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Abstract: Sensitive attributes are extremely difficult to be measured directly. 11 
Recently new indirect methods of questioning, called Poisson and negative 12 
binomial item count techniques, have been proposed by [Tian et al. 2014]. This 13 
paper focuses on important problem of comparing proportions of sensitive 14 
items in two populations when using new indirect method. Proper statistical 15 
theory is introduced, including tests for equality of two sensitive proportions 16 
followed by derivation of their asymptotic power functions. Simulation studies 17 
are conducted to illustrate the problem.  18 

Keywords: sensitive questions, Poisson and negative binomial item count 19 
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INTRODUCTION 21 

Illegal and socially stigmatized behaviors, like tax evasion, addictions, sexual 22 
risk activities etc. are usually impossible to be measured via direct questioning. 23 
Therefore social science and mathematical statistics have developed some indirect 24 
methods of questioning, i.e. methods in which the sensitive question is not asked 25 
directly and therefore individual answer to this particular question cannot be 26 
recognized. Such a procedure guarantees privacy and allows truthful answers. One 27 
of the most popular methods of dealing with sensitive questions nowadays are 28 
various item count techniques [e.g. Gonzales-Ocantos et. al 2012, Kuha and Jackson 29 
2013, Wolter and Laier 2014], which started with [Miller 1984] and are is still being 30 
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extensively developed [Imai 2011, Hussain 2012, Glynn 2013, Kuha and Jackson 1 
2013, Tian et al. 2014].  2 

Recent proposition by [Tian et al. 2014] assumes a new approach to item count 3 
procedure and introduces Poisson and negative binomial item count techniques. 4 
Authors propose to randomly assign respondents into control and treatment groups. 5 
In a control group respondents are asked one neutral question independent of the 6 
sensitive one with possible outcomes 0,1,2,… , which can be modeled by a counting 7 
variable X,  e.g. “How many times have you been to the cinema last month?” In a 8 
treatment group respondents are presented with two questions: one neutral and 9 
exactly the same as in control group, X, and the other one sensitive, Z, with possible 10 
outcomes 0 or 1. e.g. “1. How many times have you been to the cinema last month?, 11 
2. Have you bribed a police officer during last year? Assign 1 if yes and 0 if not. 12 
Please report only the sum of your answers.” Thus respondents in a control group 13 
report X, and respondents in a treatment group report Y=X+Z. Sensitive variable Z is 14 
a latent one and is not directly observable. Because by definition X is a counting 15 
variable, two basic models are considered by [Tian et al. 2014] for X, Poisson and 16 
negative binomial. Selection of the proper model is possible after the survey is done 17 
on the basis of a control group by standard methods. In a control group of 𝑛1 18 

elements we observe vector (𝑋1,, … , 𝑋𝑛1
), and in a treatment group of 𝑛2 elements 19 

we observe (𝑌1,, … , 𝑌𝑛2
), where 𝑌𝑗 = 𝑋𝑛1+𝑗 + 𝑍𝑗. 20 

In the present paper we extend [Tian et al. 2014] method into two populations. 21 
The problem is crucial in statistical practice and to our best knowledge has not been 22 
developed yet. We introduce statistical tests based on asymptotic normality of 23 
unbiased estimators suitable for testing equality of sensitive proportions in two 24 
populations when using Poisson and negative binomial ICTs. We also provide 25 
asymptotic power of the proposed tests together with numerical illustration. Next to 26 
classic approach we also consider an alternative one. Finally we conduct a Monte 27 
Carlo simulation study to illustrate tests and EM algorithm performances.  28 

CLASSIC POISSON MODEL 29 

Preliminaries 30 

We presume that two independent surveys are conducted in two populations 31 
with different control questions. We assume that in both cases control variable 32 
follows Poisson distribution. Therefore in population I we have  a control variable 33 
𝑋1~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆1) independent of the sensitive variable 𝑍1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋1). Two 34 

independent random samples are observable: (𝑋11,, … , 𝑋1𝑛11
), (𝑌11, … , 𝑌1𝑛12

), 35 

where 𝑌1𝑗 = 𝑋1𝑛11+𝑗 + 𝑍1𝑗 and 𝑛1 = 𝑛11 + 𝑛12 is a total sample size. Analogously, 36 

in population II we have a control variable 𝑋2~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆2) independent of the 37 
sensitive variable 𝑍2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋2), and two independent random samples of 38 

