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Abstract: In the document [Eurostat (Your Key to Europeatistics) 2020],
At-Risk-of-Poverty Rate (ARPR in short) is defined as the percentage of
population with an income not exceeding 60% of ¢femeral population
median income. Extensive and thorough researchtherestimation of this
measure has been conducted since its introdudtimmexample, in the paper
of [Zielinski 2009a] a non-parametric, distribution-free coefice interval for
ARPR has been constructed. An example of applicationhefconfidence
interval proposed by [Ziglski 2009a] has been given in [Zigdki 2009b].
Some other interesting approach regarding thevatestimation oARPR has
been proposed in [Luo and Qin 2017], where the astlintroduced new
concepts of the interval estimation for the soexhllow-Income Proportion
(LIP) measure, which is a generalizatiol®AR. TheLIP measure and thus,
the ARPR parameter in particular, are important indexesculeisg the
inequality in an income distribution. Based on tmastruction of the point
smoothed kernel estimate fol?, [Luo and Qin 2017] established a smoothed
jackknife empirical likelihood approach leadingttee introduction of some
new non-parametric confidence intervals for théP measure and
consequently, for thARPR index as well. In our work, we aim to apply the
most interesting ideas af P andARPR point and interval estimation for data
consisting 0ofl3057 observations concerning an equalised disposabteria

of households in Poland from 2003. We also disdinss accuracy and
adequacy of the empirical results relating to ARPR interval estimation,
obtained by the implementation of the constructaafidence intervals.
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INTRODUCTION

At-Risk-of-Poverty Rate (or ARPR in short) is a measure that enables to
determine the inequality in an income distributidwcording to [Eurostat (Your
Key to European Statistics) 2020], it is defined the proportion of general
population with an income not exceeding 60% ofrtrelian income in the whole
population. Using mathematical terms, we may dbecthis measure in the
following pattern. Namely, |6iQ_INC; denote an equivalised disposable income of
the j-th individual (person or household) and suppos wleight; stands for the
weight of individuali. Firstly, we shall determine the so-call&@Risk-of-Poverty
Threshold (or ARPT in short). It is expressed as (see also [Z#di 2009a-b])

ARPT = At-Risk-of-Poverty Threshold = 60%EQ_INGiepian,

where

1
[ (EQ_ING, + EQ_INC,,.,), if Zwelght ==

EQINCMEDIAN - j+1
l EQ_INC o If z weight; < —< z weight;
where in turn,

w = Z weight,.
All persons
Thus, we can directly come to stating the definitdd ARPR. Since it is clear now
that this measure denotes the percentage of indilsdrom the whole population
with an equivalised disposable income not gre&i@nARPT, then theARPR index
is calculated as (see also [Zislki 2009a-b])
weight;
All persons with
EQ_INCSARPT

w

We are now in a position to discuss the estimatiethods foARPR. We will start
from the point estimation of this measure. SupgbagX;, X,, ..., X,, is a sample of
the equivalised disposable incomes of randomly drawdividuals and leMed be
the corresponding sample median. A straightforwzotht estimate forARPR is
given by (see, e.g., [Ziékki 2009a-b])

ARPR = x 100.

1
ARPR = —#{X;: X; < 0.6 - Med),

with # standing for the cardinality of the considered &as obvious that in terms
of probability distribution, théRPR index is determined as
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6 = ARPR = F(0.6 - F71(0.5)),
where: F denotes the cumulative distribution function (cdf) an equivalised
disposable income in the investigated general @djom, £~ is the corresponding
quantile function ARPR is a special case of the so-callesiv-Income Proportion
(LIP) measure, which is an index defined for two patense usually denoted as
andp. Namely, ifX denotes an income variable with a £gdthenLIP is given by

