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Abstract: This work reports simulations performed using Particle Swarm 

Optimization (PSO) as applied to investments on the stock market. About 480 

stocks belonging to the S&P500 index have been taken into account. A naive 

approach has been developed in which one simulation step corresponded to 

one trading period. As a second ingredient of the investment strategy, the 

relative strength of an asset has been employed. The results are analyzed with 

respect to the parameters of PSO.
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INTRODUCTION

There exists quite a widespread opinion that, with the advent of large-scale 

application of machine learning, especially deep learning, to the stock market 

analysis and investment, discretionary trading is a matter of the past. The argument 

goes by making a comparison with, e.g., the recent spectacular triumphs of the 

intelligent machine players over humans in the Go game [Silver et al.. 2016, Silver 

et al. 2018]. This conception is, however, misleading: human traders, either with 

their Excel charts or with their primitive, homemade random forests never have to 

fight against the full, enormous power of the Big-Corporate deep-learning 
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algorithms. It is discretionary traders' skills to move across the stock markets and 

win relatively small profits using the play of corporate giants for their advantage. 

The author’s personal motivation to undertake simulations has been related to 

the most elementary notions and problems of the reinforcement learning associated 

with the N-armed bandits [Robbins 1952]. One can easily draw a comparison 

between a group of "one-armed bandit" machines in a casino and the stocks on the 

stock market. Modified N-armed bandits have been applied for the construction of 

stock-market portfolios already in the past decade. Now, one way to proceed further 

would be to include a multi-agent version of the N-armed bandit problem. One of 

the possible solutions has been to employ one of many swarm algorithms. we have 

decided to use particle swarm optimization chiefly because of its simplicity and 

obvious connection with many-particle dynamical systems known from physics. 

Needless to say, apart from the profit itself (or related quantities like Sharpe ratio) 

there is nothing really to optimize, that is, there is no well-defined target function. 

But the way to adjust PSO to the task of finding a sub-optimal investment policy is, 

theoretically, rather simple. One should “only" find a suitable way to define “best 

particle positions" in the evolving environment of the market, from which the “best 

swarm position" can already be easily selected. 

This work is indebted to the papers by Blackwell, Branke, and coworkers, 

please see, e.g., [Blackwell et al. 2002; Blackwell et al. 2004; Blackwell et al. 2006; 

Blackwell et al. 2008]; their work contains thorough discussions of the problems 

associated with dynamic optimization problems. Still, a very elementary approach 

has been employed here: one will not know whether and which modifications of that 

approach are needed in a new kind of application without having it extensively 

tested. 

The main body of the work is organized as follows. In Section II, we describe 

how the simulations have been conducted. Section III contains the main results 

illustrated in several figures. Section IV comprises a summary and some concluding 

remarks. 

METHODS 

Instead of using a discrete version of PSO, the interval [0,1] has been divided 

into   subintervals {!"} (# = 0,1,2, . . .  − 1), each corresponding to a stock. The 

Python module yfinance has been used to download the stock data. In the 

simulations, a kind of "day trading" approach has been applied. That is, it has been 

understood that if a particle landed in the subinterval {!"} corresponding to the #-th 

stock, the agent associated with that particle bought shares of that stock for all 

available cash with opening price and then sold all the shares with the closing prices. 

It has not been attempted to take into account spread, possible slippages or taxes. 
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Standard PSO equations of the form: 

%(& + 1) − %(&) = '(&) 

'(& + 1) − '(&) = *(&) 

have been solved; the acceleration *(&) has been given as: 

*(&) = −-'(&) + /343(567(&) − %(&)) + /848(597(&) − %(&)), 

where 43 and 48 are random numbers drawn from the uniform distribution on the 

interval [0,1], -, /3 and /8 are matrix constants (in fact, they have been simply 

scalars in the present simulations. The vector 567 is the “best position" of an 

individual particle, and 597 is the “best position" of the whole swarm. 

As has been stressed in the introduction, while we use PSO algorithm, we do 

not really solve an optimization problem. Rather, we use PSO in the spirit of  

:-armed bandit and attempt to find an efficient policy of buying and selling stocks. 

The (time-dependent) target functions is determined only implicitly via the 

specification of a method to obtain 567 and 597. 