observable variables: (𝑋21,, … , 𝑋2𝑛21
) and (𝑌21, … , 𝑌2𝑛22

), 𝑌2𝑗 = 𝑋2𝑛22+𝑗 + 𝑍2𝑗, 39 
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𝑛2 = 𝑛21 + 𝑛22. Unknown parameters 𝜆1, 𝜆2 can be assessed by �̅�1 and �̅�2 1 
respectively. Unknown sensitive proportions π1 and π2 can be assessed by unbiased 2 
method of moments MM estimators �̂�1 = (�̅�1 − �̅�1) and �̂�2 = (�̅�2 − �̅�2) 3 
respectively. Therefore natural unbiased estimator of  π2 − π1 is  π̂2 − π̂1 =4 
(�̅�2 − �̅�2) − (�̅�1 − �̅�1) with variance: 5 

 𝐷2(�̂�2 − �̂�1) = (
𝜆1

𝑛11
+

𝜆1+𝜋1(1−𝜋1)

𝑛12
) + (

𝜆2

𝑛21
+

𝜆2+𝜋2(1−𝜋2)

𝑛22
). (1) 6 

Hypothesis testing 7 

For the sake of definiteness let us focus on two sided test. Hypothesis testing 8 
problem of interest is 𝐻0:  𝜋1 = 𝜋2 versus 𝐻1:  𝜋1 ≠ 𝜋2. Introduced test is based on 9 
asymptotic normality of unbiased estimator π̂2 − π̂1. Two-sided (restricted) test 10 
of size α is to reject H0 if: 11 

  
|π̂2−π̂1|

√(
λ̂1

n11
+

λ̂1
n12

)+(
λ̂2

n21
+

λ̂2
n22

)+π̂(1−π̂)(
1

n12
+

1

n22
)

> z1−
α

2
, (2) 12 

where 𝑧1−
𝛼

2
 is the (1 −

𝛼

2
)th quantile of standard normal distribution, �̂�1, �̂�2 are 13 

control group sample means, and  �̂� = 𝑤1�̂�1 + (1 − 𝑤1)�̂�2 is a restricted estimator 14 
of the joint sensitive proportion with  15 
 16 

   𝑤1 = (
�̂�2

𝑛21
+

�̂�2

𝑛22
+

�̂�2(1−�̂�2)

𝑛22
) / (

�̂�1

𝑛11
+

�̂�1

𝑛12
+

�̂�1(1−�̂�1)

𝑛12
+

�̂�2

𝑛21
+

�̂�2

𝑛22
+

�̂�2(1−�̂�2)

𝑛22
)    (3)17 

  18 
If alternative �̂�2 ≠ �̂�1 is true, asymptotic power of the proposed test is:   19 

       1 − Φ (𝑧1−
𝛼

2

√𝛿𝜆1(1+𝑘1)+𝜆2(1+𝑘2)+(𝛿+1)(𝑣1𝜋1+𝑣2𝜋2)(1−𝑣1𝜋1−v2𝜋2)

√𝛿𝜆1(1+𝑘1)+𝜆2(1+𝑘2)+𝛿𝜋1(1−𝜋1)+𝜋2(1−𝜋2)
−    20 

  −
|𝜋2−𝜋1|√n22

√𝛿𝜆1(1+𝑘1)+𝜆2(1+𝑘2)+𝛿𝜋1(1−𝜋1)+𝜋2(1−𝜋2)
) (4) 21 

where 𝛿 = 𝑛22/𝑛12, 𝑘1 = 𝑛12/𝑛11, 𝑘2 = 𝑛22/𝑛21, v2 = 1 − v1 and 22 

 v1 =
λ2(1+k2)+π2(1−π2)

δ[λ1(1+k1)+π1(1−π1)]+λ2(1+k2)+π2(1−π2)
  (5) 23 

General remarks 24 

Theory presented in this section gives some important directions for 25 
practitioners. Although it is clear that indirect questioning demands much larger 26 
sample sizes, only exact mathematical formulas allow for definite analysis of the 27 
problem and proper survey design. Therefore below we present several numerical 28 
examples concerning power of test (2) calculated on the basis of formula (4). All 29 
examples are obtained for balanced samples, i.e. for 𝑛11 = 𝑛12 = 𝑛21 = 𝑛22 . 30 
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Table 1. Asymptotic power of test (2) for 𝛼 = 0.05 and different model parameters  1 

