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Abstract: The aim of this paper is to construct a parametric method in 7 
a Bayesian framework to identify trading-day frequency for monthly data. 8 
The well-known visual spectral test (implemented, for example, in X-12-9 
ARIMA) is a popular tool in the literature. In the article’s proposed method, 10 
the assumption concerning the almost periodicity of the mean function plays 11 
a central role. We use a set of frequencies that corresponds to the trading-day 12 
effect for monthly data. As an illustration, we examine this effect in 13 
production in industry in European economies for data adjusted by working 14 
days and for gross data. 15 
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function, AR model 17 

INTRODUCTION 18 

The trading-day effect (or calendar effect) in both monthly and quarterly 19 
macroeconomic time series is well known [Cleveland et al. 1980, Cleveland et al. 20 
1982, Bell et al. 1983, Dagum et al. 1993, Bell et al. 2004, Soukup et al. 1999, 21 
Ladiray 2012]. The work of [Ladiray 2012] describes the present state of advances 22 
in this field.  23 

The calendar effect is caused by different numbers of working days during 24 
months or quarters. For example, each February (in non-leap-years) has four 25 
weeks, which means that in the month we have four Mondays, Tuesdays, 26 
Wednesdays, etc. For other months, the number of days is not a multiple of 7, 27 
which means that the number of working days (from Monday to Friday) varies 28 
from month to month. This periodic phenomenon in numbers of working days in 29 
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months and quarters can be a source of additional variability for macroeconomic 1 
time series called the “trading-day effect” or the “calendar effect”. 2 

Let f(t) denote the deterministic function defining the number of working 3 
days (or Mondays, Tuesdays, etc.) in month t. As the most popular Georgian 4 
calendar is periodic with periods equal to 400 years, the function f can be 5 
represented by a Fourier series with a known theoretical set of frequencies. 6 
However, the number of such frequencies is quite large. In [Ladiray 2012], the 7 
periodograms of the number of weekdays (from Monday to Friday) were evaluated 8 
using a theoretical path that covers 400 years. This theoretical set of frequencies 9 
contains two frequencies of 2.18733 and 2.71093 with dominating amplitude and 10 
many others with much lower amplitude. In practice, the real frequencies 11 
corresponding to the calendar effect must be estimated because the length of the 12 
sample is much shorter than that used in theoretical evaluation. Therefore, to 13 
address the estimation problem in this paper, we use the idea of almost periodic 14 
(ap) functions. An almost periodic function is a generalization of a well-known 15 
periodic case.  16 

Note that for such macroeconomic time series as production in industry or 17 
GDP, the calendar adjustment is a preliminary step (beside seasonal adjustment) in 18 
real data analysis. The estimation of trading-day effects is possible using regression 19 
variables (see implementation in X-13-ARIMA-SEATS and other procedures).  20 

The fundamental problem connected with calendar adjustment is 21 
a diagnostic to determine whether this effect is present in the data set. One of the 22 
popular methods for examining the trading-day effects is the so-called “visual test” 23 
(implemented for example in X-12-ARIMA). This method is based on a graphical 24 
observation of the usual periodogram (statistics). Note that a detailed interpretation 25 
of the periodogram depends on the assumptions. First, it is an inconsistent 26 
estimator of spectral density function (under zero mean assumption; see: Priestley 27 
1981; Hamilton 1994), and second, any point from the interval [0,2𝜋) can be 28 
interpreted as the estimator of the magnitude of the Fourier coefficient (for the 29 
Fourier representation of an almost periodic mean function [Lenart et al. 2013a, 30 
Lenart et al. 2013b, Lenart 2013, Lenart 2015, and Lenart et al. 2016b].  31 

In this paper, we consider the autoregressive model with an almost periodic 32 
mean function, introduced in [Lenart et al. 2016a]. Under standard prior 33 
distributions for the parameters, the posterior distribution for vectors of Fourier 34 
frequencies in Fourier representation of the mean function can be explicitly 35 
evaluated (by simple integration). Based on this distribution, we evaluate the mass 36 
of the probability concentrated around main calendar frequencies. The closer these 37 
masses are to one around some frequency, the stronger the data support this 38 
frequency. We find that, for a large majority of year over year (in short YOY) 39 
production in industry (monthly data) in the period 2001–2014, the frequency 40 
2.18733 is predominant over other calendar frequencies in the case of gross data. 41 
The corresponding data adjusted by working days was also examined. We found 42 
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that for some economies in these data sets, the frequency 2.18733 is still 1 
predominant. We use the datasets published by Eurostat. 2 