Needless to say, PSO does not provide a trading strategy on its own. The 

determination of 567 and 597 has served as a necessary second ingredient. It has been 

assumed that 567(&) is a vector of positions of particles with the largest relative 

strength of the corresponding stocks visited by the particle. That relative strength has 

been measured by a fictitious profit that would be achieved if a “trader" associated 

with the particle bought the asset at the time & − &; to sell it at the time & − 1. The 

quantity 597 has been scalar because the pseudo-dynamics of the swarm has been 

one-dimensional. Profits have been calculated as a sum of all the profits accumulated 

by the “best" particle while visiting various stocks. 

Two pairs of constants /3, /8 have been applied: /3 = /8 = 0.5 and /3 = /8 =

1.49445 (the latter choice is canonical). To the author’s surprise, no appreciable 

change has been achieved when switching from the first to the second pair. 

1383 trading days starting with 2015.01.01 and ending with 2020.06.30 have 

been taken for simulations. This has been enough to take into account both the 

bearish market associated with the lockdown due to the pandemia and subsequent 

periods of bullish developments. During that time, the value of S&P500 index has 

increased from 2104.50 to 3500.31, that is, by 66.325%. 

  



238 Maciej Janowicz, Andrzej Zembrzuski 

RESULTS 

Swarms containing from 4 to 120 particles have been employed. 100 runs 

have been performed for every number of particles and delay parameters to obtain 

some reasonable statistics. This has allows us to find the mean profits and their 

standard deviation on averaging over the runs. In the figures below, the profits for 

the worst performing (that is, least profitable) runs have also been shown. In Figure 

1-2 profits obtained as functions of the “inertia weight” @ = 1 − - have been shown 

for the number of particles equal to 4 and 10. 

Figure 1. Minimal profit (left), mean profit (center), and the standard deviation (right) of 

profits as functions of the “inertial weight" @ for the number of particles : = 4, 

&; = 2, and /3 = /8 = 0.1 

 

Source: own simulations 

Figure 2. Minimal profit (left), mean profit (center), and the standard deviation (right) of 

profits as functions of the “inertial weight" @ for the number of particles : = 10, 

&; = 2, and /3 = /8 = 0.1 

 

 

Source: own simulations 
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In Figures 3-4, examples of the trajectories of the best swarm positions 

(averaged over 100 runs) have been displayed for various number of particles and 

several inertial weights w. 

Figure 3. Examples of trajectories of the best swarm position averagef over 100 runs for the 

number of particles : = 4, &; = 2, and /3 = /8 = 0.1. The for the “inertial 

weight" @ has been equal to 0.1 (left), 0.5 (center) and 0.9 (right). 

 

Source: own simulation 

Figure 4. Examples of trajectories of the best swarm position averagef over 100 runs for the 

number of particles : = 10, &; = 2, and /3 = /8 = 0.1. The for the “inertial 

weight" @ has been equal to 0.1 (left), 0.5 (center) and 0.9 (right). 

 

Source: own simulation 
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Figure 5. The dependence of profits (in percent) on the number of particle in the sworm for 

&; = 130, w = 0.5, and /3 = /8 = 2.0: profit for the worst run (left), mean profit 

(center), and the standard deviations (right) 

 

Source: own simulation 

CONCLUDING REMARKS 

To conclude, simulations of the behavior of particle swarms in an environment 

made by the stocks belonging to the !&C500 index have been performed. It appears 

that while the method does not bring spectacular results, it does generate profits and 

it can serve as a valuable addition to the arsenal of traders, especially, as the author 

believes, individual ones. The necessary condition for such efficiency is operating 

with a sufficiently large number of particles in the swarm. 

It appears that, if the number of particles is sufficiently large, the swarm can 

indeed quite efficiently find its best positon near the stocks with high relative 

strength. As can be seen from Figure 5, even the least profitable runs clearly 

outperform the benchmark if we accept it to be the value of the S&P index itself.  

The results obtained here must, of course, be understood as preliminary. We 

have not attempted to perform any optimization of the (hyper-)parameters. 

Therefore, no time-dependent cross-validation has been performed. It is possible that 

the best parameters can be strongly market-dependent. 
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