). Noticeably, most techniques that are commonly classified as 25 
non-model can be ultimately reduced to a form relying on the chosen explicit model.  26 

The choice of a model in an automated reporting system is especially 27 
important in assessing, ordering and classifying objects according to the value of a 28 
synthetic measure within a specified period. Consequently, the goal of this work is 29 
to illustrate the influence of a choice of a proposed model on multidimensional 30 
objects’ ranking. 31 

MODEL MEASURES 32 

Let,   Ν, n,, X n  , denote n-dimensional vector space. Consider 33 

now a problem of classifying Νm  objects Q1, Q2,...,Qm of a studied phenomenon based 34 
on their variables (features). Without loss of generality, we assume that all features have 35 
the character of a stymulant. 36 

Assume that vector   miXxxx inii ,,2,1,,,, 21    x i , describe the i-th 37 

object. If  jkikjkik xxxx  for nk ,2,1  then we will write: 38 

 
jiji xxxx  , where  1,mi,j . 39 
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It is easy to see that if ji xx   and ji xx  , then in some cases it is natural to say that 1 

object xi is better (more highly rated) than object xj. This means that none of components 2 
of vector xi is less than a corresponding component of vector xj, and at least one of them is 3 

greater, which implies the existence a k belonging to [1, n] such that jkik xx  . 4 

Let us use the following denotations: 5 

,n1,2,   kxmax,   xxminx ik
mi1

1,kmik
mi1

0,k 





 6 

and 7 

 nxxx ,02,01,0 ,,,: 0x , 8 

 nmmm xxx ,12,11,1 ,,,:   1mx . 9 

It is obvious that objects Q0 - described by vector x0, Qm+1 described by vector xm+1 (perhaps 10 

fictitiously) are not worse nor better than the rest of objects Q1, Q2,...,Qm,. That is: 11 

0ii1m  and xxxx   for each 1:  imi  12 

In conjunction with the above let us denote by 13 

 1m01m0 xxxxxx   ::, n
 14 

as an interval (hypercube) in an n-dimensional Euclidean space. 15 
In the case when objects Q0 and Qm+1 are different from considered objects 16 

Q1, Q2,...,Qm, they fulfill the roles the worst and the best, respectively objects. 17 
Objects Q0 and Qm+1 can be treated as models. 18 

Suppose X is a empty set. We say that a function d which projects a Cartesian 19 

product into a set of non-negative numbers  ,01
 defines a distance between 20 

any elements Xx,y belonging to X if it fulfills the following criteria: 21 

1. d(x, y) =d(y, x) (symmetric) 22 
2. d(x, x) = 0. 23 

A distance d(x, y) is a metric if it fulfills the triangle inequality 24 

3. d(x, y) ≤ d(x, z) + d(z, y) for all Xx,y,z  25 

Let 
n

yx, ,  nxxx ,,, 21 x ,  ny,,y,y 21y   The following function is 26 

related to construction of radar measures [Binderman, Borkowski, Szczesny 2012] 27 

   


 
n

i

iiiirad yxyx
n

,d
1

11

1
yx  (1) 28 

where 11 : xxn  , 11 : yyn  is a distance but not a metric. It can be easily verified that 29 

this function fulfills 1 and 2, but not 3. 30 
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Indeed, let  0,,0,0,1, nx ,  0,,0,0:0 y ,  0,,0,0,1,0 z , then 1 

drad(x, y) = 1, drad(x, z) = 0, drad(z, y) = 0. Hence 1=drad(x, y) > drad(x, z) + drad(z, y)=0. 2 
On the other hand, the function 3 

   1   ,

1

1















 



p,yxd
pn

j

p

jjp yx , (2) 4 

is an example of a metric, and is also known as Minkowski's metric [Kukuła K, 2000]. 5 

Note 1. If i

k

j

jk , ρn XdimXXXX













 

1

21  are distances in spaces 6 

 k,,,iX i 21  then a distance in space X can be defined by using distance 7 

 ,k,,i ρi 21 . For example, a standard distance in space X is defined by: 8 

   



k

i

i

1

2 ,, yxyx  , 9 

    k,,,i;X,X;,,,,,,, iii  21   k21k21  yxyyyyxxxx ,  10 

Especially, if prad d, ρd; ρX, XXXX  21
2

2121  where functions prad d,d  11 

are defined by equations (1) and (2), respectively, then a standard distance in space X is 12 
defined by 13 
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ii yxyxyxyx  , 14 