LIP=04p5=P(X<a-&)=F(a-&)=F(a-F'(B)),
whereé; denotes th@-th quantile of an income distribution. Thus, foe ffixeda
andp, LIP is the fraction of individuals with an equivalisdigposable income not
exceedingx - g = a - F~1(B) (in other words, it is the proportion of populatio
with an income not greater than the given fractioof the §-th quantile from an
income distribution). It is clear thatP equalsARPR for & = 0.6 andf = 0.5. The
Low-Income Proportion, and consequently th-Risk-of-Poverty Rate as its special
case, are the measures that have been extenssadyhy governing bodies and
government experts, as well as by business managesdvisors or academics from
different areas of interest, in order to gain aageal of valuable information and
conclusions. It is particularly convenient and uséf the assessment of potential
inequalities regarding the socio-economic statoes.example, the employees with
earnings not exceedirt®% of the population median income are treated akothe
earners by the European Statistical Office 'Eutas&ince, as it has already been
mentionedARPR is equivalent td.IP with « = 0.6 andf = 0.5, the high values of
ARPR indicate relatively large social inequalities e twealth structure, as well as
the social instability and uncertainty. All thisgether should serve as a warning
signal for the state decision-makers. Except fer gtate authorities and business
entrepreneurd,|P andARPR have attracted much attention of scholars froriouar
fields of interest. In particular, a large numbémderence methods related to both
the point and the interval estimation lOfP have been proposed or developed.
Among numerous research papers devoted to the csubfeLIP and ARPR
evaluation, or the risk measures assessment irrgettee works of [Gong et al.
2010, Jing et al. 2009, Li et al. 2011, Luo and @7, Wei et al. 2009, Wei and
Zhu 2010] and [Ziefiski 2009a-b] - are especially worthwhile to mentiBoughly
speaking, there exist two essential concepts comgethe estimation oflP, and
ARPRin particular. With reference to the issud_® estimation, these two primary
approaches - commonly known as the empirical amdekemethods - may be
illustrated as follows. Lek;, X5, ..., X,, denote a simple sample from the income
distribution having a cdf. Then, the empirical estimate for parameiigg = LIP
is defined by (see also [Luo and Qin 2017])

n n
~ A 1 £ 1
i=1 i=1
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where:E, stands for the empirical distribution functionXf, ..., X;,, éﬁ =EY(B)

is the B-th quantile of the empirical distribution functiéf, while I, denotes the
indicator function of a given set. Sadly, an application of the empirical point
estimate has a relatively serious drawback, whitsists in the fact thfﬁa,/; =

Fn(afﬁ) is a non-smoothing estimator 6f 5, as it is a non-smoothing function

2

of the sample quantikg, wheread.IP = 6, g = F(aép) is a function related to the
smoothing income distribution functiagh Therefore, instead of employing a non-
smoothing empirical estimatérzlﬁ, [Luo and Qin 2017] suggested using the kernel
method in order to obtain a smoothed estimatof fgr. A comprehensive study has
shown an advantage of the kernel estimation oveassessment based on the
implementation of the empirical estimator (see,, ¢kalk 1983]-[Falk 1985] in this
context). The kernel estimator of theP index8, g is given by the formula

. 1 [aég—X;
To(a, B) = ;Z K (fﬁT)
i=

whereK is the so-called kernel function ahddenotes the chosen bandwidthig
also interchangeably known under the name of smupiarameter). It turns out
that the kernel estimat@y, (a, 8) has a slightly smalléviean Squared Error (MSE)
than the empirical estimat@q;,,ﬁ (see Table 1 in [Luo and Qin 2017]). Apart from
the fact that the kernel estimator is more suitéeheLIP assessment, this kind
of estimator is also used in the definition of aosthed version of the jacknife
empirical likelihood ratio statistic foLIP. This smoothed version may by later
applied in the constructions of the correspondingfidence intervals. One of
significant difficulties arising in calculation dfie smoothed estimaty, (a, B) is
the problem of an appropriate choice of bandwidtar this kernel estimator. Many
methods of bandwidth selection have been propaséar ¢see, e.g., [Bowman et al.
1998], among others, for a comprehensive reviewardgg this matter). In
particular, [Luo and Qin 2017] use the twofold creslidation method for
bandwidth selection in order to estimat® and, after conducting some simulation
research, they recommend using bandwidth of thia fo= cn~1/3 wherec is some
constant not depending en On the other hand, it is worthwhile to mentioatth
intensive simulation studies indicate that the@a of kerneK itself is not of so
high importance, since the change of kernel doésifiect the obtained estimation
results too much. In the cited work of [Luo and Qi@17], the authors use the

triweight kernel density functioki(t) = g(l —t2)31(]t] < 1) in order to evaluate

LIP for data relating to annual salaries of ProfessAssociate Professors and
Assistant Professors, employed in the Units of Ersity System or in Military