METHODOLOGY 3 

Almost periodic in mean time series - basics 4 

The class of the almost periodic function on an integer line is well known in 5 
the literature [Corduneanu 1989]. Economic applications of almost periodic 6 
functions in the first or second moments of time series have been included in 7 
[Mazur et al. 2012, Lenart et al. 2013a, Lenart et al. 2013b, Lenart 2013, Lenart 8 
2015 and others]. Generally, in the case of the Almost Periodically Correlated 9 
(APC) time series, the mean function and the autocovariance function have Fourier 10 
representation:  11 

𝜇(𝑡)~ ∑𝜓∈Ψ 𝑚(𝜓)𝑒𝑖𝜓𝑡 , 𝐵(𝑡, 𝜏)~ ∑𝜆∈Λ𝜏
𝑎(𝜆, 𝜏)𝑒𝑖𝜆𝑡 , for any 𝜏 ∈ 𝑍,  12 

where the Fourier coefficients 𝑚(𝜓) and 𝑎(𝜆, 𝜏) are given by the limits: 13 

𝑚(𝜓) = lim
𝑛→∞

1

𝑛
∑

𝑛

𝑡=1

𝜇(𝑡)𝑒−𝑖𝜓𝑡, 𝑎(𝜆, 𝜏) = lim
𝑛→∞

1

𝑛
∑

𝑛

𝑗=1

𝐵(𝑗, 𝜏)𝑒−𝑖𝜆𝑗 14 

[Hurd 1989, Hurd 1991, Dehay et al. 1994].  15 
The sets Ψ = {𝜓 ∈ [0,2𝜋): 𝑚𝑋(𝜓) ≠ 0} and Λ𝜏 = {𝜆 ∈ [0,2𝜋): 𝑎(𝜆, 𝜏) ≠ 0} are 16 
countable. Note that, for any vector of frequencies 𝝍 = (𝜓1, 𝜓2, … , 𝜓𝐹) ∈17 
(0, 𝜋]𝐹 there is a corresponding vector of Fourier coefficients 𝑚 =18 
(𝑚(𝜓2), 𝑚(𝜓2), … , 𝑚(𝜓𝐹)) ∈ ℂ𝐹. Note that |𝑚(𝜓)| ≠ 0 ⇔ 𝜓 ∈ Ψ, which means 19 
that statistical inference concerning the frequencies in the set Ψ can be based 20 
equivalently on statistical inference for |𝑚(𝜓)|. 21 

“Visual test” for calendar frequencies 22 

 In a non-parametric approach, the natural estimator of the magnitude of Fourier 23 
coefficients |𝑚(𝜓)|based on sample {𝑋1, 𝑋2, … , 𝑋𝑛} has the following form  24 

|�̂�𝑛(𝜓)| = |
1

𝑛
∑𝑛

𝑗=1 𝑋𝑗𝑒−𝑖𝑗𝜓| 25 

where 𝜓 ∈ [0,2𝜋). As shown in [Lenart 2013], this estimator (after appropriate 26 
normalizing) is asymptotically normally distributed with known asymptotic 27 
variance-covariance matrix that depends on a spectral density function. Note that 28 
the statistic |�̂�𝑛(𝜓)| is a usual periodogram function used in practical applications 29 
to examine the existence of calendar effects. The peak on the periodogram at 30 
frequency 𝜓0 means the data support a periodic phenomenon connected with this 31 
frequency (in first or second moment). This simple tool is often used in 32 



Testing for a trading-day effects in production in industry 91 

applications. Let us consider an illustrative example of the properties of the 1 
periodogram.  2 

We analyze the periodograms for percentage change over the previous 3 
period (MOM; gross data) and percentage change compared to the same period of 4 
the previous year (YOY; gross data) for production in industry (B-D: mining and 5 
quarrying; manufacturing; electricity, gas, steam and air conditioning supply) in 6 
Poland and Germany from Jan. 2000 to Dec. 2014. We use gross data in this 7 
example.  8 

Figure 1. Estimate of the magnitude of Fourier transform (or periodogram): |�̂�𝑛(𝜓)|. 9 
The case of mining and quarrying; manufacturing; electricity, gas, steam and air 10 
conditioning supply (from Jan. 2000 to Dec. 2014) for MOM (on the left) and 11 
YOY (on the right). 12 

  

  
Source: own preparation 13 

In the case of MOM data, the frequency corresponding to seasonal fluctuations is 14 
clearly observed, whereas in the case of YOY, the mass on the periodograms 15 
mainly concentrates near the interval that corresponds to business cycle 16 
fluctuations. Note that for both cases, the mass is also concentrated near the 17 
frequency of approximately 2.19, which corresponds to predominant trading-day 18 
effect frequency.  19 
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Bayesian inference for the frequencies 1 

Following [Lenart et al. 2016a], we consider a usual autoregressive model 2 
of order 𝑝:  3 