        ,Xy,y,x,xX,,,, 2121 1112121     yxyyyxxx  15 

    35352432432    y:y,x:x;X,yy,,xx  yx . 16 

Let  yx,ρ*  denote distance between vectors n
yx  ,  and   .,ρ* 01m0 xx  In 17 

literature, classification of objects is performed by utilizing the following equations 18 

defining synthetic measures of the given vector ., 1m0 xxx   19 
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It can be easily shown that measures µ1 and µ2 use one model, while measures 2 
µ3 and µ4 resort to two models. These measures can be treated as tools for solving 3 
multi-criteria decision problems. Each of measures µ1 and µ2 uses only one criterion 4 
while measures µ3 and µ4 - two criteria. 5 

In his work [Hellwig 1968] gave a measure that utilized only the best objects. 6 
The theory behind and applications of measure µ3 were discussed in a series of works 7 
by Binderman [Binderman A. 2006] as well as in [Binderman Z. et al. 2012, 2013]. 8 
Measure µ4 is linked with the TOPSIS method (Technique for Order Preference by 9 
Similarity to Ideal Solution, see [Hwang, Yoon 1981]). 10 
Note 2. If X1, …,Xk are variables with values from an interval scale and variables 11 
Z1,…,Zk are derived from them by normalizing them with a zero unitarization 12 
method, then we receive 13 
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, (7) 14 

where mi ,,1  and a 1ρ denotes a Minkowski metric as defined by (2). 15 

With this a typical synthetic measure which construction is based on variables 16 
normalized with a zero unitarization method is also an indicator which is received 17 
by using a standard technique of comparison with a negative model. It can be shown 18 
that if the zero unitarization method is replaced with standardization as the tool to 19 
normalize variables, then the values of the indicator can be expressed by using 20 
distances from a negative model, namely: 21 

           niinin
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, 22 

where (z01,…,z0n) denotes a vector of values of the negative model. Which means that 23 
this indicator is also a synthetic indicator, which is constructed as a distance from 24 
the negative model. 25 

In the next step we normalize the distance of vectors  yx,*  to the established 26 

model vectors x0, xm+1, with (3): 27 

 
 

 
,
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,  28 

Then   11m0 xx ,ρ*  and equations (3)-(6) become: 29 

    xxx 0 ,ρμ 1 , (3’) 30 

    xxx 1m ,ρμ 12 , (4’) 31 
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       xxxxx 1m0 ,ρ,ρμ  1
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In the special case when vectors x0 = 0 = (0,0,…,0), xm+1 = 1 := (1,1,...,1) then 3 
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Noticeably, the considered measures, as defined by (3')-(6') are normalized in terms 5 
of established models, that is: 6 

     4321    1 0 ,,,idla,μ ,μ ii  1m0 xx , (9) 7 

The above measures are ones of the most commonly used measures to order 8 
objects. Nevertheless, one can give other measures based on averages, which utilize 9 
distances from models. 10 

Let 1m0,xx x , numbers be defined by (3'), (4'). For a given vector x we can define the 11 

following measures: 12 
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μ - harmonic average,  13 

      xxx 216 μμμ  - geometric average,  14 

  
   

2

xx
x 21

7

μμ
μ  - root mean square. 15 

It can be shown [Mitrinovic 1993] that for a given vector the following inequalities 16 
hold: 17 

   21736521 ,maxmin μμμμμμμ,μ  . 18 

NON-STATIONARY MODEL MEASURES 19 

The described measures can be understood of as functions of any vector 20 

10  m,xxx  (functions of n real variables) or as functions of vector 10  m,xxx  21 

and vectors that define equivalent objects - (functions of   mn 1  real variables) 22 

because model vectors are functions' values, depending on vectors m,,, xxx 21 . 23 

If µ denotes any set measure of vector 1m0,  xxx , defined by one of (3)-24 

(6) then in the second case we should have:  m,,,,μμ xxxx 21  . 25 



The choice of synthetic measures … 13 

As a result of the above, the considered measures can be used, as necessary, 1 
in one of two ways: static and dynamic. If objects Q1, Q2,...,Qm of the studied 2 

phenomenon are considered in a time interval 10 ,TT then their describing vectors 3 

should be treated as functional vectors m,x,,xx 21 dependent on time. 4 

Let Ν,q,TT,t,,tt q  1021   . To order the objects Q1, Q2,...,Qm with the 5 

considered measures at a given point in time   qjt j ,,2,1  or to order them based 6 

on their descriptions at points in time q,t,,tt 21 , we must compute the coordinates 7 

of model vectors    jj t,t 1m0 xx  : 8 

 
       

