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Abstract: Two models of pricing European options are presgnand

compared in this paper, i.e. the Heston model haddbuble Heston model.
As the models belong to the class of stochastiatWity models, particular

attention is paid to the way the characteristiccfioms and their inverse
Fourier transforms are determined. The aim of thelysis to investigate
computational efficiency of pricing European callhe method applied is
based on the assumption that the prices of thevatarés are evaluated by
means of Gauss-Kronrod quadrature.
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INTRODUCTION

2021 has seen a significantly increased interesthen options market.
According to Options Clearing Corporation (OCC),en\850 million option
contracts were traded in December, 2021, a 12,4%6thras compared to December,
2020. Full year average daily cleared contractmeldor 2021 was over 39 million,
a 32,5% growth as compared to 2020 the period analyzed, equity options were
the fastest to gain the market share (a 33,7% gras/compared to 2020), followed
by index and ETF options (8,8% and 5,1% increaspactively, compared to 2020).

1 The views expressed in the article are the patsoews of the author and do not express

the official position of the institution in whichehis employed.
https://www.theocc.com/Newsroom/Press-Releasg2g/PQ-04-OCC-Clears-Record-
Setting-9-93-Billion-Total [access: 04.01.2022].
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In 2021 significant increase in trading optionsiaigt was reported among retail
investors who were responsible for more than 25%hef total options trading
volume. Easy access to commission-free online lbsok@s one of the main factors
influencing the market structure. Such trading ssrvinent allowed retail investors
to implement strategies based on execution of bjged transactions.

As vast majority of retail option traders in 202&re& involved in basic call or
put contracts, numerous different models of pricgipgons could be applied. Among
the possible approaches to the valuation of optibasnost popular is the Black-
Scholes model [Black & Scholes 1973]. The modelli®en widely used for years
by both theoreticians and practitioners, becauseables fast obtainment of option
prices. Unfortunately, this affects the accuracgriding, because the model is based
on many unrealistic assumptions, e.g. constardneae of underlying asset’s returns.
As a result, many alternative approaches to theat@n of options have been
proposed. They all can be divided into three categpi.e. pure jump models, jump-
diffusion models and stochastic volatility modedstk all their variations).

In the pure jump models it is assumed that theepoicthe underlying asset
changes in a discrete manner. As the discontisuiigehe price movements of the
underlying asset can be modelled in a number okwagny different methods of
pricing options have been proposed, e.g. Madah §998], Madan et al. [1991],
Carr et al. [2002], Eberlein et al. [1998].

An extension of the Black-Scholes model by possilideontinuities in the
prices of the underlying asset allows for the védumof options in the jump-
diffusion models, e.g. Merton [1976], Kou [2002h& construction of the models is
based on the assumption stating that the continabasges in the prices of the
underlying asset can be occasionally disruptedulnpp. In these models both the
frequency and the amplitude of the jumps can beethediusing different processes.

The stochastic volatility models assume the vatatdf the underlying asset
prices to be inconstant. The process responsiblehéodynamics of the volatility
can take different forms, depending on the modpliegh to the valuation of options
[Heston 1993, Christoffersen et al. 2009]. It isrtlwonoting that the stochastic
volatility models are extended not only by chandimg dynamics of the volatility,
but also by introducing assumptions concerningtiw dynamics of the underlying
asset, e.g. Bates [2006].

The aim of the article is to compare the Hestonehfideston 1993] with the
Christoffersen et al. model (further referred to the double Heston model)
[Christoffersen et al. 2009] in terms of computatibspeed, based on the example
of pricing European calls. The article consistseferal sections. In the first section
two models of pricing European calls are formulatedthe second section the
characteristic functions are applied to the proa#seption valuation. The third
section includes the determination of the inversmirier transforms for the
previously introduced characteristic functions. FEpeed of pricing European calls
is also analyzed. Finally, the article has beenmsarized and major conclusions
have been drawn.
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THE HESTON AND THE DOUBLE HESTON MODELS

In this section, the Heston and the double Hestodets are formulated and
then applied to the valuation of the European c&lts this purpose the originally
derived characteristic functions and their invdfearier transforms are applied.

