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Abstract: In this paper four methods of calculating characteristic functions 

and their application to selected stochastic volatility models are considered. 

The methods applied are based on the assumption that the prices of European 

calls are evaluated numerically by means of the Gauss-Kronrod quadrature. 
Such approach is used to investigate computational efficiency of pricing 

European calls. Particular attention in this matter is paid to the speed of 

generating theoretical prices of the analyzed contracts. 
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INTRODUCTION 

The first model of pricing European options in continuous time was 

introduced by Black & Scholes [1973]. Although the model is still widely used by 

many practitioners its structure has long ceased to meet the requirements of modern 

financial markets. Such view should be considered correct for at least two reasons.  

Firstly, there is enough evidence suggesting the existence of so-called stylized 

facts. According to Cont [2001] this term should be associated with seemingly 

random variations of asset prices that have non-trivial statistical properties. 

A different definition of stylized facts is proposed by Challet et al. [2001], who 
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identify the above term with empirical statistical regularities in financial data (which 

are not explained in terms of cause and effect - ed. by the author). Taylor [2005] 

suggests a similar approach stating that stylized facts are general properties expected 

to be present in any set of returns. Rogers & Zhang [2011] present a different opinion 

about it. According to them, stylized facts are a set of independently recognized 

characteristics relating to various instruments, markets and periods of time. 

According to R. Cont [2001], stylized facts are properties that are common across 

a wide range of instruments, markets and periods of time.  

The following stylized facts are most often analyzed in the financial literature:  

- absence of autocorrelation, except for very short time intervals where 

microstructural effects start to play a role,  

- (conditional) heavy tails in the (conditional) distribution of returns,  

- gain/loss asymmetry (prices of financial assets and stock index values are 

slower to go up and faster to go down; the opposite relationship is observed for 

exchange rates),  

- aggregational gaussianity (as one increases the time interval over which 

returns are calculated, the distribution of returns converges to a normal one), 

- intermittency of returns and volatility clustering (time series of returns are 

irregular and volatility shows tendency to cluster over time),  

- slow decay of autocorrelation in absolute returns,  

- leverage effect (there is a negative relationship between stock returns and 

both historical and implied volatility),  

- volume/volatility correlation (trading volume and volatility are negatively 

correlated),  

- asymmetry in time scales (coarse-grained measures of volatility predict 

a fine-scale volatility better than vice versa).  

It is worth noting that stylized facts are not tantamount to market anomalies. 

Stylized facts refer to the immanent properties of the financial market forming the 

foundation for building some scientific theories. The market anomalies are regarded 

as inexplicable phenomena contradicting the existing concepts and views. Such 

statements seem to be in line with the opinion offered by T. Lux [2009]. It is 

important to notice that although microstructural effects, heavy tails in the 

distributions of returns, volatility clustering etc. are treated as immanent properties 

of the variables which do not fit within the restrictive framework of some existing 

models, e.g. the Black-Scholes model, they are sometimes captured by other models, 

e.g. stochastic volatility models.  

Secondly, as a result of the constant technological progress, the computing 

power of computers is systematically increasing. It means that the range of 

computational techniques that can be used in practice for the valuation of capital 

assets or derivatives is expanding. The mathematical tools that have gained particular 

importance in this context are the characteristic functions. They can be applied to 

many option pricing models, including the stochastic volatility models. 
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The aim of the article is to show that the process of pricing European options 

in selected stochastic volatility models can be improved in terms of computational 

speed. The article is organized as follows. In the first section two stochastic volatility 

models of pricing European options are investigated, i.e. the Heston model [Heston 

1991] and the Bates model [Bates 1996]. In the second section, some approaches to 

calculating characteristic functions are presented. In the third section, the 

computational speed of pricing European options is investigated. Finally, in the 

fourth section, this article has been summarized and some major conclusions have 

been drawn.  

SELECTED STOCHASTIC VOLATILITY MODELS 

In this section, two stochastic volatility models of pricing European options 

are analyzed: the Heston model and the Bates model.  

The Heston model 

In the Heston model, the dynamics of the underlying asset price ! and the 

volatility process "# are governed by two stochastic differential equations: 

 $!% = &!%$' + ("%#!%$)*,%. (1) 

 $"%# = -./ 0 "%#1$' + 2("%#$)#,%. (2) 

where: !% denotes the spot price of the underlying asset at time ',3& is the constant 

(drift), "%# is the instantaneous variance, / is the long-term variance,3- is the mean-

reversion rate, and 2 is the volatility of the variance process. It is worth noting that 

under Feller’s condition, i.e. 4-/ 5 2#, the variance process remains always 

positive. The Brownian motions )* and )# are correlated with a constant 6.    

