
QUANTITATIVE  METHODS IN ECONOMICS 
Volume XXII, No. 1, 2021, pp. 14 – 28 

https://doi.org/10.22630/MIBE.2021.22.1.2 

AN APPLICATION OF THE INTERVAL ESTIMATION  
FOR THE AT-RISK-OF-POVERTY RATE ASSESSMENT 

Marcin Dudziński  https://orcid.org/0000-0003-4242-8411 

Joanna Kaleta  https://orcid.org/0000-0001-6628-4251 

Institute of Information Technology 
Warsaw University of Life Sciences – SGGW, Poland 

e-mails: marcin_dudzinski@sggw.edu.pl; joanna_kaleta@sggw.edu.pl 

Abstract: In the document [Eurostat (Your Key to European Statistics) 2020], 
At-Risk-of-Poverty Rate (ARPR in short) is defined as the percentage of 
population with an income not exceeding 60% of the general population 
median income. Extensive and thorough research on the estimation of this 
measure has been conducted since its introduction. For example, in the paper 
of  [Zieliński 2009a] a non-parametric, distribution-free confidence interval for 
ARPR has been constructed. An example of application of the confidence 
interval proposed by [Zieliński 2009a] has been given in [Zieliński 2009b]. 
Some other interesting approach regarding the interval estimation of ARPR has 
been proposed in [Luo and Qin 2017], where the authors introduced new 
concepts of the interval estimation for the so-called Low-Income Proportion 
(LIP) measure, which is a generalization of ARPR. The LIP measure and thus, 
the ARPR parameter in particular, are important indexes describing the 
inequality in an income distribution. Based on the construction of the point 
smoothed kernel estimate for LIP, [Luo and Qin 2017] established a smoothed 
jackknife empirical likelihood approach leading to the introduction of some 
new non-parametric confidence intervals for the LIP measure and 
consequently, for the ARPR index as well. In our work, we aim to apply the 
most interesting ideas of LIP and ARPR point and interval estimation for data 
consisting of 13057 observations concerning an equalised disposable income 
of households in Poland from 2003. We also discuss the accuracy and 
adequacy of the empirical results relating to the ARPR interval estimation, 
obtained by the implementation of the constructed confidence intervals. 

Keywords: Low-Income Proportion (LIP), At-Risk-of-Poverty Rate (ARPR), 
confidence intervals for LIP and ARPR, Nonparametric estimation, Kernel 
estimation 
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INTRODUCTION 

At-Risk-of-Poverty Rate (or ARPR in short) is a measure that enables to 
determine the inequality in an income distribution. According to [Eurostat (Your 
Key to European Statistics) 2020], it is defined as the proportion of general 
population with an income not exceeding 60% of the median income in the whole 
population. Using mathematical terms, we may describe this measure in the 
following pattern. Namely, let EQ_INC� denote an equivalised disposable income of 
the -th individual (person or household) and suppose that weight� stands for the 
weight of individual �. Firstly, we shall determine the so-called At-Risk-of-Poverty 
Threshold (or ARPT in short). It is expressed as (see also [Zieliński 2009a-b]) 

ARPT = At-Risk-of-Poverty Threshold = 60%EQ_INCMEDIAN, 

where 

EQ��������� =
⎩⎪
⎨
⎪⎧12 &EQ_INC� + EQ_INC�()* ,   if   , weight� = -2

�
�.)

EQ_INC�(),   if   , weight�
�

�.)
< -2 < , weight�

�()
�.)

, 

where in turn, 

- = , weight�.
122 3456786

 

Thus, we can directly come to stating the definition of ARPR. Since it is clear now 
that this measure denotes the percentage of individuals from the whole population 
with an equivalised disposable income not greater than ARPT, then the ARPR index 
is calculated as (see also [Zieliński 2009a-b]) 

9:;: =
∑122 3456786 >�?@ EQ_INCA1BCD

weight�
- × 100. 