 𝜋1 = 0.10 

𝜋2 = 0.20 

𝜋1 = 0.10 

𝜋2 = 0.25 
sample size 

n1=n2 

𝜆1 = 0.9 

𝜆2 = 1.1 

 

𝜆1 = 1.9 

𝜆2 = 2.1 

 

𝜆1 = 2.9 

𝜆2 = 3.1 

 

𝜆1 = 0.9 

𝜆2 = 1.1 

 

𝜆1 = 1.9 

𝜆2 = 2.1 

 

𝜆1 = 2.9 

𝜆2 = 3.1 

 500 0.117 0.079 0.066 0.208 0.128 0.100 

1000 0.191 0.119 0.093 0.368 0.213 0.158 

2000 0.335 0.195 0.145 0.631 0.378 0.272 

Source: own calculations 2 

ALTERNATIVE POISSON MODEL 3 

Preliminaries 4 

Here we consider a situation when comparing two sensitive proportions is the 5 
main goal of the survey. Therefore the same control question is asked in two 6 
populations, to which the answer is independent of the population and can be 7 
modeled by a Poisson distribution (with the same parameter in two populations). 8 
In this case it is reasonable to resign from control samples to increase precision 9 
of difference between sensitive proportions estimation. Thus whole samples of 𝑛1 10 
and 𝑛2 elements from population I and II respectively are allocated to treatment 11 
groups, where 𝑌1 = 𝑋 + 𝑍1 and 𝑌2 = 𝑋 + 𝑍2 are observable. Mathematical model is 12 
the following: 𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) is independent of 𝑍1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝜋1) and 13 
𝑍2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝜋2). Two independent samples of observable variables from two 14 

populations are available: (𝑌11, … , 𝑌1𝑛1
) and (𝑌21, … , 𝑌2𝑛2

). Unbiased MM estimator 15 

of 𝜋2 − 𝜋1 is �̂� = �̅�2 − �̅�1 with variance: 16 

 𝐷2(�̂�) =
𝜆+𝜋1(1−𝜋1)

𝑛1
+

𝜆+𝜋2(1−𝜋2)

𝑛2
    (6) 17 

Hypothesis testing 18 

Hypothesis testing problem of interest is 𝐻0:  𝜋1 = 𝜋2 versus 𝐻1:  𝜋1 ≠ 𝜋2. 19 

Introduced test is based on asymptotic normality of unbiased estimator �̂�. Null 20 
hypothesis in this model implies equality of variances 𝐷2𝑌1 = 𝐷2𝑌2. Two sided test 21 
(restricted) of size 𝛼 is to reject 𝐻0 if: 22 

   
|�̅�2−�̅�1|

√𝑆2∙(
1

𝑛1
+

1

𝑛2
)

> 𝑧1−
𝛼

2
, (7) 23 

where 𝑆2 =
𝑛1𝑆1

2+𝑛2𝑆2
2

𝑛1+𝑛2
  is a pooled sample variance and 𝑆𝑖

2 =
1

𝑛𝑖
∑ (𝑌𝑖𝑘 − �̅�𝑖)2𝑛𝑖

𝑘=1 , 24 

𝑖 = 1,2. Let us further denote 𝑛2 = 𝑡𝑛1. If alternative �̂�2 ≠ �̂�1 is true, asymptotic 25 
power of the proposed test is: 26 
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             1 − Φ (𝑧1−
𝛼

2

√𝜆(𝑡+1)+(𝜋1+𝜋2t)(1−
𝜋1+𝜋2t

t+1
)

√[𝜆+𝜋1(1−𝜋1)]𝑡+𝜆+𝜋2(1−𝜋2)
−

|𝜋2−𝜋1|√n2

√[𝜆+𝜋1(1−𝜋1)]𝑡+𝜆+𝜋2(1−𝜋2)
)  (8) 1 

 2 

Although formula (7) takes familiar form, due to existence of control variable, 3 
implications for practitioners are not straightforward. In table 2 we present 4 
asymptotic power of test (7) obtained for selected model parameters and the same 5 
sample sizes 𝑛1 = 𝑛2. 6 

Table 2. Asymptotic power of test (7) for 𝛼 = 0.05 and different model parameters  7 

 𝜋1 = 0.10 

𝜋2 = 0.20 

𝜋1 = 0.10 

𝜋1 = 0.25 
sample size 𝜆 = 1 

 