The formula for the price of a European call in the Heston model takes the 

following form: 

 78.9%, "%#, '1 = !%:*8.9%, "%#, ;1 0 <>?@A:#8.9%, "%#, ;1. (3) 

where: ; = B 0 ', C is the risk-free rate, A is the exercie price, :*8.9%, "%#, ;1 and :#8.9%, "%#, ;1 are the probabilities of expiring European call in-the-money. 

Although :*8.9%, "%#, ;1 and :#8.9%, "%#, ;1 are not known they can be easily 

extracted from the characteristic functions, for D = E,4, i.e.: 

 :F8.9%, "%#, ;1 = *
#+ *

GH IJKLMNOPQRS,TUV,WX,YXZ[MV \$]_̂ .  (4) 

where: ℜ(. ) is the real part of the subintegral function, M is the imaginary unit of the 

complex number, `F,8.], 9%, "%#1 is the characteristic function of 9% = ab!' 
(corresponding to :F8U9', "'4, ;[). The remaining notation is the same as previously 

introduced. 
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Theoretical price of a European call can be obtained under the assumption that 

the general form of the characteristic functions of 9% (corresponding to probabilities :F8, for D = E,4), is the following: 

 `F,8.], 9%, "%#1 = <cS.V,@1deS.V,@1YXZdMVWX.  (5) 

where: 7F.], ;1 = CM]; + f
gZ hUiF 0 26M] + $F[; 0 4ab J*>jkK

lSm
*>jS \n, oF.], ;1 =

pS>gqMVdrSgZ s *>KlSm
*>jSKlSmt,  u* = *

#, u# = 0 *
#, v = -/, i* = - + w 0 26, i# = - + w, 

xF = pS>gqMVdrSpS>gqMV>rS, zaś $F = yU26M] 0 iF[# 0 2#U4uFM] 0 ]#[.  
The figure below presents the payoff functions of a European call in the 

Heston model (78.!%, "%#, '1) compared to the payoff functions of a European call in 

the Black-Scholes model (7.!%, '1) assuming that: !% z {|}, E~}�, A = E}}, "% =}�4, C = ��, 2 = }�}�, - = E��, w = ~, / = }�}�, 6 = }�� for different periods 

remaining to expiration, i.e. 
�>%
� z �}�E� }��� }�|�. 

Figure 1. Payoff functions of a European call in the Heston model and the Black-Scholes 

model assuming that:3!% z {|}, E~}�, A = E}}, "% = }�4, C = ��, 
�>%
� z�}�E� }��� }�|�, 2 = }�}�, - = E��, w = ~, / = }�}�, 6 = }�� 

 

Source: own preparation 

It is worth noting that pricing of options using the method described above is 

inefficient. In eq. 3-4 there are two integrals and each of them has to be evaluated 

numerically. It means that the computational effort necessary for the valuation of 

options is huge. A straightforward solution to the problem lies in the application of 
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alternative methods in which only one characteristic function is used. This issue will 

be discussed in next section of this article.  

The Bates model 

In the Bates model [Bates 1996], the underlying asset price process is 

detrmined by two equations, i.e.: 

 $!% = U& 0 w&�[!%$' + ("%#!%$)*,% + �!%$�%. (6) 

 $"%# = -./ 0 "%#1$' + 2("%#$)#,%. (7) 

where: !% denotes the spot price of the underlying asset at time ',3& is the 

instantaneous expected rate of appreciation of the underlying asset,3w is the annual 

frequency od jumps, � is the random percentage jump conditional on a jump 

occuring, �% is the Poisson counter with intensity w, "%# is the instantaneous variance 

of the price process. It is worth noting that: E + ����.&� , "�#1. Moreover, the 

Brownian motions )* and )# are correlated with a constant 6 and the relationship 

between &� and &� is the following: &� = <s��d��
Z
Z t 0 E. 

The price of a European call in the Bates model can be evaluated in the same 

manner as in the Heston model. Thus, the theoretical framework discussed herein is 

simple on the one hand, while, on the other hand, the drawbacks of the applied 

approach concerning computational inefficiency remain the same.  