We are now in a position to discuss the estimation methods for ARPR. We will start 
from the point estimation of this measure. Suppose that F), FG, … , F8 is a sample of 
the equivalised disposable incomes of randomly drawn I individuals and let JKL be 
the corresponding sample median. A straightforward point estimate for ARPR is 
given by (see, e.g., [Zieliński 2009a-b]) 

9:;:M = 1I #{F�:  F� ≤ 0.6 ⋅ JKL}, 
with # standing for the cardinality of the considered set. It is obvious that in terms 
of probability distribution, the ARPR index is determined as 
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V = 9:;: = WX0.6 ⋅ WY)Z0.5[\, 
where: W denotes the cumulative distribution function (cdf) of an equivalised 
disposable income in the investigated general population, WY) is the corresponding 
quantile function. ARPR is a special case of the so-called Low-Income Proportion 
(LIP) measure, which is an index defined for two parameters, usually denoted as ] 
and ̂ . Namely, if F denotes an income variable with a cdf W, then LIP is given by 

_`; = Va,b = ;XF ≤ ] ⋅ cb\ = WX] ⋅ cb\ = WX] ⋅ WY)Z^[\, 
where cb denotes the ̂-th quantile of an income distribution. Thus, for the fixed ] 
and ̂ , LIP is the fraction of individuals with an equivalised disposable income not 
exceeding ] ⋅ cb = ] ⋅ WY)Z^[ (in other words, it is the proportion of population 
with an income not greater than the given fraction ] of the ̂ -th quantile from an 
income distribution). It is clear that LIP equals ARPR for ] = 0.6 and ̂ = 0.5. The 
Low-Income Proportion, and consequently the At-Risk-of-Poverty Rate as its special 
case, are the measures that have been extensively used by governing bodies and 
government experts, as well as by business managers and advisors or academics from 
different areas of interest, in order to gain a great deal of valuable information and 
conclusions. It is particularly convenient and useful in the assessment of potential 
inequalities regarding the socio-economic status. For example, the employees with 
earnings not exceeding 60% of the population median income are treated as the low-
earners by the European Statistical Office ’Eurostat’. Since, as it has already been 
mentioned, ARPR is equivalent to LIP with ] = 0.6 and ̂ = 0.5, the high values of 
ARPR indicate relatively large social inequalities in the wealth structure, as well as 
the social instability and uncertainty. All this together should serve as a warning 
signal for the state decision-makers. Except for the state authorities and business 
entrepreneurs, LIP and ARPR have attracted much attention of scholars from various 
fields of interest. In particular, a large number of inference methods related to both 
the point and the interval estimation of LIP have been proposed or developed. 
Among numerous research papers devoted to the subject of LIP and ARPR 
evaluation, or the risk measures assessment in general, the works of [Gong et al. 
2010, Jing et al. 2009, Li et al. 2011, Luo and Qin 2017, Wei et al. 2009, Wei and 
Zhu 2010] and [Zieliński 2009a-b] - are especially worthwhile to mention. Roughly 
speaking, there exist two essential concepts concerning the estimation of LIP, and 
ARPR in particular. With reference to the issue of LIP estimation, these two primary 
approaches - commonly known as the empirical and kernel methods - may be 
illustrated as follows. Let F), FG, … , F8 denote a simple sample from the income 
distribution having a cdf W. Then, the empirical estimate for parameter  θf,g  = _`;  
is defined by (see also [Luo and Qin 2017]) 

Vha,b = W8X]cib\ = 1I , `8
�.)

ZF� ≤ ]cib[ = 1I , `ZYj,akhl]
8

�.)
ZF�[, 
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where: W8 stands for the empirical distribution function of F), … , F8, cib = W8Y)Z^[ 
is the ̂ -th quantile of the empirical distribution function W8, while ̀ 1 denotes the 
indicator function of a given set 9. Sadly, an application of the empirical point 
estimate has a relatively serious drawback, which consists in the fact that Vha,b =W8X]cib\ is a non-smoothing estimator of Va,b, as it is a non-smoothing function 

of the sample quantile cib, whereas _`; = Va,b = WZ]cb[ is a function related to the 
smoothing income distribution function W. Therefore, instead of employing a non-
smoothing empirical estimator Vha,b, [Luo and Qin 2017] suggested using the kernel 
method in order to obtain a smoothed estimator for Va,b. A comprehensive study has 
shown an advantage of the kernel estimation over an assessment based on the 
implementation of the empirical estimator (see, e.g., [Falk 1983]-[Falk 1985] in this 
context). The kernel estimator of the LIP index Va,b is given by the formula 

nh8Z], ^[ = 1I , o8
�.)