Colleges from a State of Georgia, U.S., during26&2 fiscal year. Our primary
objective is to use some chosen estimation proesdiar both the point and the
interval estimation ofIP andARPR, for evaluation oARPR on the basis of dataset
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containing 13057 observations of an equivalise¢patiable income of Polish
households in 2003 from [Statistical Publishingabshment, Warsaw, 2004].
Above all, we apply and develop the methods pragpbgeLuo and Qin 2017] and
[Zielinski 2009a-b], as - in our view - these approachekide the most valuable
and reliable ideas leading to the assessmeARBR and to the evaluation of other
similar poverty (or social inequality) measures.eTitemainder of our paper is
structured as follows. In SectionEl%CTED CONCEPTS OF THELOW-INCOME
PROPORTION AND THEAT-RISK-OF-POVERTY RATE ESTIMATION, we introduce the
essential concepts bfP andARPR assessment, which we later aim to implement in
our empirical analyses. In SectiorMBIRICAL STUDY, we present the details
regarding computational techniques that allow fwe torresponding point and
interval estimation, as well as we conduct our eitgli research concerning the
point and interval evaluation of the mentioned riskasures for a dataset containing
information on an equivalised disposable incombafseholds in Poland from the
year 2003. Finally, SectionuBIMARY summarizes and concludes our study. All of
our computations have been carried out using thieae environment R.

SELECTED CONCEPTS OF THE LOW-INCOME PROPORTION
AND THE AT-RISK-OF-POVERTY RATE ESTIMATION

Let X;,X,, ..., X, be a simple random sample from the income digichuand
Xi.n < - < X,,., denote a sequence of the corresponding ordestsgatin view of
the definition of theLow-Income Proportion (LIP) measure from the previous
Section, the estimator 6f, ; = L/P may be defined as

~

1
Ga,ﬁ = E#{Xi: Xi<a 'XM:n}:

whereM = |fn| + 1 (with |x| denoting the largest integer not exceedih@nd#
stands for the cardinality of a given set; obviguxl,.,, is an estimator for th@-th
quantilefﬁ of an income distribution. Therefore, an estimaibithe At-Risk-of-

Poverty Rate (ARPR) may be given by putting = 0.6 andM = |0.5n| + 1 into the
formula above, i.e. it can be determined as

N ~ ~ 1
ARPR = 8y 605 =0 = z#{Xii X; < 0.6 - X(j05nj+1)n)-

(Clearly, X j0.snj+1):n iS @an estimator for a median of an income distrim)

As the first example of a confidence interval g ; = L/P (and consequently for
806,05 = ARPR), we wish to examine an interval constructed ireliiski 2009b].
Namely, leté be the number of those amokg X, ..., X,,, which are not greater
thana - X gnj+1)m, 1-€.

§=#Xi: X; < a- X(gnj+1)n -
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Then, assuming the fixed confidence leyet (0,1), the following confidence
interval for6, g = LIP has been introduced in [Ziédki 20093]

1- 1
(B BHEM — €+ 100 B BTE+ LM -6,

where:M = |Bn| + 1, andB~1(a, b; q) denotes a quantile of orderfor the beta
distribution with parametets b. Thus, as a straightforward conclusion, we catewri
that an interval below is the corresponding comfaeinterval forfy¢ o5 = 0 =
ARPR

(o.s-B-1 (z,iv:—§+ 1;%); 05 B! ($+1,M—E;¥)>,

where:

M =105n]+1, § = #{X;: X; < 0.6 - Xgi.,}-
As it has already been mentioned in our prelimirsegtion, the empirical estimate
of 8,3 = LIP may be given by

n
~ 1 .
Qa,ﬁ = Ez I (Xl < afﬁ)
i=1

Furthermore, in view of [Preston 1995], this estergatisfies the following property
V(0ap = Oap) ~ N(0,05,),
where

flag

Oap = Oap(1—04p) —2a(1 — B)Osp 7)) +a?B(1 - p)I
f(&s)

with f standing for density of the corresponding incomsgridution.