Similarily to the Heston model, the methodology of pricing options in the 

Bates model is based on characteristic functions. For the purpose of further analysis 

it is assummed that the characteristic funcion needed for the valuation of European 

options is as follows: 

 `#,�.], 9%, "%#1 = <cZ.V,@1deZ.V,@1YXZd�.V1�@dMVWX  (8) 

where: �.]1 = 0&�M] + JUE + &�[MV<Y�Z�MNZ �.MV>*1 0 E\, and both 7#.], ;1 and 

o#.], ;1 can be concluded from the Heston model. The remaining notation is the 

same as in the previous case. 

The formulas that can be used for pricing European options are presented in 

the next section of this article.  

The figure below presents the payoff functions of a European call in the Bates 

model (7�.!%, "%#, '1) compared to the payoff functions of a European call in the 

Black-Scholes model (7.!%, '1) assuming that: !% z {|}, E~}�, A = E}}, "% = }�4, C = ��. Additionally, it is assumed that: 2 = }�}�, 2 = }�}�, - = E��, w = ~, / =}�}�, 6 = }��, &� = 0}�}�, and "� = }�}}}}� for different periods remaining to 

expiration, i.e. 
�>%
� z �}�E� }��� }�|�. 
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Figure 2. Payoff functions of a European call in the Bates and the Black-Scholes model 

assuming that:3!% z {|}, E~}�, A = E}}, "% = }�4, C = ��, 
�>%
� z �}�E� }��� }�|�, 2 = }�}�, - = E��, w = ~, / = }�}�, 6 = }��,3&� = 0}�}� and "� = }�}}}}� 

 

Source: own preparation 

Some alternative methods of pricing European options by characteristic 

functions are presented below. 

CHARACTERISTIC FUNCTIONS 

There are numerous ways of deriving characteristic functions for the purpose 

of pricing European options. In this article particular attention is paid to the formulas 

developed by Carr & Madan [1999], Attari [2004], Bates [2006] and Orzechowski 

[2018], only. On the basis of the formulas, the theoretical values of European calls 

in the Heston model and the Bates model are determined. It should be noted that in 

all equations presented below it is assumed that ' = }. The remaining notation 

remains consistent with the one introduced previously. 

 

The Heston model 

1. The Carr & Madan approach [Carr, Madan 1999] for � = 1: 

 78.!}, "}4, }1 = <0��
� H I �<0M]� <0CB`4,�U]0.�+E1M,9},"}4[�4+�0]4+M.4�+E1] ��

} $].  (9) 
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2. The Attari approach [Attari 2004]: 

78.!}, "}4, }1 = !} sE + <a
� H Is <0M]a

M.]+M1�4,�.], 9}, "}41t$]�
} t +  

 0<>? A s*#+ *
G H IsKLMNOMV �#,8.], 9_, "_#1t$]_̂ t . (10) 

where: a = ab � �
� K¡¢�. 

3. The Bates approach [Bates 2006]: 

 78.!_, "_#, }1 = !_ 0 <>?�A£*#+ *
G H I£KLMNOPJ Q� \MV.*>MV1 ¤¥#,8.], 9_, "_#1$]_̂ ¤ . (11) 

4. The Orzechowski apporach [Orzechowski 2018]: 

 78.!_, "_#, }1 = *
# !¦ + <>?� *GH I�<>MV§ RZ,TUV>M,W ,Y Z[MV.MVd*1 �$]_̂ . (12) 

It is worth noting that:3`*,8.], 9_, "_#1, `#,8.], 9_, "_#1, �#,8.], 9_, "_#1 and ¥#,8.], 9_, "_#1 are characteristic functions corresponding to :*8U9', "'4, ;[ and :#8U9', "'4, ;[, respectively. The functions corresponding to :#8U9', "'4, ;[ are 

determined by the following equations: 

 `#,8.], 9_, "_#1 = <cZ.V,�1deZ.V,�1Y ZdMVW . (13) 

 �#,8.], 9_, "_#1 = `#,8.], 9_, "_#1<>MVW >MV?�. (14) 

 ¥#,8.], 9_, "_#1 = `#,8.], 9_, "_#1<>MVW . (15) 

 

The Bates model 

1. The Carr & Madan approach [Carr, Madan 1999] for � = 1: 

 7�.!}, "}4, }1 = <0��
� H I �<0M]� <0CB`4,¨U]0.�+E1M,9},"}4[�4+�0]4+M.4�+E1] ��

} $]. (16) 

2. The Attari approach [Attari 2004]: 

7�.!}, "}4, }1 = !} sE + <a
� H Is <0M]a

M.]+M1�4,¨.], 9}, "}41t$]�
} t +  

 0<>?�A s*#+ *
G H IsKLMNOMV �#,�.], 9_, "_#1t $]_̂ t. (17) 
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where: a = ab � �
� K¡¢�. 