p]cib − F�ℎ s, 
where o is the so-called kernel function and ℎ denotes the chosen bandwidth (ℎ is 
also interchangeably known under the name of smoothing parameter). It turns out 
that the kernel estimator nh8Z], ^[ has a slightly smaller Mean Squared Error (MSE) 
than the empirical estimator Vha,b (see Table 1 in [Luo and Qin 2017]). Apart from 
the fact that the kernel estimator is more suitable for the LIP assessment, this kind 
of estimator is also used in the definition of a smoothed version of the jacknife 
empirical likelihood ratio statistic for LIP. This smoothed version may by later 
applied in the constructions of the corresponding confidence intervals. One of 
significant difficulties arising in calculation of the smoothed estimator nh8Z], ^[ is 
the problem of an appropriate choice of bandwidth ℎ for this kernel estimator. Many 
methods of bandwidth selection have been proposed so far (see, e.g., [Bowman et al. 
1998], among others, for a comprehensive review regarding this matter). In 
particular, [Luo and Qin 2017] use the twofold cross-validation method for 
bandwidth selection in order to estimate LIP and, after conducting some simulation 
research, they recommend using bandwidth of the form ℎ = tIY)/v, where t is some 
constant not depending on I. On the other hand, it is worthwhile to mention that 
intensive simulation studies indicate that the selection of kernel K itself is not of so 
high importance, since the change of kernel does not affect the obtained estimation 
results too much. In the cited work of [Luo and Qin 2017], the authors use the 

triweight kernel density function oZw[ = vxvG Z1 − wG[v`Z|w| ≤ 1[ in order to evaluate 

LIP for data relating to annual salaries of Professors, Associate Professors and 
Assistant Professors, employed in the Units of University System or in Military 
Colleges from a State of Georgia, U.S., during the 2012 fiscal year. Our primary 
objective is to use some chosen estimation procedures for both the point and the 
interval estimation of LIP and ARPR, for evaluation of ARPR on the basis of dataset 
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containing 13057 observations of an equivalised disposable income of Polish 
households in 2003 from [Statistical Publishing Establishment, Warsaw, 2004]. 
Above all, we apply and develop the methods proposed by [Luo and Qin 2017] and 
[Zieliński 2009a-b], as - in our view - these approaches include the most valuable 
and reliable ideas leading to the assessment of ARPR and to the evaluation of other 
similar poverty (or social inequality) measures. The remainder of our paper is 
structured as follows. In Section SELECTED CONCEPTS OF THE LOW-INCOME 

PROPORTION AND THE AT-RISK-OF-POVERTY RATE ESTIMATION, we introduce the 
essential concepts of LIP and ARPR assessment, which we later aim to implement in 
our empirical analyses. In Section EMPIRICAL STUDY, we present the details 
regarding computational techniques that allow for the corresponding point and 
interval estimation, as well as we conduct our empirical research concerning the 
point and interval evaluation of the mentioned risk measures for a dataset containing 
information on an equivalised disposable income of households in Poland from the 
year 2003. Finally, Section SUMMARY  summarizes and concludes our study. All of 
our computations have been carried out using the software environment R. 
 

SELECTED CONCEPTS OF THE LOW-INCOME PROPORTION  
AND THE AT-RISK-OF-POVERTY RATE ESTIMATION 

Let F), FG, … , F8 be a simple random sample from the income distribution and F):8 ≤ ⋯ ≤ F8:8 denote a sequence of the corresponding order statistcs. In view of 
the definition of the Low-Income Proportion (LIP) measure from the previous 
Section, the estimator of Va,b = LIP  may be defined as 

Vha,b = 1I #{F�:  F� ≤ ] ⋅ F}:8}, 
where J = ⌊^I⌋ + 1 (with ⌊�⌋ denoting the largest integer not exceeding �) and # 

stands for the cardinality of a given set; obviously, F}:8 is an estimator for the ^-th 
quantile cb of an income distribution. Therefore, an estimator of the At-Risk-of-
Poverty Rate (ARPR) may be given by putting ] = 0.6 and J = ⌊0.5I⌋ + 1 into the 
formula above, i.e. it can be determined as 

9:;:M = Vh�.�,�.x = Vh = 1I #{F�:  F� ≤ 0.6 ⋅ FZ⌊�.x8⌋()[:8}. 
(Clearly, FZ⌊�.x8⌋()[:8 is an estimator for a median of an income distribution)  

