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Abstract: Modern research has led to the rejection of the hypothesis of 7 
a normal distribution for financial asset returns. Under these conditions, the 8 
portfolio variance loses part of its informativity and can not serve as a good 9 
risk measure. The central aim of this work is the development and 10 
justification of a new technique of portfolio risk measure. We analyzed 11 
weekly stock returns of four largest German concerns: Deutsche Telekom, 12 
Siemens AG, Bayer AG and BMW. It is shown that asset returns are not 13 
normally distributed, but with good precision follow Laplace distribution 14 
(double exponential distribution). Using Laplace distribution function, we 15 
obtained the analytical expressions for VaR and CVaR risk measures and 16 
made calculations of risk measure using these approaches. Using modified 17 
Markowitz model the efficient frontiers of portfolios were constructed. 18 
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INTRODUCTION  22 

Due to its complexity, economic systems are constantly in a state of 23 
uncertainty. This uncertainty always gives rise to the risk [Vitlinskyy 1996]. This 24 
may be the risk of profit loss, risk of expenses, the risk of unused opportunities, 25 
etc. The causes of uncertainty and the resulting risk are accidental economic 26 
processes, inaccuracy, incompleteness and asymmetry of economic information. 27 

One of the important tools for risk management is diversification [Sharpe et 28 
al. 1995; Bazylevych et al. 2011]. In practice, diversification is often realized by 29 
building a portfolio of financial assets. The portfolio theory originates from the 30 
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works of H. Markowitz [Markowitz 1952; Markowitz 1991]. The main 1 
characteristics of portfolio in this theory are mathematical expectation of return and 2 
variance (as a risk measure). This method, known as the classical theory of 3 
portfolio, relies on hypotheses about the normality of returns distribution for assets 4 
included in the portfolio, and their non-autocorrelation. 5 

The hypotheses of classical portfolio theory are criticized in modern 6 
financial research. In works by R. Blattberg, T. Bollerslev, R. Engle the presence 7 
of "heavy tails" was discovered in the distribution of financial assets [Bollerslev 8 
1990; Engle 1995]. Under these conditions, variance loses some part of its 9 
informativity. At present, VaR is considered a more reliable indicator of risk and 10 
its expansion to a coherent risk of CVaR and its modification [Hohlov 2012; 11 
Baumol 1963; Pflug 2000]. The question of the choice of a rational structure of the 12 
portfolio of financial assets on the basis of these measur’es is considered in the 13 
works by Alexander G. J., Baptista M. A. [Alexander, Baptista 2004] and 14 
Zabolotskyy T. [Zabolotskyy 2016a, 2016b]. Thus, the problem of optimizing 15 
financial assets portfolio remains relevant due to the openness of the question of an 16 
adequate method for measuring risk. 17 

USED DATA 18 

The main goal of this work is to perform a comparative analysis of financial 19 
portfolio optimization using different risk assessment techniques. We investigated 20 
the portfolio formed by stocks of four German companies: Deutsche Telekom, 21 
Siemens AG, Bayer AG, BMW. There are several approaches to determining the 22 
stock returns. We use the definition of stock returns as the ratio of the stock price 23 
by the end of the time interval to the stock price of its start. As the most adequate 24 
stock price, we considered the closing price (Adj Close). The series of stock returns 25 
will look like 26 

 1,,2,1,1   Tt
y

y
r

t

t
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Siemens AG stock returns, calculated by the equation (1) and statistics 28 
(https://finance.yahoo.com/) are presented in Figure 1. Similarly, it is possible to 29 
characterize the stock returns of other three corporations included in the portfolio. 30 
Using the weekly price data from 01 January 2008 to 06 November 2017, we 31 
obtained statistical characteristics for stock returns of all four corporations  32 
(Table 1). 33 
  34 
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Table 1. Statistical characteristics of stock returns 1 