Obviously, it means thal, ; is asymptotically normal and hence, the following

(1 —6)-level normal approximation-based confidence irderor 6,5 may be
established

f(“fﬁ)]z
f(&)

~ Zi_§/2 0 ~ Zi_§/2° 0
(i) = Bap === =55 o + =5,
wherez, _s,, stands for th€l — §/2)-th quantile of the standard normal distribution
andé, sz denotes a consistent estimator of the standartt®vo, z. However,
since - as it has already been noted in our intrtmay part -éa_ﬁ is a non-smoothing
estimate o, g, another approach, adopting the concept of theekerstimation,
has been proposed in order to obtain the smootbtthador ofLIP. Based on a
simple random samplg;, X, ..., X, the corresponding kernel estimate 6y is
determined as follows
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n A
- 1 aép — X;
Tu(@,p) = ;ZK (—’*h )
i=
where:K, h are the selected kernel and the stated bandwetthectively, anéﬁ is
the 8-th empirical quantile of the considered distribati
Due to Theorem 2.1 in [Luo and Qin 2017], we disegtet thatvn(T, (a, B) —
6ap) = N(O, a,iﬁ), wherea,fﬁ is the same as earlier. Thus, the followtig- 6)-
level normal approximation-based confidence inteimad,, ; may be obtained
Z1-§/2 " Z1-8/2 " 50:,/3

60!,/3 ; Tn(a: ﬁ) +
Vn Vn

The definition of smoothed estimaf@y(a, ) is applied in establishing the so-called
smoothed log jackknife empirical likelihood ratitasstic for LIP and later, for
creating the corresponding confidence intervabrbfer to introduce the estimation
concepts leading to both of the mentioned constmst it is needed to define the
so-called jackknife pseudo-values fdP. By [Tukey 1958], the jackknife pseudo-
values forLIP are defined as follows

I7k(aug) = TlTn((X,ﬂ) - (Tl - 1)Tn—1,k(aug)J k = 1,2,..,n,

where: T,,_; x(a, B) = ﬁZ};kK(@) refers to the determined smoothed
estimator T,(a,8), but it is computed on n—1 observations
X, X5, iy X1, Xpg1, o Xy, @nd fﬁ,_k = Fn‘,lk(ﬁ) is the f-th quantile from an
empirical distributiorf,, _ (x) = ﬁZ};kl (X]- < x), based om — 1 observations
(i.e., on all observations except for #ath one).

Using the jackknife pseudo-valu&s(a,p), k = 1,... n, we may define the log
jackknife empirical likelihood ratio statistic iheé form as below

(Iz;up) = (Tn(a,ﬁ) - ).

n
(B p) = —210g Ly (B g) = 2 2 log{1 + A(Ve(@, B) — 6 )},
k=1

WhereLn(Ha,/;) denotes the jackknife empirical ratio statistic &, and1 =
A, B,84,) is the solution to

n ~
lz Vk(al :B) - ea,ﬁ _
néal+ A(Ve(a, B) = )
It is known that, under certain conditiodg(6,,5) — x*(1), wherex?(1) stands

for the chi-squared distribution with one degre&egédom. Thus, thél — §)-level
confidence interval fof, ; = LIP may be given in the form

(U3uz) = {0:1,(0) < X12,1—6};
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where )(12'1_5 denotes the(1 — §)-th quantile of they?(1) distribution. It is

worthwhile to mention here that the varianee (vVnT,, (a, 8)) can be estimated by
the sample variance of jackknife pseudo-valgig$a, B), ...V, (a, )} and that the
jackknife variance estimator @, («, 8) is determined as

R 1, LS
ack (@ ) = var (Vi@ ) = s > (Wi ) = ) 1) (w )%
i=1 j=1

In view of Theorem 3.1 in [Luo and Qin 2017], we ggck (a, B) — Uo%,/i- where
002[,,; is the same as in the earlier considerations. ,Tthesfollowing (1 — §)-level
normal approximation-based confidence intervabfpg may be introduced

o) = Oy ~ LI ED g gy Dot (e @D,

The confident intervalél;; u,), (I,;u,) and(l,; u,) are established on the basis of
normal approximation theorems. Such the approxonabased confidence intervals
may perform poorly for the estimation of incomeated ratios, since the income
datasets tend to be skewed or have outliers. lardad overcome this drawback,
another technique that enables to create the @@l intervals for the rates like
LIP, andARPRIn particular, has been proposed in the case abgmptotic variance
of the corresponding point estimator is unknownisTitlea - called the bootstrap
method - is due to [Efron 1979] and has becomdeabrated estimation approach in
recent decades. With reference to Efron’s deslgm pnd Qin 2017] combined the
bootstrap approach with the kernel estimation ideorto obtain appropriate
confidence intervals fo#, g. The concept introduced in the cited work of [laral
Qin 2017] may be depicted as follows. Namely, asstinat(X;, X5, ..., X,) is a
bootstrap sample from the original seque(¢gX,, ..., X,,), i.e. (X7, X5, ..., Xp,) is
repeatedly drawn, with replacement, frail,, X, ..., X,). Then, the bootstrap
equivalent of the kernel estimalg(a, ) is given by