,q,,,n;  j,,k

,txmaxt,   xtxmintx jik
mi

j,kmjik
mi

j,k

 2121

1
1
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  (10) 9 

or coordinates of model vectors 1m0 xx ,  : 10 
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As a direct result of the definition, the following inclusions are sound: 12 
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In the case when we want to order objects in the entire time interval  10 ,TT , 14 

we must choose models x0, xm+1, such that the following inequalities hold: 15 
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  (11) 16 

Especially, if the functional vectors   1021 T,Tt,m,,,i),t(i  x  are continuous 17 

then: 18 

,...,n,,(t),   kxmax(t),   xxminx ik
mi

,kmik
mi

,k 21
1

1
1

0 





 19 

Note 3. In a dynamic approach to the problem of ordering and classifying objects in 20 

the entire time interval 10 ,TT , we should assume that the obtained result, which 21 

uses "partial" results - got from pairs of model vectors q,,,j);t(),t( jmj 2110 xx  22 

can be significantly different from the result received by means of "integral" models 23 

10 m,xx . 24 

Naturally, the choice of a model depends on the way of presenting/reporting 25 
the concrete phenomenon in a given period. However, the scale of differences can 26 
prove to be substantial, as the following analysis shows. 27 
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ILLUSTRATION OF CONSEQUENCES OF A CHOICE OF A MODEL 1 

Ranking of objects is determined by, (in addition to the feature transformation 2 
method), the choice of model object. In this theoretical example we present different 3 
results of ordering objects in a dynamic approach depending on the method defining 4 
the model object. 5 
In order to do that we created the following simulation which generates values for 6 
variables X1-X4, at given points in time T1-T5, with the distributions of their values: 7 
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  524111 ,,,  j,Z,W,V,  U,,,  iTX jjjj   , which are independent. 9 

By using this model we generated data tables for 10 objects. One of these 10 
simulation is presented in Table 1. The last two rows of Table 1 contain the negative 11 
and positive model for each time point T1-T5, respectively. 12 

Table 1. Sample data for simulations of 10 objects 13 

 T1 T2 T3 T4 T5 

 X1 X2 X3 X4 X1 X2 X3 X4 X1 X2 X3 X4 X1 X2 X3 X4 X1 X2 X3 X4 

o01 3.17 5.76 6.64 3.79 3.79 5.38 6.2 5.41 3.96 4.99 10.33 2.16 4.56 4.27 12.99 -1.5 5.5 3.83 15.38 -0.11 

o02 5.89 9.26 3.8 2.04 6.17 8.87 6.81 1.37 6.92 8.5 7.41 -2.93 7.32 7.94 6.82 -7.27 7.91 7.66 10.48 -9.63 

o03 8.57 6.26 4.07 1.63 8.9 5.71 2.57 4.47 9.72 5.29 2.61 8.08 10.18 4.82 4.13 7.2 10.97 4.51 8.57 5.88 

o04 7.04 2.2 9.56 3.19 7.68 2.45 6.69 6.48 8.01 1.89 6.06 5.09 8.29 1.17 9.06 6.01 8.61 0.65 5.01 7.81 

o05 9.96 7.22 6.13 2.94 10.54 6.68 4.6 1.37 10.65 6.18 4.12 1.08 11.12 5.68 6.35 -0.19 11.5 4.87 7.99 -4.15 

o06 8.37 4.83 5.91 1.97 8.82 4.51 8.42 3.29 9.27 3.99 6.77 5.23 9.87 3.37 8.5 6.55 10.55 2.85 8.78 8.62 

o07 2.87 6.55 6.86 4.1 3.1 5.75 7.81 5.52 3.86 4.98 6.8 6.01 4.47 4.53 5 5.04 4.96 4.28 4.26 5.56 

o08 3.24 7.22 6 4.59 3.89 6.84 9.26 7.11 4.65 6.25 8.72 7.06 5.03 5.91 11.49 7.6 5.75 5.64 12.09 11.95 

o09 5.66 4.92 7.02 3.79 6.11 4.35 8.17 2.14 6.41 3.64 6.58 3.66 6.94 3.04 6.76 7.47 7.37 2.52 7.26 11.06 

o10 3.08 6.1 9.75 4.78 3.75 5.44 12.88 7.73 3.99 4.83 10.2 10.08 4.61 4.53 11.49 10.55 5.25 3.86 12.6 12.7 

min 2.87 2.2 3.8 1.63 3.1 2.45 2.57 1.37 3.86 1.89 2.61 -2.93 4.47 1.17 4.13 -7.27 4.96 0.65 4.26 -9.63 

max 9.96 9.26 9.75 4.78 10.54 8.87 12.88 7.73 10.65 8.5 10.33 10.08 11.12 7.94 12.99 10.55 11.5 7.66 15.38 12.7 