The Heston mode

The derivation procedure of the Heston model [He41@03] starts from two
equations:

dSt = l.lStdt + 4/ O'tzStdwl t: (1)
= k(0 — a2)dt + vy o dW,,. (2)

where: S, denotes the spot price of the underlying asseinat t, g? is the
instantaneous variange,, k, v are the constants associated with the drift,ahg-
term variance, the mean-reversion rate, and thatilityl of the variance process,
respectively. In the Heston model the Brownian omi/; andWW, are correlated
with a constanp.

Valuation of a European call is based on the falhguformula:

CH(s;, 02,t) = S PH(s¢, 02,7) — e "°KPJ (s, 07, 7). (3)
where:t = T — t, r is the risk-free rate is the exercise pricé/ (s;,0Z,7) and
PH(s;,02,7) are unknown probabilities of expiring a Europeali n-the-money

calculated as the inverse Fourier transform of attaristic function (foj = 1,2),
ie.

1 1 .00 KK gjH (g 5 52
PGse ot 0) = 24 27 (o) g, @

where:R(. ) is the real part of the subintegral functibis the imaginary unit of the
complex number,¢/(&,s,,07) is the characteristic function of, = InS,
(corresponding t(PjH(st, 0%,1)). The remaining notation is the same as previously
introduced.

In the Heston model the general form of the chargttc function ofs,
(corresponding ta?j”, forj = 1,2) is expressed in the following form:

¢j,H(€ St 0.2) — eCj(f,‘L’)+Dj(f,T)0't2+]IfS¢ (5)
where:  (;(§,7) =rlét +— [(b vplé + dj)r 2In (lgl—g])] D;(¢,7) =

bi—vplé+d; [ 1—e"J 1 1
J — ’< dT), u1=5,u2=—5,a=k6,b1=rc+/1—vp,b2=x+/1,
1-gje)

bj—vplE+d, >
9i = bj ZZH{ dj dj = \/(”pﬂf_bj) — 22§ - §2).
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The figure below presents the payoff functions dEwopean call in the
Heston model (% (S;, o7, t)) assuming thatS, € [70,130], K = 100, o; = 0.2,
r=5%,v =03,k =151= 3,0 = 0.04, p = 0.8 for different periods remaining

to expiration, i.e% € {0.01;0.2; 0.5; 0.7; 0.9}.

Figure 1. Payoff functions of a European call ia Heston model assuming that:
S; € [70,130], K = 100, g, = 0.2, r = 5%, % € {0.01; 0.2;0.5; 0.7; 0.9},
v=03,k=151=3,0=0.04,p=0.8
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Source: developed by the author

One of the Heston model features is its computatimefficiency. This is the
result of the fact that in its original form twoarlacteristic functions are used in the
formula for the price of a European call. It mak#se pricing process
computationally more costly comparing to other apphes where only one
characteristic function is implemented. This isailebe analyzed in more detail in
the next section of this article.

The double Heston model

In the double Heston model [Christoffersen et 809 three equations are
used to describe the price process of the undgrbsset, i.e.:

dst = ﬂstdt + ’O-lz’tstdwl't + ’Gzz,tstdWZ,t- (6)

dO’lz‘t = Kl (91 - O-lz't)dt + Ul ’O-lz,tdW&t' (7)
dO'ZZ‘t == KZ (92 - O-zz't)dt + Uz ;O-Zz,tdwll-,t' (8)

where:S, denotes the spot price of the underlying assttnatt, o,, o5, are two
variance factors of the price procegsu, 64, 65, k4, K, U4, U, are the constants
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associated with the drift, the long-term varianaetdrs, the mean-reversion rates,
and the volatilities of the variance factors preess respectively. In the double
Heston model the Brownian motiof, and W, are correlated with Brownian
motionsW; andWW, with a constantg; andp,.

The price of a European call in the double Hestadehcan be determined
using the same formula as in the case of the Hestmlel except of the fact that the
probabilities of expiring a European call in-thesmayg are calculated as follows:

e BinK paH (§-1s¢,071.05 )

1,1
paH (St. 0'12,t: Gzz,t, T) =S+ fo R ( I¢sze™® ) % V
e_]1§an¢0”1(f,st.Ufpazz.t)) df (10)

t3

where: ¢ (&, s, 0¢;,0%,) is the characteristic function of, = inS,. The
remaining notation is the same as previously intced.