R 1w [aéy—X;
iz
After repeating the bootstrap proced#te> 500 times, i.e. after drawing
B =500 bootstrap sample€X;,, X5p, ..., Xnp), Whereb =1,..., B, B bootstrap
copies {Trp (@, B)}p=1,..5 = {Ty}1..5, Of the estimatel,(a, B), are computed.
Finally, based on the obtained bootstrap replicéfgsT, ..., T3}, the following
(1 — &)-level bootstrap kernel-based confidence interf@lg,, ; are established:

(Us;us) = (Tn(a,ﬁ) —Z1-6§/2 "+ Vr; Tn(“:ﬁ) tZi_s5/2 "/ Vr),
(g;ug) = (T* — Z1-8/2 "+ V;i’f* +Z1-5/2 "+ Vr),

Tk 1 % * 1 % T % 2
whereT* = =3P_ Ty, Vi = Ezﬁzl(ﬂ, - T*)".
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In the subsequent Section, we aim to use the ab®mssed point and
interval estimation procedures in order to evalUsRPR for data containing the
equivalised disposable incomes of households frolaxfel, gained for the year 2003.
We wish to pay our special attention to the isSUBRFPR estimation methods which
apply the non-smoothing kernel-based designs, riicpéar to those methods which
combine the kernel estimation with the jackknifsampling technique.

EMPIRICAL STUDY

In our computations, we consider a sample of @atac,, ..., x,,), comprising
of n=13507 observations referring to an equiealislisposable income of the
Polish households in the year 2003, collected frimatistical Publishing
Establishment, Warsaw, 2004]. Before we computer¢hdizations of confidence
intervals forARPR, we need to check whether the given observationsedrom a
random simple sample. For this reason, we applgthealledRuns Test. Based on
our dataset and assuming the most common confidermek0.95, we obtain the
value of test statisticU = 0.4025805 and the critical (rejection) region
(—o0; —1.96 >U< 1.96; ). Consequently, we do not reject the null hypoth#sat
our observations come from a random simple sanigies, we may proceed to
computation of the empirical confidence intervals ARPR (i.e., to calculation of
these confidence intervals realizations). As weehalveady mentioned, the point
estimate of ARPR may be expressed in the fordiRPR = F,(0.6-&;5) =

“YI 1 (X; < 0.6+ &), Of byARPR = = #{X;: X; < 0.6 - X0 5nj+1)m}-
For our dataset, we have:
M = (10.5n] + 1) = 6529, Xj1.,, = &5 = F;1(0.5) = 5570.073,
E=#{X;: X; 0.6 Xg.,} = 2083,
and hencedRPR = ¢ 95 = 0.1595.

Due to the earlier given formula for the confidemaerval (1y; uy), introduced by
[Zielinski 2009a], we immediately obtain the following @dence interval for
ARPR, at the confidence level= 0.95,

o 1— . _ _1+y
(lo;ug) = (0.5- BT, M =&+ 1,——); 05- B + LM - §—))
= (0.1539; 0.1652).

Furthermore, it is easy to compute the realizattbro5% (0.95-level) normal
approximation-based confidence interval A&tPR = 6, 5. Namely, fora = 0.6
andp = 0.5, we obtain that

21-0.05/2 " 90.6,05 A Z1-0.05/2 " 90.6,0.5

L;uy) = (6 - ; 0 +
(1 1 ( 0.6,0.5 13057 0.6,0.5 13057
= (0.1537;0.1654).