𝜆 = 2 

 

𝜆 = 3 

 

𝜆 = 1 

 

𝜆 = 2 

 

𝜆 = 3 

 500 0.319 0.190 0.143 0.602 0.367 0.267 

1000 0.558 0.335 0.243 0.881 0.630 0.473 

2000 0.846 0.582 0.432 0.993 0.900 0.763 

Source: own calculations 8 

It is clear that asymptotic power of test (7) in alternative model is substantially larger, 9 
under similar parameters, than the one for classic model. But in alternative approach 10 
comparing proportions of sensitive items constitutes the main aim of the survey and 11 
no information about sensitive proportions in each population separately is available 12 
through MM estimation. To address this issue below we analyze ML estimation via 13 
EM algorithm, that allows for estimation all model parameters, including sensitive 14 
proportions in each population separately. The working version of ML estimation 15 
via EM algorithm for this particular model is discussed later in a simulation study.  16 

ML estimation via EM algorithm  17 

Likelihood function based on complete data in the analyzed model is: 18 

𝐿(𝜋1, 𝜋2, 𝜆; 𝒚1, 𝒚2, 𝒛1, 𝒛2) = 19 

       ∏
𝑒−𝜆𝜆𝑦1𝑖−𝑧1𝑖

(𝑦1𝑖−𝑧1𝑖)!
𝜋1

𝑧1𝑖(1 − 𝜋1)1−𝑧1𝑖 ∏
𝑒−𝜆𝜆

𝑦2𝑗−𝑧2𝑗

(𝑦2𝑗−𝑧2𝑗)!
𝜋2

𝑧2𝑗(1 − 𝜋2)1−𝑧2𝑗𝑛2
𝑗=1

𝑛1
𝑖=1      (9) 20 

M step of EM algorithm results in:  21 

                       �̂�𝑀𝐿 =
1

𝑛1+𝑛2
(∑ (𝑦1𝑖 − 𝑧1𝑖)𝑛1

𝑖=1 + ∑ (𝑦2𝑗 − 𝑧2𝑗)
𝑛2
𝑗=1 ),   (10) 22 

                             �̂�1𝑀𝐿 =
1

𝑛1
∑ 𝑧1𝑖

𝑛1
𝑖=1 , �̂�2𝑀𝐿 =

1

𝑛2
∑ 𝑧2𝑗

𝑛2
𝑗=1 .   (11) 23 

In E step values {𝑧1𝑖}𝑖=1
𝑛1  and {𝑧2𝑗}

𝑗=1

𝑛2
 are replaced by conditional expectations: 24 

                       𝐸(𝑍1|𝑌1; 𝜋1, 𝜋2, 𝜆) =
𝜋1𝑦1𝑖

𝜋1𝑦1𝑖+𝜆(1−𝜋1)
 , 𝑖 = 1, … , 𝑛1     (12) 25 

  𝐸(𝑍2|𝑌2; 𝜋1, 𝜋2, 𝜆) =
𝜋2𝑦2𝑗

𝜋2𝑦2𝑗+𝜆(1−𝜋2)
, 𝑗 = 1, … , 𝑛2    (13) 26 
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NEGATIVE BINOMIAL MODEL 1 

Having presented foundation for Poisson model, obtaining analogous theory 2 
for negative binomial distribution is quite straightforward. Therefore we give here 3 
only selected closing formulas. Notation is exactly the same as in previous sections, 4 
the only difference is that here in classic negative binomial model we have 5 
𝑋1~𝑁𝐵(𝑟1, 𝑝1), 𝑋2~𝑁𝐵(𝑟2, 𝑝2) and in alternative negative binomial model with the 6 
same control question in two populations 𝑋~𝑁𝐵(𝑟, 𝑝). In classic approach unbiased 7 
MM estimator of 𝜋2 − 𝜋1 is also  �̂�2 − �̂�1, but now its variance is: 8 

 
𝑟1𝑝1

(1−𝑝1)2 (
1

𝑛11
+

1

𝑛12
) +

𝜋1(1−𝜋1)

𝑛12
+

𝑟2𝑝2

(1−𝑝2)2 (
1

𝑛21
+

1

𝑛22
) +

𝜋2(1−𝜋2)