 

3. The Bates approach [Bates 2006]: 

 7�.!_, "_#, }1 = !_ 0 <>?�A£*#+ *
G H I£KLMNOPJ Q� \MV.*>MV1 ¤¥#,�.], 9_, "_#1$]_̂ ¤. (18) 

4. The Orzechowski apporach [Orzechowski 2018]: 

 7�.!_, "_#, }1 = *
#!¦ + <>?� *G H I�<>MV§ RZ,©UV>M,W ,Y Z[MV.MVd*1 � $]_̂ . (19) 

It is worth noting that: `#,�.], 9_, "_#1, �#,�.], 9_, "_#1 as well as ¥#,�.], 9_, "_#1 are characteristic functions determined by the following equations:  

 `#,�.], 9_, "_#1 = <cZ.V,�1deZ.V,�1Y Zd�.V1w�dMVW  (20) 

 �#,�.], 9_, "_#1 = `#,�.], 9_, "_#1<>MVW >MV?�. (21) 

 ¥#,�.], 9_, "_#1 = `#,�.], 9_, "_#1<>MVW . (22) 

 

RESULTS 

 

In order to investigate which of the approaches proposed in the previous 

section is the most efficient one in terms of computational speed, appropriate codes 

are developed in the Mathematica 10.2. It is assumed that integrals in the formulas 

for the prices of European calls are evaluated numerically by means of the Gauss-

Kronrod quadrature. Graphs are smoothed by averaging runs of five elements. The 

package is launched on a computer with Intel i7- 1070 CPU @ 2.90 GHz processor 

with RAM memory of 32 GB. Cache memory is cleared before starting codes 

allowing for the valuation of options.  

The results of the research carried out are shown in the graphs below - see 

Figures 3 and 4. 
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Figure 3. Computational speed in the Heston model assuming that !% z {|}, E~}�, A =E}}, "% = }�4, C = ��, 2 = }�}�, - = E��, w = ~, / = }�}�, 6 = }�� for (a) �>%
� = }�E, (b) 

�>%
� = }�� and (c) 

�>%
� = }�| 

 

 

 

Source: own preparation 
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Figure 4. Computational speed in the Bates model assuming that !% z {|}, E~}�, A = E}}, "% = }�4, C = ��. 2 = }�}�, - = E��, w = ~, / = }�}�, 6 = }��,3&� = 0}�}� and "� = }�}}}}� for (a) 
�>%
� = }�E, (b) 

�>%
� = }�� and (c) 

�>%
� = }�| 

 

 

 

 

Source: own preparation 

 



Pricing European Options in … 155 

The results obtained show that the speed of pricing European options in the 

Heston model and the Bates model depends on the way the characteristic functions 

are calculated. The closer the time to expiration the better (in terms of computational 

speed) is the method developed by Orzechowski [Orzechowski 2018]. The closer the 

moment of writing European options, the more ambiguous become the differences 

between alternative methods of pricing derivatives. An exception to the rule applies 

to the Attari method. In both option pricing models this approch allows for the 

slowest pricing of the contracts being considered (regardless the time to expiration). 

SUMMARY 

In this article some selected methods of determining characteristic functions 

were applied to the valuation of options. Based on the results obtained it can be 

concluded that the characteristic function developed by Orzechowski [Orzechowski 

2018] allows for the fastest pricing of European options in the Heston model and the 

Bates model. This is true under the assumption that the prices of the contracts are 

evaluated numerically by means of the Gauss-Kronrod quadrature. It should be noted 

that although the results are vulnerable to the time to expiration, nevertheless 

abovementioned conclusion should be maintained in its current form.  

Further research should focus on analyzing the speed of pricing European 

options in other stochastic volatility models. Particular attention in this matter should 

be paid to the selection of both numerical methods used to approximate theoretical 

values of the analyzed instruments and characteristic functions of 9%. 
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