)
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Among the realizations of the kernel-based confiddntervalgl,; u,)-(ls; usg), we
shall consider the realization @f; us) first, as it is recommended by [Luo and Qin
2017], since the empirical study conducted themvshthat, among the presented
intervals, (I3; u3) displays the best statistical performance in teahgsoverage
probabilities. Out of all the introduced confidemaervals forARPR, (I5; u;) seems
to be relatively the most difficult one to evalyaés a technigue leading to the
construction of (I3;u;) combines the kernel estimation with the jackknife
resampling concept. In particular, computing tredization of(l5; u;) requires the
selection of an appropriate kernel functi@h together with its bandwidthh.
Although, it has been checked that the choick dbes not affect the accuracy of a
calculated estimate too much, various researchestecthibit that it is not so in case
of the bandwidth selection, since it has been shitvanthe change df may have a
significant impact on the estimator value. Thullpfeing the suggestions from [Luo

and Qin 2017], we apply the triweight kerrié(t) = g(l —t2)31(Jt] £ 1) and

implement a bandwidth - n=/3, where a constantis selected on the grounds of
the two-fold cross-validation method. The procedeealing to the calculation of
involves employing several steps, which may be rilesg as follows.

Sep 1°. We randomly split the given sample into two part possibly equal size,
the first of which is the training sample, whileetecond is treated as the
test sample;

Sep 2°. Based on the training sample, we compute thenekerstimate
7 (a = 0.6, = 0.5) = T{2(0.6,0.5) for ARPR and based on the test
sample, we compute its empirical estim‘%lié?a6 p=05 = 9(5_26)’0.5;

Sep 3°. We repeat the random split and the computatiescribed in the previous

steps,L > 30 times and obtain a set of pairs consisting of the kernel

estimates7,%"(0.6,0.5) and the empirical estimate8{~?, where

l=1,..L(e., wegeta se{(Tn(llc'” (0.6,0.5), §(§26%5) l=1,.., L)

Sep 4°. We choose a constantby minimizing the following cross-validation
estimate oMSE
L

cv, = %Z [7,5:°(0.6,0.5) - 95?6'}3,5]2.
=1
We conducted the stefd$— 4° above for our data - composed of the equivalised
disposable incomes aB057 Polish households from the year 2003 - for thesas
when:L = 30,40,50,60. As a resultCV, reached its minimum fot; = 23174.6 - if
L =30,c=22553.6 -if L =40, c =23240.6 - if L =50, c = 24634.1-if L =
60. That can be illustrated in the figures below.
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Figure 1. The choice of ¢ in bandwidth selectiditamned by minimizing MSE for L = 30;
Cmin = 23174.6

T T
0 5000 10000 15000 20000 25000 30000

Source: own elaboration

Figure 2. The choice of ¢ in bandwidth selectiditamed by minimizing MSE for L = 40;
Cmin = 22553.6

2e-04 3e-04 4e-04 5604

1e-04

0e+00

T T T T T T
0 5000 10000 15000 20000 25000 30000

x1

Source: own elaboration
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Figure 3. The choice of ¢ in bandwidth selectiditammed by minimizing MSE for L = 50;
Cmin = 23240.6

T T T T T T
0 5000 10000 15000 20000 25000 30000

Source: own elaboration

Figure 4. The choice of ¢ in bandwidth selectiditamned by minimizing MSE for L = 60;
Cmin = 24634.1

T T T T T T
0 5000 10000 15000 20000 25000 30000

Source: own elaboration

Consequently, since the values &gy, were computed based on the subsamples of
size[n/2] = 6529, then - according to the recommendation in [Lud @mn 2017]
- we applied the following values for bandwidths= 23174.6 - (6529)~1/3 =
1239.929, or h=22553.6-(6529)"Y% =1206.703, or h=23240.6-
(6529)71/3 = 1243.46, or h = 24634.1-(6529)"1/3 =1318.017, for: L=
30,40,50,60, respectively. In Table 1 below, we collected &%% (0.95-level)
realizations of the kernel-based confidence inter@@; u,)-(ls; ug) for 6, 5. We
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limited ourselves to the case when= 0.6 andf = 0.5, i.e. to evaluation of the
realizations of confidence intervalas fARPR. The values oB from this table
denote the sizes of bootstrap copies used in catipns of the bootstrap kernel-
based confidence intervals; us)-(lg; ug).