𝑛22
. (14) 9 

Hypothesis testing problem of interest is 𝐻0:  𝜋1 = 𝜋2 versus 𝐻1:  𝜋1 ≠ 𝜋2. Two-10 
sided test (restricted) of size 𝛼 based on asymptotic normality of unbiased  estimator 11 
�̂�2 − �̂�1 is to reject 𝐻0 if: 12 

 
|�̂�2−�̂�1|

√
�̂�1�̂�1

(1−�̂�1)2(
1

𝑛11
+

1

𝑛12
)+

�̂�2�̂�2
(1−�̂�2)2(

1

𝑛21
+

1

𝑛22
)+�̂�(1−�̂�)(

1

𝑛12
+

1

𝑛22
)

> 𝑧1−
𝛼

2
 (15) 13 

where �̂�1, �̂�1 and �̂�2, �̂�2 are either MM or ML estimators of 𝑟1, 𝑝1 and 𝑟2, 𝑝2 based on 14 
control groups from two populations, �̂� = 𝑤1�̂�1 + (1 − 𝑤1)�̂�2 is a restricted 15 
estimator of the joint sensitive proportion with: 16 

                            𝑤1 = (
�̂�2𝑝2

(1−�̂�2)2 (
1

𝑛21
+

1

𝑛22
) +

�̂�2(1−�̂�2)

𝑛22
) /  17 

         / (
�̂�1𝑝1

(1−𝑝1)2 (
1

𝑛11
+

1

𝑛12
) +

�̂�1(1−�̂�1)

𝑛12
+

�̂�2𝑝2

(1−�̂�2)2 (
1

𝑛21
+

1

𝑛22
) +

�̂�2(1−�̂�2)

𝑛22
) (16) 18 

If alternative �̂�2 ≠ �̂�1 is true, asymptotic power of the proposed test is: 19 

 1 − Φ (𝑧1−
𝛼

2

√𝐴

√𝐵
−

|𝜋2−𝜋1|√n22

√𝐵
),  (17) 20 

where 21 

 𝐴 = 𝛿
𝑟1𝑝1

(1−𝑝1)2
(1 + 𝑘1) +

𝑟2𝑝2

(1−𝑝2)2
(1 + 𝑘2) +  22 

  +(𝛿 + 1)(𝑎1𝜋1 + 𝑎2𝜋2)(1 − 𝑎1𝜋1 − 𝑎2𝜋2),  (18) 23 

 𝑎1 =

𝑟2𝑝2
(1−𝑝2)2(1+𝑘2)+𝜋2(1−𝜋2)

𝛿[
𝑟1𝑝1

(1−𝑝1)2(1+𝑘1)+𝜋1(1−𝜋1)]+
𝑟2𝑝2

(1−𝑝2)2(1+𝑘2)+𝜋2(1−𝜋2)
, (19) 24 

 𝐵 = 𝛿
𝑟1𝑝1

(1−𝑝1)2
(1 + 𝑘1) +

𝑟2𝑝2

(1−𝑝2)2
(1 + 𝑘2) + 𝛿𝜋1(1 − 𝜋1) + 𝜋2(1 − 𝜋2)  (20) 25 

and 𝑎2 = 1 − 𝑎1. In alternative approach, assuming that the same control variable 𝑋 26 
follows 𝑁𝐵(𝑟, 𝑝), two sided test (restricted) of size 𝛼 is exactly the same as the one 27 
defined in formula (7). If alternative �̂�2 ≠ �̂�1 is true, asymptotic power of the 28 
proposed test is: 29 
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 1 − Φ (𝑧1−
𝛼

2

√
𝑟𝑝

(1−𝑝)2(1+t)+(𝜋1+𝜋2t)(1−
𝜋1+𝜋2t

t+1
)

√[
𝑟𝑝

(1−𝑝)2+𝜋1(1−𝜋1)]𝑡+
𝑟𝑝

(1−𝑝)2+𝜋2(1−𝜋2)
−  1 

 −
|𝜋2−𝜋1|√n2

√[
𝑟𝑝

(1−𝑝)2+𝜋1(1−𝜋1)]𝑡+
𝑟𝑝

(1−𝑝)2+𝜋2(1−𝜋2)

 (21) 2 

Additionally, in classic approach also mixed model is possible, where 3 
𝑋1~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) and 𝑋2~𝑁𝐵(𝑟, 𝑝). Asymptotic test for equality of two sensitive 4 
proportions can be constructed analogously to the ones presented above.  5 