𝐿(𝐵)(𝑦𝑡 − 𝜇(𝑡)) = 휀𝑡 , 4 

 where 𝐿(𝐵) = 1 − 𝜂1𝐵 − 𝜂2𝐵2 − ⋯ − 𝜂𝑝𝐵𝑝 is a lag polynomial, 5 

휀𝑡~𝑁(0, 𝜏−1), 6 

𝜇(𝑡) = 𝛿0 + ∑𝐹
𝑓=1 [𝑎𝑓sin(𝑡𝜓𝑓) + 𝑏𝑓cos(𝑡𝜓𝑓)].  7 

For the parameters, we assume: 𝛿0 ∈ ℝ, 𝐚 = (𝑎1, 𝑎2, … , 𝑎𝐹) ∈ ℝ𝐹, 𝐛 =8 
(𝑏1, 𝑏2, … , 𝑏𝐹) ∈ ℝ𝐹 , and 𝝍 = (𝜓1, 𝜓2, … , 𝜓𝐹) ∈ (0, 𝜋]𝐹. We assume the 9 
following prior structure:  10 

𝑝(𝐚, 𝐛, 𝜏, 𝝍) = 𝑝(𝐚, 𝐛, 𝜏)𝑝(𝝋) = 𝑝(𝐚, 𝐛|𝜏)𝑝(𝜏)𝑝(𝝋), 11 

with uniform distribution on (0, 𝜋]𝐹 for frequency vector 𝝍, 12 

(𝐚, 𝐛)| 𝜏~𝑁(𝟎, (𝜏𝐁)−1) and 𝜏~𝐺 (
𝑛0

2
,

𝑠0

2
), where 𝑁(𝟎, (𝜏𝐁)−1)  denotes the 13 

Normal distribution (with hyperparameter 𝐁)  and 𝐺 (
𝑛0

2
,

𝑠0

2
) denotes the 14 

Gamma distribution with hyperparameters 𝑠0 and 𝑛0. Under such standard prior 15 

distribution we obtain the following form of the posterior distribution for 16 
frequency vector 𝝍:  17 

𝑝(𝝍|𝐲) ∝ (det(𝐗′𝐗 + 𝐁))−1/2(𝐲′[𝐈 − 𝐗(𝐗′𝐗 + 𝐁)−1𝐗′]𝐲 + 𝑠0)−
𝑛+𝑛0

2 , 18 

where 𝐲 is a vector of observations and 𝐗 is a matrix that depends on vector 𝝍 (see 19 
details in [Lenart et al. 2016a]). 20 

Posterior distribution in examination of calendar frequency 21 

Using the above posterior distribution, the mass concentration for 22 
frequencies can be examined (for different orders of an autoregressive part). Note 23 
that under assumption 𝝍 ∈ (0, 𝜋]𝐹, the data may strongly support the frequencies 24 
that correspond to business cycle fluctuations (see illustrative periodograms in 25 
previous section). Therefore, we restrict the support for frequencies by considering 26 

only the set (
2𝜋

𝑇1.5
, 𝜋]𝐹 (where T is a number of observation during the year), which 27 

excludes the fluctuations that correspond to fluctuations longer than 1.5 years. 28 
Summing up, we consider the mass location for the distribution related to the 29 
following kernel: 30 

 31 
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 𝑝(𝝍|𝐲)1{𝝍 ∈ (2𝜋/(𝑇1.5), 𝜋]𝐹} 1 

where 1{𝐴} is the indicator of the event A. Note that under this restriction, the only 2 
autoregressive part (in considered model) is allowed to model fluctuations 3 
identified with business fluctuations and other fluctuations with longer period.   4 

In this paper, we propose to observe the mass concentration in the posterior 5 
distribution around the dominant calendar frequency, approximately 2.18733. Now 6 
we assume that 𝐹 = 1, which means that we consider only one frequency (in 7 
theoretical specification). The more general case 𝐹 > 1 can also be taken into 8 
consideration.  9 

We propose the following methodology and interpretation strategy. For a 10 
fixed 𝑝 (order of autoregressive part), we calculate the posterior probability on the 11 
interval (ball) 12 

𝑆𝛾 = [2.18733 − 𝛾; 2.18733 + 𝛾]. 13 

The mass concentration on this interval means that the data support the existence of 14 
trading-day effects related to this frequency. If this probability is comparative with 15 

fraction 2𝛾/(𝜋 −
2𝜋

𝑇1.5
) it means that the data does not strongly support fluctuations 16 

connected with this frequency. In such a case (for gross data), another frequency 17 
can be supported more strongly.  18 