Source: own research 14 

Naturally, the integral models are (2.87, 0.65, 2.57, -9.63) and (11.5, 9.26, 15 
15.38, 12.7), respectively. We have used the most common synthetic indicator, 16 
defined by (7). For each of the objects, in each of the time periods, we have 17 
calculated the value of the indicator as well as the rank of the values in two 18 
approaches: 19 

i. by normalizing the data by two integral models (W1), 20 
ii. by normalizing the data by five models from each period (W2). 21 
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The obtained results are presented in Table 2. In the last 5 columns of Table 2 1 
we have put the changes in positions in the order of objects according to the values 2 
of indicators W1 and W2 (a positive number means that object moves up the ranking 3 
by the number of spots, while a negative one means that object falls in the ranking). 4 
The differences are significant, but the simulation is specially chosen for this 5 
differentiating characteristic.  6 
Table 3 presents the changes of order’s positions in a ranking of objects for 7 
8 simulations done, according to the values of indicators W1 and W2, same as in 8 
Table 2. 9 

The changes to the order are not substantial in all cases, see, for example, 10 
simulation number 6. The choice of a model (an integral one for the entire period or 11 
a different one for each interval) has an impact regardless of the choice of a "distance 12 

from the model"-based on the indicator from the list 71 μμ  . 13 

For the given simulation from Table 1, we calculated the values of these 7 indicators 14 

by using an Euclidean metric ( 2ρ ). The latter is done after normalizing the data with 15 

a zero unitarization method. The changes in the order of the objects between these 16 
two applications of models are presented in Table 4. In each case we can see 17 
significant differences. These are similar to the differences observed in Table 2 when 18 

we have used distance 1ρ . 19 

Table 2. Values of synthetic indicators defined by (7) using an integral model (W1) and 20 
models for individual periods (W2) 21 
 W1 (integral pattern) W2 (5 different patterns) W1 - ranks W2 - ranks Change of position 

 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 

o01 0.387 0.403 0.441 0.448 0.525 0.427 0.374 0.469 0.449 0.491 10 10 7 9 6 7 9 7 7 7 3 1 0 2 -1 

o02 0.492 0.540 0.515 0.450 0.504 0.389 0.433 0.518 0.433 0.503 2 4 6 8 8 9 6 6 9 6 -7 -2 0 -1 2 

o03 0.483 0.479 0.532 0.552 0.637 0.356 0.432 0.556 0.552 0.638 3 6 2 5 2 10 7 4 5 1 -7 -1 -2 0 1 

o04 0.446 0.452 0.418 0.474 0.409 0.513 0.455 0.419 0.469 0.352 6 7 8 6 9 4 4 9 6 9 2 3 -1 0 0 

o05 0.606 0.560 0.536 0.565 0.540 0.630 0.449 0.538 0.579 0.546 1 2 1 3 5 2 5 5 4 5 -1 -3 -4 -1 0 

o06 0.476 0.543 0.531 0.579 0.612 0.403 0.482 0.570 0.601 0.598 4 3 3 2 3 8 3 3 2 3 -4 0 0 0 0 

o07 0.409 0.427 0.412 0.371 0.369 0.479 0.407 0.424 0.321 0.300 9 9 10 10 10 6 8 8 10 10 3 1 2 0 0 

o08 0.428 0.527 0.521 0.582 0.656 0.518 0.570 0.584 0.612 0.626 8 5 5 1 1 3 2 2 1 2 5 3 3 0 -1 

o09 0.442 0.442 0.416 0.461 0.508 0.501 0.334 0.415 0.443 0.458 7 8 9 7 7 5 10 10 8 8 2 -2 -1 -1 -1 

o10 0.466 0.560 0.523 0.563 0.608 0.646 0.628 0.612 0.587 0.563 5 1 4 4 4 1 1 1 3 4 4 0 3 1 0 

Source: own research 22 

Table 3. Changes in the order of objects for a few sample data simulations 23 

 Simulation 2 Simulation 3 Simulation 4 Simulation 5 Simulation 6 Simulation 7 Simulation 8 