Table 1. The 95% realizations of the selected kdvased confidence intervals for ARPR
(the bootstrap kernel-based realizatiopsug)-(ls; Us) were obtained for: B = 500 -
if: L =30, 40, 50, or B =1000 - if L =60)

| - 30 40 50 60

(;;u,) | 0.1481-0.1599 | 0.1443-0.1560 | 0.1486-0.1603 | 0.1572-0.1689
(l3; us) < 0.1548 < 0.1520 < 0.1544 < 0.1604
(1;;uy) | 0.1540-0.1541 | 0.1501-0.1502 | 0.1544-0.1545 | 0.1630-0.1631
(ls;us) | 0.1433-0.1647 | 0.1398-0.1605 | 0.1439-0.1650 | 0.1540-0.1721
(l;ug) | 0.1428-0.1642 | 0.1393-0.1601 | 0.1435-0.1646 | 0.1539-0.1720

Source: own elaboration
SUMMARY

The main goal of our study was to apply some seteestimation procedures
in evaluation of theLow-Income Proportion (LIP) and At-Risk-of-Poverty Rate
(ARPR) measures. We primarily focused on interval edimnaof the ARPR index
and computed the realizations of the correspondamfidence intervals for dataset
consisting ofl3057 observations referring to an equivalised dispasaitome of
households in Poland from the year 2003, gainedh f{Btatistical Publishing
Establishment, Warsaw, 2004]. As recommended i find Qin 2017], we mainly
considered the kernel-based confidence intervalsndy be easily seen that,
depending on the numbér(which is the number of random splits into theniray
and test samples), the ranges of lower/upper limitshe selected confidence
intervals are (with an exception of the realizasioh(l5; u3)) as follows: (i) ifL =
30, then the lower limits of the obtained realizatioange fron0.1428 to 0.1540
and its upper limits range from1541 t00.1647, (ii) if L = 40, then the lower limits
of the obtained realizations range frOm393 t0 0.1501 and its upper limits range
from 0.1502 to 0.1605, (iii) if L =50, then the lower limits of the obtained
realizations range froit1435 to 0.1544 and its upper limits range frof1545 to
0.1650, (iv) if L = 60, then the lower limits of the obtained realizagoange from
0.1539 to 0.1630 and its upper limits fron0.1631 to 0.1721. Furthermore,
comparing the obtained realizations of the kerraldal confidence intervals;; u,)
and (I4;uy)-(lg; ug) for ARPR with its empirical estimatedRPR = 8,605 =
0.1595, we observe that: three out of four computed za#btins of(,; u,) contain
ARPR, none of four computed realizations @f; u,) containsARPR, all of four
computed realizations ofls; us) contain ARPR, and also all of four computed
realizations of(lg;ug) contain ARPR. Thus, it seems reasonable to limit our
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attention to interpretation of the obtained rediass of confidence interva($,; u,)
and (Is; us)-(lg; ug). If we do so, then - taking into account all oé tbonsidered
numbers of iterationk - we observe that the lower limits of these redions range
from 0.1393 to 0.1572, whereas the upper ones are betw@é660 and0.1721.
Obviously, if we average the minimum and maximurthefconsidered lower limits
range, we get an avera@d 48 and by averaging the minimum and maximum of the
considered upper limits range, we have an avebalget. Thus, roughly speaking,
we may state that, based on the obtaip®&h realizations of selected confidence
intervals forARPR, the ARPR measure ranges, on average, betw@én8 and
0.164. In other words, we may claim that with high proitity, the percentage of
Polish households with the equivalised disposaitemes not exceeding 60% of
the whole population median amounted betweg¥ and16% in the year 2003.
That was the last year before Poland’s entry toBhmpean Union and a natural
question arises, whethdRPR has changed throughout the years since Poland has
become a member of the EU. An answer to this questas been - at least partially
- delivered in the report from [Eurostat StatistiEsplained 2020] (which is an
electronic publishing platform containing Eurostastatistical information). It
shows that in 2019, thaRPR measure in Poland was betwebs% and 16% -
approximately the same in range that we obtainethéoyear 2003 using the chosen
procedures of interval estimation. Thus, we maychade that the percentages of
low earners in Poland in the years 2003 and 2018 veeighly similar. It may seem
slightly unusual that a reliable poverty measure tha same both in the year directly
preceding Poland’s accession to the EU and 15 ydtmsthat, especially since the
results presented in [Eurostat Statistics Explai@20] were computed for data
including social transfers. It would be vital tady this issue in our further research.
Also, it would be worthwhile to estimatRPR for dataset covering a period when
various Coronavirus lockdown rules have been intced. Directly before this
period, the estimated value of this index for Pdlaamounting to betweels% and
16%, has ranked Poland, in the group of EU countrigs tve ARPR measure below
the EU average df1.1% and we think it would be desirable to check whethis
also the case after almost two turbulent yearsAi@SCoV-2 era.
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