As the first example of a confidence interval for  Va,b = LIP (and consequently for V�.�,�.x = 9:;:), we wish to examine an interval constructed in [Zieliński 2009b]. 
Namely, let c be the number of those among F), FG, … , F8, which are not greater 
than ] ⋅ FZ⌊b8⌋()[:8, i.e. c = #{F�:  F� ≤ ] ⋅ FZ⌊b8⌋()[:8}. 
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Then, assuming the fixed confidence level � ∈ Z0,1[, the following confidence 
interval for Va,b = _`; has been introduced in [Zieliński 2009a] 

Z^ ⋅ �Y)Zc, J − c + 1; 1 − �2 [;  ^ ⋅ �Y)Zc + 1, J − c; 1 + �2 [[, 
where: J = ⌊^I⌋ + 1, and �Y)Z�, �; �[ denotes a quantile of order � for the beta 
distribution with parameters �, �. Thus, as a straightforward conclusion, we can write 
that an interval below is the corresponding confidence interval for V�.�,�.x = V =9:;:  
 Z��; ��[ = 

p0.5 ⋅ �−1 �c�, J� − c� + 1; 1 − �2 � ;  0.5 ⋅ �−1 �c� + 1, J� − c�; 1 + �2 �s,  

where: J� = ⌊0.5I⌋ + 1,  c� = #{F�:  F� ≤ 0.6 ⋅ F}�:8}. 
As it has already been mentioned in our preliminary Section, the empirical estimate 
of Va,b = _`; may be given by 

Vha,b = 1I , `8
�.)

ZF� ≤ ]cib[. 
Furthermore, in view of [Preston 1995], this estimate satisfies the following property √IXVha,b − Va,b\ → �X0, �a,bG \, 
where 

�a,bG = Va,bX1 − Va,b\ − 2]Z1 − ^[Va,b �X]cb\�Xcb\ + ]G^Z1 − ^[[�X]cb\�Xcb\ ]G, 
with � standing for density of the corresponding income distribution. 
Obviously, it means that Va,b is asymptotically normal and hence, the following Z1 − �[-level normal approximation-based confidence interval for Va,b may be 
established 

Z�); �)[ = ZVha,b − �)Y�/G ⋅ ��a,b√I ; Vha,b + �)Y�/G ⋅ ��a,b√I [, 
where �)Y�/G stands for the Z1 − �/2[-th quantile of the standard normal distribution 
and ��a,b denotes a consistent estimator of the standard deviation �a,b. However, 
since - as it has already been noted in our introductory part - Vha,b is a non-smoothing 
estimate of Va,b, another approach, adopting the concept of the kernel estimation, 
has been proposed in order to obtain the smoothed estimator of LIP. Based on a 
simple random sample F), FG, … , F8, the corresponding kernel estimate for Va,b is 
determined as follows 
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nh8Z], ^[ = 1I , o p]cib − F�ℎ s8
�.)

, 
where: o, ℎ are the selected kernel and the stated bandwidth, respectively, and cib is 
the ̂ -th empirical quantile of the considered distribution. 
Due to Theorem 2.1 in [Luo and Qin 2017], we directly get that √IXnh8Z], ^[ −Va,b\ → �X0, �a,bG \, where �a,bG  is the same as earlier. Thus, the following Z1 − �[-
level normal approximation-based confidence interval for Va,b may be obtained 

Z�G; �G[ = Znh8Z], ^[ − �)Y�/G ⋅ ��a,b√I ; nh8Z], ^[ + �)Y�/G ⋅ ��a,b√I [. 
The definition of smoothed estimator nh8Z], ^[ is applied in establishing the so-called 
smoothed log jackknife empirical likelihood ratio statistic for LIP and later, for 
creating the corresponding confidence interval. In order to introduce the estimation 
concepts leading to both of the mentioned constructions, it is needed to define the 
so-called jackknife pseudo-values for LIP. By [Tukey 1958], the jackknife pseudo-
values for LIP are defined as follows 

�h�Z], ^[ = Inh8Z], ^[ − ZI − 1[nh8Y),�Z], ^[,  � = 1,2, … , I, 
where: nh8Y),�Z], ^[ = )8Y) ∑ o8��� Zakhl, ¡Y¢£@ [ refers to the determined smoothed 

estimator nh8Z], ^[, but it is computed on I − 1 observations F), FG, … , F�Y), F�(), … , F8, and cib,Y� = W8,Y�Y) Z^[ is the ̂ -th quantile from an 

empirical distribution W8,Y�Z�[ = )8Y) ∑ `8��� XF� ≤ �\, based on I − 1 observations 

(i.e., on all observations except for the k-th one). 