SIMULATION STUDIES 6 

First, a series of Monte Carlo simulation studies is conducted to assess 7 
asymptotic tests performances for Poisson classic and alternative models. 50 000 8 
replications are used for every single set of model parameters. Summarized 9 
simulation results for type I error rates are given in Table 3. Both tests control Type 10 
I error satisfactory good for relatively small sample sizes with a tendency to minutely 11 
exceed the nominal 𝛼 = 0.05.  12 

Table 3.Type I error rate for different Poisson model parameters, balanced designs and 13 
nominal 𝛼 = 0.05  14 

sample size 
parameters of control 

variables  
 𝜋1 = 𝜋2 

0.05 0.10 0.20 0.30 

Classic model – Test (2) 

200 𝜆1 = 1, 𝜆2 = 2 0.051 0.050 0.050 0.050 

200 𝜆1 = 1, 𝜆2 = 3 0.051 0.051 0.049 0.053 

200 𝜆1 = 2, 𝜆2 = 3 0.051 0.050 0.051 0.052 

Alternative model – Test (7) 

200 𝜆 =1 0.052 0.052 0.051 0.051 

200 𝜆 =2 0.051 0.051 0.051 0.051 

200 𝜆 =3 0.052 0.053 0.051 0.051 

Source: own calculations 15 

Next, empirical powers of the considered tests are obtained, i.e. the proportion 16 
of cases out of 50 000 where the null hypothesis is correctly rejected. In Table 4 17 
empirical (E) and asymptotical theoretical (T) powers are juxtaposed together for 18 
selected model parameters and 𝜋1 = 0.10, 𝜋2 = 0.20. For each set of model 19 
parameters, absolute difference between achieved empirical power and asymptotical 20 
theoretical one is a decreasing function of a sample size, with some minor exception 21 
for each test, which is typical for simulations. For large sample size empirical power 22 
is very close to the asymptotical theoretical one. 23 
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Table 4.  Empirical (E) and asymptotical theoretical (T) powers of tests (2) and (7) for 𝛼 =1 
0.05, 𝜋1 = 0.10, 𝜋2 = 0.20 and different Poisson model parameters   2 

sample size E T E T E T 

Classic model – Test (2) 

 𝜆1 = 1, 𝜆2 = 2 𝜆1 = 1, 𝜆2 = 3 𝜆1 = 1, 𝜆2 = 4 

200 0.073 0.060 0.067 0.054 0.064 0.050 

500 0.099 0.093 0.088 0.080 0.082 0.072 

1000 0.145 0.144 0.123 0.119 0.112 0.104 

2000 0.246 0.244 0.198 0.196 0.169 0.166 

Alternative model –Test (6) 

 𝜆 =1 𝜆 =2 𝜆 =3 

200 0.159 0.154 0.107 0.101 0.089 0.081 

500 0.321 0.319 0.191 0.190 0.149 0.143 

1000 0.556 0.558 0.332 0.335 0.243 0.243 

2000 0.847 0.846 0.584 0.582 0.433 0.432 

Source: own calculations 3 

In the case of classic negative binomial model, rate of convergence to the limit 4 
distribution will depend on applied estimators of r and p. For estimating procedures 5 
see [e.g. Lloyd-Smith 2007]. As the problem goes beyond the purpose of this paper, 6 
here we give only exemplary simulation results for alternative negative binomial 7 
model. In Table 5 empirical power is juxtaposed with asymptotical theoretical one 8 
given in (21). For each set of model parameters 50000 replications are used. 9 

Table 5. Empirical (E) and asymptotical theoretical (T) powers of test (7) for 𝛼 = 0.05, 10 
𝜋1 = 0.10, 𝜋2 = 0.20 and different negative binomial model parameters  11 

sample size E T E T E T 

Alternative model – Test (6) 