 Bayer AG BMW Deutsche Telecom Siemens AG 

minimum 0.811 0.759 0.778 0.766 

maximum 1.129 1.175 1.262 1.177 

average 1.002 1.003 1.000 1.001 

standard deviation 0.038 0.047 0.037 0.040 

Source: https://finance.yahoo.com/ 2 

Figure 1. Stock returns of Siemens AG 3 

  4 

Source: own preparation 5 

IDENTIFICATION OF THE STOCK RETURNS DISTRIBUTION 6 

Markowitz model is based on the assumption of a normal distribution of financial 7 
assets. The probability density of the normal distribution is  8 
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where μ is the mean or expectation of the stock returns distribution, σ is the 10 
standard deviation, and σ2 is the variance. To test the hypothesis of the normal 11 
distribution of stock returns, we used Pearson's criterion of agreement and 12 
Kolmogorov-Smirnov criterion. For applying the first criterion, it is necessary to 13 
calculate Pearson statistics using the formula 14 
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and compare it with tabular values 𝜒𝑘𝑝
2 (𝛼, 𝑘 − 3). Here k  is the number of 2 

intervals, im - the theoretical number of the random variable values in the i-th 3 

interval, in - the actual number of the random variable values in the i-th interval,  4 

α = 0.05 - the level of significance of the test. In our case 𝜒𝑘𝑝
2 (0.05, 7 − 3) = 9.49, 5 

𝒬2 = 119.12. Since 𝒬2 > 𝜒𝑘𝑝
2 , the hypothesis of normal distribution is rejected. 6 

A similar conclusion was obtained using Kolmogorov-Smirnov criterion.  7 

The investigation of the stock returns of three other corporations also led to 8 
the rejection of normal distribution hypothesis. The main reason for the deviation 9 
from the normal distribution is the presence of "heavy tails" in stock returns 10 
distribution. This means that the probability of occurrence of extreme (very large 11 
or very small) values of stock returns is much higher than assumed by the normal 12 
distribution. Consequently, we can not apply Markowitz model to optimize the 13 
stock portfolio. 14 

To construct a new portfolio model, it is necessary to identify stock retutns 15 
distribution and choose an adequate risk measure. Computer experiments showed 16 
that the stock returns of all four corporations are described with good precision by 17 
Laplace distribution (double exponential distribution) [Lapach et al. 2002]. 18 

The random variable with Laplace distribution has a density: 19 

   rb
b

rf exp
2

)( . (4) 20 

Here r - stock return,  - the mathematical expectation of the stock return,  21 

b - the coefficient that determines the excess distribution. Laplace distribution 22 
density is similar to normal distribution, but Laplace distribution has thicker tails 23 
compared with normal distribution (Figure 2). The graph is based on calculations 24 
performed using statistical data (https://finance.yahoo.com/). The task of the 25 
distribution identification is reduced to the optimal choice of parameter b . The 26 
parameter b of Laplace distribution has been selected by minimizing Pearson 27 
statistics (3). 28 
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Figure 2. Identification of Siemens AG return distribution. Solid line - actual distribution, 1 
dashed line - Laplace distribution, dotted line - normal distribution 2 

 3 

Source: own preparation 4 

The integral Laplace distribution function has the following form 5 
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Checking the hypothesis about the Laplace distribution for stock returns 7 
according to Pearson criterion has confirmed the validity of the hypothesis  8 
(Table 2). 9 

Table 2. Checking the hypothesis about Laplace distribution according to Pearson criterion 10 

 
Bayer BMW Deutsche Telecom Siemens 

b 32.14 27.06 33.97 32.15 

 1.002 1.003 1.000 1.001 

Q2 22.66 21.91 26.50 25.12 

χkp
2 27.59 26.30 27.59 27.59 

Source: own study 11 
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RISK ASSESSMENT TECHNIQUE 1 

Markowitz first pointed out that in constructing the portfolio of assets it is 2 
necessary to take into account not only the portfolio return but also the portfolio 3 
risk [Markowitz 1952]. In Markowitz model, the risk of i-th stock is considered as 4 

the mean-square deviation i  of return from its mathematical expectation. To 5 

assess the portfolio risk, it is necessary to evaluate the correlation between its 6 
components. Financial assets with high positive correlation increase the portfolio 7 
risk; financial assets, between which the correlation is weak or negative reduce the 8 

portfolio risk. The portfolio risk p  is determined by the function of mean-square 9 

deviation: 10 
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where: ji ww , - the percentage of assets in the portfolio; ji  , - risk of assets 12 