Using the jackknife pseudo-values �h�Z], ^[, � = 1, …  I, we may define the log 
jackknife empirical likelihood ratio statistic in the form as below 

�8XVa,b\ = −2 log _8 XVa,b\ = 2 , log{1 + ¦X�h�Z], ^[ − Va,b\}8
�.)

, 
where _8XVa,b\ denotes the jackknife empirical ratio statistic for Va,b and ¦ =¦X], ^, Va,b\ is the solution to 

1I , �h�Z], ^[ − Va,b1 + ¦X�h�Z], ^[ − Va,b\
8

�.)
= 0. 

It is known that, under certain conditions, �8XVa,b\ → §GZ1[, where §GZ1[ stands 
for the chi-squared distribution with one degree of freedom. Thus, the Z1 − �[-level 
confidence interval for Va,b  = _`; may be given in the form Z�v; �v[ = {V: �8ZV[ ≤ §),)Y�G }, 
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where §),)Y�G  denotes the Z1 − �[-th quantile of the §GZ1[ distribution. It is 

worthwhile to mention here that the variance ¨�©Z√Inh8Z], ^[[ can be estimated by 
the sample variance of jackknife pseudo-values {�h)Z], ^[, … �h8Z], ^[} and that the 
jackknife variance estimator of n8Z], ^[ is determined as 

ª̈1«¬Z], ^[ = var &√Inh8Z], ^[* = 1IZI − 1[ ,Z8
�.)

�h�Z], ^[ − 1I , �h�
8

�.)
Z], ^[[G. 

In view of Theorem 3.1 in [Luo and Qin 2017], we get ª̈1«¬Z], ^[ → �a,bG , where �a,bG  is the same as in the earlier considerations. Thus, the following Z1 − �[-level 
normal approximation-based confidence interval for Va,b may be introduced 

Z�; �[ = Znh8Z], ^[ − �)Y�/G ⋅ ® ª̈1«¬Z], ^[
√I ; nh8Z], ^[ + �)Y�/G ⋅ ® ª̈1«¬Z], ^[

√I [. 
The confident intervals Z�); �)[, Z�G; �G[ and Z�; �[ are established on the basis of 
normal approximation theorems. Such the approximation-based confidence intervals 
may perform poorly for the estimation of income-related ratios, since the income 
datasets tend to be skewed or have outliers. In order to overcome this drawback, 
another technique that enables to create the confidence intervals for the rates like 
LIP, and ARPR in particular, has been proposed in the case when asymptotic variance 
of the corresponding point estimator is unknown. This idea - called the bootstrap 
method - is due to [Efron 1979] and has become a celebrated estimation approach in 
recent decades. With reference to Efron’s design, [Luo and Qin 2017] combined the 
bootstrap approach with the kernel estimation in order to obtain appropriate 
confidence intervals for Va,b. The concept introduced in the cited work of [Luo and 
Qin 2017] may be depicted as follows. Namely, assume that ZF)∗, FG∗, … , F8∗[ is a 
bootstrap sample from the original sequence ZF), FG, … , F8[, i.e. ZF)∗, FG∗, … , F8∗[ is 
repeatedly drawn, with replacement, from ZF), FG, … , F8[. Then, the bootstrap 
equivalent of the kernel estimate nh8Z], ^[ is given by 

nh8∗Z], ^[ = 1I , o8
�.)

p]cib∗ − F�∗ℎ s. 
After repeating the bootstrap procedure � ≥ 500 times, i.e. after drawing  � ≥ 500 bootstrap samples ZF)±∗ , FG±∗ , … , F8±∗ [, where � = 1, … ,  �, � bootstrap 

copies {nh8±∗ Z], ^[}±.),…,² = {nh±∗}),…,², of the estimate nh8Z], ^[, are computed. 
Finally, based on the obtained bootstrap replicates {nh)∗, nhG∗ … , nh²∗}, the following Z1 − �[-level bootstrap kernel-based confidence intervals for Va,b are established: 