 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 
o01 1 1 0 0 0 1 0 -1 0 1 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 2 0 -1 0 1 1 -1 0 -1 0 

o02 4 0 1 0 0 0 0 0 0 -4 1 0 0 0 1 -2 0 0 0 0 1 0 0 -1 0 1 1 2 1 0 3 2 0 1 0 

o03 -1 0 0 0 0 0 0 0 0 -1 -2 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 -1 -1 -2 2 1 0 0 1 0 0 

o04 -5 -1 0 0 0 -1 0 0 0 0 3 0 0 0 0 2 -1 1 0 -1 1 -1 -1 0 0 2 0 -2 -4 -1 0 -1 0 -1 0 

o05 -1 0 -2 0 0 -1 0 0 1 3 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 -5 -1 0 1 1 -1 -1 0 0 0 

o06 0 0 -1 0 0 1 0 0 0 -1 0 0 -1 0 0 -3 -2 -1 0 0 0 0 0 0 0 5 2 2 0 -2 -1 0 0 0 0 

o07 0 0 0 0 0 1 0 1 0 1 0 0 1 0 -1 0 2 0 0 0 -1 0 0 1 0 -2 0 0 0 -1 0 0 -1 0 0 

o08 6 1 2 0 0 0 0 0 0 1 -1 0 0 0 0 1 2 0 -1 0 0 1 1 0 1 0 0 1 -1 0 0 -3 0 1 0 

o09 -2 -1 0 0 0 0 0 0 -1 -1 -2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 

o10 -2 0 0 0 0 -1 0 0 0 1 0 0 -1 0 0 0 -2 -1 0 1 0 0 0 0 0 -2 -1 0 1 1 -2 2 0 0 0 

Source: own research 24 
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Table 4. Changes in the order of objects from Table 1 for individual indicators µ1- µ7 (using 1 
zero unitarization method) 2 

 Indicator μ1 Indicator μ2 Indicator μ3 Indicator μ4 Indicator μ5 Indicator μ6 Indicator μ7 

 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 
o01 1 0 0 2 -1 3 2 -3 0 0 3 1 0 2 -1 3 1 0 2 -1 3 1 0 0 -1 3 1 0 1 -1 3 1 0 2 -1 

o02 -4 -2 0 0 1 -2 -4 -4 0 0 -6 -2 0 -1 2 -6 -2 0 0 2 -5 -2 0 0 2 -7 -3 0 -1 2 -6 -2 0 0 2 

o03 -4 -2 -1 -1 1 -7 3 1 0 0 -7 -1 -1 0 1 -7 -1 -1 0 1 -8 1 1 0 1 -7 0 -1 0 1 -7 -1 -2 0 1 

o04 5 4 -1 -2 0 0 3 0 1 1 2 3 -1 0 0 2 2 -1 0 0 1 3 -1 0 0 1 3 -1 0 0 2 2 -1 0 0 

o05 -1 -1 -3 -1 0 0 -7 1 0 1 0 -4 -4 -1 0 0 -3 -4 0 0 0 -6 -3 0 1 0 -4 -3 0 0 -1 -2 -4 -1 0 

o06 -4 0 0 0 0 -6 -2 0 1 1 -5 0 -1 0 0 -5 0 -1 1 0 -5 0 0 1 0 -4 0 -2 1 0 -5 0 0 0 0 

o07 2 -1 1 0 0 3 3 2 0 -1 3 1 1 0 0 3 1 1 0 0 3 1 2 0 0 3 1 2 0 0 3 1 1 0 0 

o08 1 2 2 2 0 4 4 0 -1 -1 5 3 3 0 -1 4 3 3 -1 -1 4 3 1 -1 -1 5 3 3 -1 -1 4 3 3 0 -1 

o09 2 0 0 0 0 2 -4 2 -1 0 2 -2 0 -1 -1 3 -2 0 -2 -1 4 -2 -1 0 -1 3 -2 -1 0 -1 3 -2 0 -2 -1 

o10 2 0 2 0 -1 3 2 1 0 -1 3 1 3 1 0 3 1 3 0 0 3 1 1 0 -1 3 1 3 0 0 4 0 3 1 0 

Source: own research 3 

SUMMARY 4 

Most often the comparison of effectiveness of corporate units uses data for 5 
a single reporting period. It is performed by an automated reporting system (as part 6 
of a centralized management information system) which usually utilizes objects 7 
defined by (10) as models. This research (based on theoretical data) indicates that 8 
a better approach is to choose a dynamic model based on longer time input data (as 9 
defined by (11)). Such solution more accurately captures the dynamics of changes to 10 
the values of individual variables which constitute a synthetic measure. Our 11 
simulations confirm that regardless of the choice of our measures, the differences in 12 
rankings of examined  objects can still be substantial. Our research needs further 13 
verification on empirical samples. 14 
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