(standard deviation of return); ij - Pearson correlation coefficient between the 13 

return of two assets. 14 

In our research we follow Markowitz techniques. But the rejection of the 15 
normal distribution requires a different risk measure, that is different from the 16 
variance. In modern financial practice better risk measures are quantile-based 17 
measures. The most popular of them is the so-called Value-at-Risk (VaR) [Hohlov 18 
2012]. VaR shows the maximal level of losses with the probability . The 19 
parameter  is known as a confidence level. The values for  which are usually 20 
chosen are 0.9; 0.95; 0.99. To calculate the exact quantile value, it is necessary to 21 
know the distribution function of stock return F(x) (Figure 3).  22 

At a certain confidence level of α for VaR, the risk of a financial asset with  23 
a return of Xt  is [Zabolotskyy 2016a] 24 

    1:sup)( xt FxXVaR . (7) 25 

Using the form of Laplace distribution function (5), we can find an analytic 26 
expression for risk degree at a given comfidence level . From equality 27 

   2xbe  we define 28 

 bVaR /2ln   . (8) 29 
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Figure 3. Determination of bound for risk zone VaR at level  = 5% (Siemens AG) 1 

 2 
Source: own preparation 3 

The value VaR specifies the limit value of the random variable x , below 4 
which the risk zone is located. To estimate the risk measure, we chose the distance 5 
from the mathematic expectation of return to the limit of the risk zone 6 
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The disadvantage of VaR is that it is not subadditive. Therefore, it is often 8 
used in its improved version - the so-called conditional VaR (CVaR). CVaRα 9 
represents average losses with a probability of 1−α. If the function of the density of 10 

distribution )(rf  for the return of financial asset is known, CVaR at the 11 

confidence level α can be calculated as follows: 12 
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Using the expression for the function of the density of distribution (4), equality (8) 14 
and after integrating, we obtained the following expression for CVaR 15 
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By analogy with the previous case, to estimate the risk portfolio, we chose the 17 
distance from the mathematical expectation portfolio return to the bound of risk 18 
zone 19 

  CVaRV  . (12) 20 
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The values of the bound risk zone (Var, CVaR) and the risk measure V calculated 1 
by us are shown in Table 3.  2 

Table 3. Estimation of stock risk by method of quantile zones ( = 0.95) 3 

 
Bayer BMW Deutsche Telecom Siemens 

VaR 0.930 0.917 0.932 0.930 

V var (%) 7.16 8.51 6.78 7.16 

CVaR 0.900 0.881 0.903 0.899 

V cvar (%) 10.15 12.16 9.69 10.18 

Source: own study 4 

PORTFOLIO OPTIMIZATION 5 

Assuming that stock returns )(tri  are poorly stationary random processes, 6 

each of which is characterized by mathematical expectations i  and a degree of 7 

risk iV , then for portfolio optimization, a modified Markovic model can be used.  8 

In this case, the mathematical description of the problem at the maximum portfolio 9 
return will have the form: 10 
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We used an approach similar to the Markovits approach to assess portfolio 12 

risk 
pV , but instead of a standard deviation of stock return on the risk measure iV13 

we got. In contrast to the mean square deviation that describes the average 14 

deviation of stock return from its mathematical expectation, the risk measure iV  15 

evaluates the deviation of VaR (CVaR) from the mathematical expectation of stock 16 
return. The correctness of such approach to optimizing the portfolio is analyzed in 17 
detail in the monograph of Zabolotskyy [Zabolotskyy 2016a]. The mathematical 18 
description of the problem for a minimum portfolio risk will have the form: 19 
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Here 𝑤𝑖 is the weight of the i-th financial asset in portfolio, 𝑉𝑝 - general 1 

portfolio risk, 𝑉𝑟𝑒𝑞 - recommended portfolio risk, 𝑅𝑝 - overall portfolio return, 𝑅𝑟𝑒𝑞 2 