EMPIRICAL ANALYSIS 19 

Data description and existing empirical results 20 

We consider production in industry (mining and quarrying; manufacturing; 21 
electricity, gas, steam and air conditioning supply, percentage change compared to 22 
the same period of previous year, YOY) for thirty European countries (Belgium, 23 
Bulgaria, Czech Republic, Denmark, Germany (until 1990 former territory of the 24 
FRG), Estonia, Greece, Spain, France, Croatia, Italy, Cyprus, Latvia, Lithuania, 25 
Luxembourg, Hungary, Malta, Netherlands, Austria, Poland, Portugal, Romania, 26 
Slovenia, Slovakia, Finland, Sweden, United Kingdom, Norway, Former Yugoslav 27 
Republic of Macedonia, and Serbia) from Jan. 2001 to Dec. 2014. In this case 𝑇 =28 
12. The same data set was analyzed in [Lenart’s 2015] paper using different 29 
methodologies, and we formulate the main thesis concerning calendar frequencies 30 
based on this paper. As a first step, the usual periodogram (related to “visual test”) 31 
for both the gross data and the data adjusted by working day was examined on the 32 
interval (0, 𝜋]. The majority of the periodograms clearly show peaks near the 33 
frequency 2.18733 for gross data. In addition, based on the nonparametric test 34 
used in [Lenart 2015], the nonexistence of this frequency in the true set of 35 
frequencies was rejected (at significance level 5%) for most of the data sets. This 36 
frequency was also estimated using the contraction method (CM) proposed by [Li 37 
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et al. 2002]. Note that for data adjusted by working days, the mass concentration 1 
around the frequency of approximately 2.19 was not observed in the periodograms.  2 

Results obtained in the proposed Bayesian approach 3 

We take 𝑆𝛾 = [2.18733 − 𝛾; 2.18733 + 𝛾] with 𝛾 = 0.005, such that the 4 

interval 𝑆𝛾 covers approximately 
1

50
 of the length of whole support (

2𝜋

12∗1.5
, 𝜋]. 5 

We take 𝛾 = 0.005 by simple observation (graphical) of the posterior mass 6 
concentration. For each 𝑝 = 0,1,2, … 20 (the order of the autoregressive model), 7 
the posterior probability of the set 𝑆𝛾 was individually calculated. Table 1 contains 8 

this posterior probability for the gross data, while Table 2 (see also Figure 2) shows 9 
the posterior probability for the data adjusted by working days.  10 

The results concerning the gross data confirm that the frequency 2.18733 is 11 
predominant in the trading-day effect in the analyzed set of data. Only in the case 12 
of Lithuania (maximum posteriori probability on the set 𝑆𝛾 equals 0.045), Malta 13 

(maximum posteriori probability on the set 𝑆𝛾 equals 0.05) and Macedonia 14 

(maximum posteriori probability on the set 𝑆𝛾 equals 0.054) this frequency was not 15 

supported by the data. For other countries, this maximum probability exceeds 16 
levels of 0.3 (the lowest probability for Slovakia); 0.8 (the lowest probability for 17 
Luxemburg); and 0.9 for other countries.  18 

In the case of the data adjusted by working-days, the results show that in a 19 
few cases the frequency 2.18733 is still supported by the data for some orders p. In 20 
the cases of Greece, France and Malta, calculated posterior probability exceeds 0.5 21 
at least one time (see Table 2 or the same results on Figure 2). Hence, it can be 22 
concluded that, for these countries, the data strongly support the frequency 23 
2.18733. However, the amplitude connected with this frequency is not high 24 
enough to say that there is a problem with the adjustment procedure. It means only 25 

that on the interval (
2𝜋

12∗1.5
, 𝜋] , the frequency 2.18733 is still strongly supported 26 

by the data.  27 
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Figure 2. Posterior probability on the set 𝑆0.005 for considered countries (vertical axis) and 1 
different AR orders (horizontal axis) 2 

 3 
Source: own preparation 4 

SUMMARY 5 

This paper proposed a new method for detecting calendar frequencies. The 6 
method is based on a Bayesian framework and an autoregressive model with an 7 
almost periodic mean function and an unknown set of frequencies. The mass 8 
location for posterior distribution for the frequency is analyzed in the proposed 9 
methodology for a single frequency. However, this methodology can be easily 10 
generalized to any set of frequencies (for example: two or more calendar 11 
frequencies simultaneously), and this is a topic of the author’s future research. 12 

Empirical analysis shows that this tool can clearly detect predominant 13 
calendar frequency (2.18733) in gross data for production in industry. In the case 14 
of data adjusted by working-days, this method also detects the same predominant 15 
frequency (2.18733) in a few cases, but the amplitude of this fluctuation was not 16 
analyzed in detail. This is a second point of the author’s intensive research. 17 
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Table 1. Posterior probability of the set 𝑆0.005 (in columns order 𝑝) 1 

 2 
Source: own calculations 3 
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Table 2. Posterior probability of the set 𝑆0.005 (in columns order 𝑝) 1 

 2 

Source: own calculations 3 
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