Z�x; �x[ = Znh8Z], ^[ − �)Y�/G ⋅ ®�D∗; nh8Z], ^[ + �)Y�/G ⋅ ®�D∗[, 
Z��; ��[ = Zn‾ ∗ − �)Y�/G ⋅ ®�D∗; n‾ ∗ + �)Y�/G ⋅ ®�D∗[, 

where: n‾ ∗ = )² ∑ nh±∗²±.) , �D∗ = )²Y) ∑ Xnh±∗ − n‾ ∗\G²±.) .  
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In the subsequent Section, we aim to use the above discussed point and 
interval estimation procedures in order to evaluate ARPR for data containing the 
equivalised disposable incomes of households from Poland, gained for the year 2003. 
We wish to pay our special attention to the issue of ARPR estimation methods which 
apply the non-smoothing kernel-based designs, in particular to those methods which 
combine the kernel estimation with the jackknife resampling technique. 

EMPIRICAL STUDY 

In our computations, we consider a sample of data Z�), �G, … , �8[, comprising 
of n = 13507 observations referring to an equivalised disposable income of the 
Polish households in the year 2003, collected from [Statistical Publishing 
Establishment, Warsaw, 2004]. Before we compute the realizations of confidence 
intervals for ARPR, we need to check whether the given observations come from a 
random simple sample. For this reason, we apply the so-called Runs Test. Based on 
our dataset and assuming the most common confidence level 0.95, we obtain the 
value of test statistic µ = 0.4025805 and the critical (rejection) region Z−∞; −1.96 >∪< 1.96; ∞[. Consequently, we do not reject the null hypothesis that 
our observations come from a random simple sample. Thus, we may proceed to 
computation of the empirical confidence intervals for ARPR (i.e., to calculation of 
these confidence intervals realizations). As we have already mentioned, the point 
estimate of ARPR may be expressed in the form 9:;:M = W8X0.6 ⋅ ci�.x\ =)8 ∑ `8�.) ZF� ≤ 0.6 ⋅ ci�.x[, or by 9:;:M = )8 #{F�:  F� ≤ 0.6 ⋅ FZ⌊�.x8⌋()[:8}. 
For our dataset, we have: J� = Z⌊0.5I⌋ + 1[ = 6529, F}�:8 = ci�.x = W8Y)Z0.5[ = 5570.073,  c� = #{F�:  F� ≤ 0.6 ⋅ F}�:8} = 2083, 
and hence, 9:;:M = Vh�.�,�.x = 0.1595. 
Due to the earlier given formula for the confidence interval Z��; ��[, introduced by 
[Zieliński 2009a], we immediately obtain the following confidence interval for 
ARPR, at the confidence level � = 0.95, 

Z��; ��[ = Z0.5 ⋅ �Y)Zc�, J� − c� + 1; 1 − �2 [;  0.5 ⋅ �Y)Zc� + 1, J� − c�; 1 + �2 [[= Z0.1539; 0.1652[. 
Furthermore, it is easy to compute the realization of 95% (0.95-level) normal 
approximation-based confidence interval for 9:;: = V�.�,�.x. Namely, for ] = 0.6 
and ̂ = 0.5, we obtain that 

Z�); �)[ = ZVh�.�,�.x − �)Y�.�x/G ⋅ ���.�,�.x√13057 ; Vh�.�,�.x + �)Y�.�x/G ⋅ ���.�,�.x√13057 [
= Z0.1537; 0.1654[. 
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Among the realizations of the kernel-based confidence intervals Z�G; �G[-Z�x; �x[, we 
shall consider the realization of Z�v; �v[ first, as it is recommended by [Luo and Qin 
2017], since the empirical study conducted there shows that, among the presented 
intervals, Z�v; �v[ displays the best statistical performance in terms of coverage 
probabilities. Out of all the introduced confidence intervals for ARPR, Z�v; �v[ seems 
to be relatively the most difficult one to evaluate, as a technique leading to the 
construction of Z�v; �v[ combines the kernel estimation with the jackknife 
resampling concept. In particular, computing the realization of Z�v; �v[ requires the 
selection of an appropriate kernel function o together with its bandwidth ℎ. 
Although, it has been checked that the choice of o does not affect the accuracy of a 
calculated estimate too much, various research studies exhibit that it is not so in case 
of the bandwidth selection, since it has been shown that the change of ℎ may have a 
significant impact on the estimator value. Thus, following the suggestions from [Luo 

and Qin 2017], we apply the triweight kernel oZw[ = vxvG Z1 − wG[v`Z|w| ≤ 1[ and 

implement a bandwidth t ⋅ IY)/v, where a constant t is selected on the grounds of 
the two-fold cross-validation method. The procedure leading to the calculation of t 
involves employing several steps, which may be described as follows. 