- recommended portfolio return. To optimize the portfolio, we will use the average 3 
stock return 𝜇1, 𝜇2, 𝜇3, 𝜇4, previously found risk estimates 𝑉1, 𝑉2, 𝑉3, 𝑉4, and  4 

a pseudo-covariance 𝑐ov(𝑟𝑖, 𝑟𝑗) = 𝑝𝑖𝑗 ⋅ 𝑉𝑖 ⋅ 𝑉𝑗, where 𝜌𝑖𝑗 , 𝑖 = 1.4; 𝑗 = 1.4  is  5 

a Pearson correlation coefficient between the two time series of stock return.  6 
Let's show the difference between a randomly formed portfolio and an 7 

optimal stock portfolio. Let us form portfolio within stocks of four companies 8 
(Deutsche Telekom, BMW, Bayer AG and Siemens AG), having the equal share of 9 
investment to them 𝑤1 = 0.25; 𝑤2 = 0.25; 𝑤3 = 0.25; 𝑤4 = 0.25. Such  10 
a portfolio (with the use of risk measure VaR) will have the following 11 
characteristics: 𝑅𝑝 = 1.0054; 𝑉𝑝 = 5.97% (the point on the graph – Figure 4). We 12 

will show that these characteristics will not be optimal. Indeed, using model (13) 13 
and recommended risk level 𝑉𝑟𝑒𝑞 = 5.97%, we get the maximum possible portfolio 14 

return 𝑅𝑝 = 1.0067. If we use model (14) and recommended return level 15 

𝑅𝑝 = 1.0054, we obtain the minimum possible risk level 𝑉𝑝 = 5.82%. 16 

Using the obtained above stock risk estimates (Table 3), we constructed the 17 
set of optimal portfolios (the efficient frontier). Each such portfolio gives 18 
maximum return at the established risk level. For the first time, the concept of 19 
optimal portfolios set was introduced by Markowitz [Markowitz 1952]. The 20 
technique for constructing the set of optimal portfolios was as follows. Initially,  21 
a portfolio structure with a minimum risk level and a minimum portfolio return was 22 
determined (model (14)). In the second step, we determined the portfolio structure 23 
with maximum portfolio return and maximum portfolio risk (model (13)). Then, by 24 
changing the risk value from the minimum to the maximum value in step 0.05 and 25 
using the model (13), we received the set of optimal portfolios. The graphic 26 
illustration of this set is shown in Figure 4. 27 
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Figure 4. The set of optimal portfolios (the risk measure Var) 1 

 2 

A round point represents a portfolio with equal shares of investment 3 

Source: own preparation 4 

The Table 4 presents the portfolio structure for each of the optimal solutions 5 
obtained by us using stock weekly price data (https://finance.yahoo.com/). The 6 
graph and the table confirms the well-known statement that a higher return level 7 
always requires a higher risk degree.  8 

Table 4. The set of optimal portfolios (the risk measure Var) 9 

w1 w2 w3 w4 Vp Rp 

0.277 0.034 0.433 0.256 5.738 1.0035 

0.326 0.035 0.301 0.337 5.800 1.0051 

0.356 0.035 0.219 0.389 5.900 1.0061 

0.378 0.035 0.160 0.427 6.000 1.0069 

0.397 0.034 0.111 0.458 6.100 1.0075 

0.413 0.034 0.068 0.485 6.200 1.0080 

0.435 0.003 0.035 0.528 6.300 1.0085 

0.435 0.003 0.000 0.563 6.400 1.0089 

0.314 0.000 0.000 0.686 6.500 1.0091 

0.244 0.000 0.000 0.756 6.600 1.0092 

0.188 0.000 0.000 0.812 6.700 1.0093 

0.140 0.000 0.000 0.860 6.800 1.0093 

0.097 0.000 0.000 0.903 6.900 1.0094 

0.000 0.000 0.000 1.000 7.162 1.0095 

Source: own study 10 
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CONCLUSION 1 

We have shown that the stock returns of Bayer AG, BMW, Deutsche 2 
Telekom, Siemens AG are not subject to normal distribution, but they can be 3 
described by Laplace distribution. Using the Laplace distribution function, we 4 
obtained the analytical expressions for VaR and CVaR risk measures and 5 
performed calculations of the risk assessment of considered stocks using two 6 
approaches: Var and CVaR. As a result of optimization, the set of optimal 7 
portfolios was constructed for both cases. 8 
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