 𝑟 = 2, 𝑝 = 0.2 𝑟 = 2, 𝑝 = 0.3 𝑟 = 2, 𝑝 = 0.4 

200 0.216 0.209 0.140 0.135 0.103 0.095 

500 0.447 0.445 0.278 0.274 0.177 0.176 

1000 0.736 0.732 0.485 0.485 0.312 0.308 

2000 0.955 0.954 0.779 0.776 0.545 0.541 

Source: own calculations 12 

Subsequently, a series of Monte Carlo simulation studies is conducted for 13 
Poisson alternative model to illustrate ML estimation via EM algorithm described in 14 
formulas (9)-(13). Simulation results are of particular importance in this case 15 
because no theoretical formulas for variances of estimators are available for EM 16 
algorithm. Moreover, in alternative model estimating each sensitive proportion 17 
separately is not even possible through MM estimation, thus no reference point is 18 
available. For every set of model parameters 10 000 replications are used. 19 
Summarized results for estimating difference 𝜋2 − 𝜋1 in alternative model are given 20 
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in Table 6. Results indicate that the smaller sample size is (and the higher 𝜆) 1 
the larger gain in efficiency is achieved from using ML estimation via EM algorithm 2 
as compared to simple MM estimation.   3 

Table 6.  Simulation MSE of MM and ML (via EM algorithm) estimators of difference 4 
𝜋2 − 𝜋1 between two sensitive proportions for different Poisson model parameters 5 

 
𝜋1 = 0.05 

𝜋2 = 0.05 

𝜋1 = 0.05 

𝜋2 = 0.15 

𝜋1 = 0.05 

𝜋2 = 0.30 

𝜋1 = 0,30 

𝜋2 = 0,30 

 MM ML MM ML MM ML MM ML 

𝜆    n=200 

𝜆 = 3 0.0303 0.0272 0.0310 0.0273 0.0319 0.0276 0.0319 0.0294 

𝜆 = 2 0.0203 0.0183 0.0203 0.0181 0.0214 0.0182 0.0223 0.0204 

𝜆 = 1 0.0104 0.0093 0.0108 0.0096 0.0113 0.0096 0.0121 0.0111 

n        𝜆 = 2 

200 0.0203 0.0183 0.0203 0.0181 0.0214 0.0182 0.0223 0.0204 

500 0.0081 0.0076 0.0084 0.0077 0.0084 0.0075 0.0087 0.0082 

1000 0.0040 0.0039 0.0042 0.0039 0.0042 0.0038 0.0044 0.0042 

2000 0.0021 0.0020 0.0020 0.0019 0.0021 0.0019 0.0022 0.0021 

Source: own calculations 6 

Table 7.  Simulation MSE of ML (via EM algorithm) estimator of 𝜋1 for different model 7 
parameters 8 

𝜋1 

𝜋2 

0.05 

0.05 

0.15 

0.15 

0.30 

0.30 

0.05 

0.15 

0.15 

0.05 

0.05 

0.30 

0.30 

0.05 

𝜆                  n=200  

𝜆 = 3 0.0787 0.0575 0.0528 0.0632 0.0642 0.0505 0.0497 

𝜆 = 2 0.0508 0.0369 0.0373 0.0406 0.0408 0.0291 0.0303 

𝜆 = 1 0.0233 0.0182 0.0211 0.0176 0.0183 0.0131 0.0134 

n 

size 
𝜆 = 2 

200 0.0508 0.0369 0.0373 0.0406 0.0408 0.0291 0.0303 

500 0.0288 0.0209 0.0237 0.0217 0.0225 0.0150 0.0152 

1000 0.0193 0.0140 0.0151 0.0137 0.0141 0.0088 0.0089 

2000 0.0124 0.0093 0.0082 0.0086 0.0086 0.0054 0.0052 

Source: own calculations 9 

In Table 7 results of simulation studies are presented for estimating 𝜋1 via EM 10 
algorithm. MSE of a single proportion estimator is much higher as compared to MSE 11 
of a difference between two proportions estimator. Situation here is thus reversed to 12 
the classic one. Although alternative model is in favor when estimating difference 13 
between two sensitive proportions, the same does not apply for estimating individual 14 
sensitive proportions. MSE of ML (via EM algorithm) estimator of 𝜋1 is very high. 15 
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SUMMARY 1 

In the paper we have provided an extensive theory for testing equality of two 2 
sensitive proportions for two populations when using Poisson and negative binomial 3 
item count techniques, introduced earlier for a single population case  4 
in a seminal paper by [Tian et al. 2014]. To give practitioners some directions we 5 
have illustrated theoretical results by numerical calculations and simulation studies. 6 
All simulation results are consistent with theoretical models. Considering not only 7 
classic approach for two population problem, but also the alternative one, brought 8 
about some interesting results. In our opinion a compromised approach should be 9 
closely explored in a future research on multipurpose surveys concerning sensitive 10 
items.  11 
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