Step 1∘.  We randomly split the given sample into two parts of possibly equal size, 
the first of which is the training sample, while the second is treated as the 
test sample; 

Step 2∘.  Based on the training sample, we compute the kernel estimate nh8,¼Z)[Z] = 0.6, ^ = 0.5[ = nh8,¼Z)[Z0.6,0.5[ for 9:;: and based on the test 

sample, we compute its empirical estimate Vha.�.�,b.�.xZG[ = Vh�.�,�.xZG[ ; 

Step 3∘.  We repeat the random split and the computation, described in the previous 
steps, _ ≥ 30 times and obtain a set of _ pairs consisting of the kernel 

estimates nh8,¼Z),2[Z0.6,0.5[ and the empirical estimates Vh�.�,�.xZG,2[ , where  

� = 1, … , _ (i.e., we get a set {&nh8,¼Z),2[Z0.6,0.5[, Vh�.�,�.xZG,2[ * : � = 1, … , _}); 
Step 4∘.  We choose a constant t by minimizing the following cross-validation 

estimate of MSE 

½�¼ = 1I , ¾nh8,¼Z),2[Z0.6,0.5[ − Vh�.�,�.xZG,2[ ¿GÀ
2.)

. 
We conducted the steps 1∘– 4∘ above for our data - composed of the equivalised 
disposable incomes of 13057 Polish households from the year 2003 - for the cases 
when: _ = 30,40,50,60. As a result, ½�¼ reached its minimum for: t = 23174.6 - if _ = 30, t = 22553.6 - if _ = 40, t = 23240.6 - if _ = 50, t = 24634.1 - if _ =60. That can be illustrated in the figures below. 
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Figure 1. The choice of c in bandwidth selection, obtained by minimizing MSE for L = 30; 
cmin = 23174.6 

 
Source: own elaboration 

Figure 2. The choice of c in bandwidth selection, obtained by minimizing MSE for L = 40; 
cmin = 22553.6 

 
Source: own elaboration 
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Figure 3. The choice of c in bandwidth selection, obtained by minimizing MSE for L = 50; 
cmin = 23240.6 

 
Source: own elaboration 

Figure 4. The choice of c in bandwidth selection, obtained by minimizing MSE for L = 60; 
cmin = 24634.1 

 
Source: own elaboration 

Consequently, since the values for tÁ�8 were computed based on the subsamples of 
size ⌈I/2⌉ = 6529, then - according to the recommendation in [Luo and Qin 2017] 
- we applied the following values for bandwidths: ℎ = 23174.6 ⋅ Z6529[Y)/v =1239.929, or ℎ = 22553.6 ⋅ Z6529[Y)/v = 1206.703, or ℎ = 23240.6 ⋅Z6529[Y)/v = 1243.46, or ℎ = 24634.1 ⋅ Z6529[Y)/v = 1318.017, for: _ =30,40,50,60, respectively. In Table 1 below, we collected the 95% (0.95-level) 
realizations of the kernel-based confidence intervals Z�G; �G[-Z��; ��[ for Va,b. We 
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limited ourselves to the case when ] = 0.6 and ̂ = 0.5, i.e. to evaluation of the 
realizations of confidence intervalas for ARPR. The values of � from this table 
denote the sizes of bootstrap copies used in computations of the bootstrap kernel-
based confidence intervals Z�x; �x[-Z��; ��[. 

Table 1. The 95% realizations of the selected kernel-based confidence intervals for ARPR 
(the bootstrap kernel-based realizations (l5; u5)-(l6; u6) were obtained for: B = 500 - 
if: L = 30, 40, 50, or B = 1000 - if  L = 60) 

I
               L 30 40 50 60 Z�G; �G[ 0.1481-0.1599 0.1443-0.1560 0.1486-0.1603 0.1572-0.1689 Z�v; �v[ ≤ 0.1548 ≤ 0.1520 ≤ 0.1544 ≤ 0.1604 Z�; �[ 0.1540-0.1541 0.1501-0.1502 0.1544-0.1545 0.1630-0.1631 Z�x; �x[ 0.1433-0.1647 0.1398-0.1605 0.1439-0.1650 0.1540-0.1721 Z��; ��[ 0.1428-0.1642 0.1393-0.1601 0.1435-0.1646 0.1539-0.1720 

Source: own elaboration 

SUMMARY 

The main goal of our study was to apply some selected estimation procedures 
in evaluation of the Low-Income Proportion (LIP) and At-Risk-of-Poverty Rate 
(ARPR) measures. We primarily focused on interval estimation of the ARPR index 
and computed the realizations of the corresponding confidence intervals for dataset 
consisting of 13057 observations referring to an equivalised disposable income of 
households in Poland from the year 2003, gained from [Statistical Publishing 
Establishment, Warsaw, 2004]. As recommended in [Luo and Qin 2017], we mainly 
considered the kernel-based confidence intervals. It may be easily seen that, 
depending on the number _ (which is the number of random splits into the training 
and test samples), the ranges of lower/upper limits of the selected confidence 
intervals are (with an exception of the realizations of Z�v; �v[) as follows: (i) if _ =30, then the lower limits of the obtained realizations range from 0.1428 to 0.1540 
and its upper limits range from 0.1541 to 0.1647, (ii) if _ = 40, then the lower limits 
of the obtained realizations range from 0.1393 to 0.1501 and its upper limits range 
from 0.1502 to 0.1605, (iii) if _ = 50, then the lower limits of the obtained 
realizations range from 0.1435 to 0.1544 and its upper limits range from 0.1545 to 0.1650, (iv) if _ = 60, then the lower limits of the obtained realizations range from 0.1539 to 0.1630 and its upper limits from 0.1631 to 0.1721. Furthermore, 
comparing the obtained realizations of the kernel-based confidence intervals Z�G; �G[ 
and Z�; �[-Z��; ��[ for ARPR with its empirical estimate 9:;:M = Vh�.�,�.x =0.1595, we observe that: three out of four computed realizations of Z�G; �G[ contain 9:;:M , none of four computed realizations of Z�; �[ contains 9:;:M , all of four 
computed realizations of Z�x; �x[ contain 9:;:M , and also all of four computed 
realizations of Z��; ��[ contain 9:;:M . Thus, it seems reasonable to limit our 
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attention to interpretation of the obtained realizations of confidence intervals Z�G; �G[ 
and Z�x; �x[-Z��; ��[. If we do so, then - taking into account all of the considered 
numbers of iterations _ - we observe that the lower limits of these realizations range 
from 0.1393 to 0.1572, whereas the upper ones are between 0.1560 and 0.1721. 
Obviously, if we average the minimum and maximum of the considered lower limits 
range, we get an average 0.148 and by averaging the minimum and maximum of the 
considered upper limits range, we have an average 0.164. Thus, roughly speaking, 
we may state that, based on the obtained 95% realizations of selected confidence 
intervals for 9:;:, the 9:;: measure ranges, on average, between 0.148 and 0.164. In other words, we may claim that with high probability, the percentage of 
Polish households with the equivalised disposable incomes not exceeding 60% of 
the whole population median amounted between 15% and 16% in the year 2003. 
That was the last year before Poland’s entry to the European Union and a natural 
question arises, whether 9:;: has changed throughout the years since Poland has 
become a member of the EU. An answer to this question has been - at least partially 
- delivered in the report from [Eurostat Statistics Explained 2020] (which is an 
electronic publishing platform containing Eurostat’s statistical information). It 
shows that in 2019, the 9:;: measure in Poland was between 15% and 16% - 
approximately the same in range that we obtained for the year 2003 using the chosen 
procedures of interval estimation. Thus, we may conclude that the percentages of 
low earners in Poland in the years 2003 and 2019 were roughly similar. It may seem 
slightly unusual that a reliable poverty measure was the same both in the year directly 
preceding Poland’s accession to the EU and 15 years after that, especially since the 
results presented in [Eurostat Statistics Explained 2020] were computed for data 
including social transfers. It would be vital to study this issue in our further research. 
Also, it would be worthwhile to estimate 9:;: for dataset covering a period when 
various Coronavirus lockdown rules have been introduced. Directly before this 
period, the estimated value of this index for Poland, amounting to between 15% and 16%, has ranked Poland, in the group of EU countries with the 9:;: measure below 
the EU average of 21.1% and we think it would be desirable to check whether it is 
also the case after almost two turbulent years of SARS-CoV-2 era. 
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