1 1
PO (s o) =+ 2 25

In the double Heston model the general form ofctieracteristic function of
s, differs from the one appearing in the Heston mauhel takes the following form:

¢dH(f’ S, 012,0 Gzz,t) = eAGD+B1(§0)07 (+B,(§,1)07 1 +1Est (11)
0 _ o ,d5T
where: A(E,7) = rléT +Z§=1KI’}—]2_J[(K,- oy lE +d;)e — 2In (1 gie )]

1-gj
a;t
Ki—vipilE+d; [ 1-eJ Ki—vjpil§+d;
Bj(§,7) = j ]péf 1( > g;= j=viPjIs+d; and

d:t | T Bhi—vip:lE—d:’
vj 1-gje”J bj—vjp;lEé—-d;

dj=\/(Kj—vjpj]lf)2+vj2€(f+]1). The remaining notation is the same as
previously introduced.

The figure below presents the payoff functions dEwopean call in the
double Heston modelC¢(S,, o2, 0%,,t)) assuming thats, € [70,130], K =
100, 0, = 0.2, 0, = 0.25, r =5%, v; = 0.3, v, =0.35, kK, = 1.5, K, = 1.1,
A=3,0, =0.04, 0, =0.06, p, = 0.8, p, = 0.2 for different periods remaining to
expiration, i.e.%t € {0.01;0.2; 0.5; 0.7; 0.9}
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Figure 2. Payoff functions of a European call ia ttouble Heston model assuming that:
S, €[70,130], K = 100, 0y = 0.2, 05, = 0.25, 7 = 5%,
% € {0.01;0.2;0.5;0.7; 0.9}, v; = 0.3,v, = 0.35,k; = 1.5, k, = 1.1, 1 = 3,
6, = 0.04,6, = 0.06, p, = 0.8, p, = 0.2
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It is worth noting that the double Heston modelrehdhe same drawbacks as
the Heston model. It means that in its originahfar is inefficient. Luckily there are
some other methods of calculating inverse Foumiansforms of characteristic

function ¢ (¢, s;, 02, 0%, ) which allow to lessen computational effort related
pricing European options.

CHARACTERISTIC FUNCTIONS

There are many approaches to determining charsiitefiinction ofs, and
calculating its inverse Fourier transform [Carr &allan 1999, Attari 2004, Bates
2006 and Orzechowski 2018]. As some of the appezabhs already been presented
[Orzechowski 2020] in the later part of the artickely formulas concerning the
double Heston model are of interest. As beforetherpurpose of the article, it is
assumed that = 0. The remaining notation remains consistent withpheviously
introduced.

The double Heston model
1. The Carr & Madan approach [Carr, Madan 1999fer 1:

ok o T g8 (5 (a1 Lsg,02 .02
C (S5, 0%, 030,0) = T [0 (oo e Dockotha) 4 (g

T az+a—§2+H(2a+1)§
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2. The Attari approach [Attari 2004]:

I o —1¢l
CdH(SO,UiO,J%IO, 0) =Sy (1 + e;fo R (]IZS—_'_H)'L/)(H{(S, 50#’%,0»“%,0)) df) +
—e TR (141 (7R Lwl/)‘m(f S0, 020, 0%0) | d€ (13)
2 T 72Jo Iz 150, 01,00 02,0 -
where:l = In (S I:TT).
0

3. The Bates approach [Bates 2006]:
CH(Sy, 0%0,0%0,0) =
N d T e_wn<%) dH 2 2
=S —e K (5 + ;fo R ( TR ) (s, SoJU1,oJ02,0)df>- (14)

4. The Orzechowski approach [Orzechowski 2018]:

1 1 oo _1ex 9 (E-1s0,0% 0,02
COM (S0 020,030,0) = 35, + 7772 [ (e ELnnotatial) gr - (a5)

It is worth noting that@ (&, so, 0, 020), Y (&, 50,020, %) as well as
e (&,s0,0%0,0%,) are characteristic functions determined by thdovghg
equations:

P (5’ 50»012,0»022,0) = pAGD+B1 (6,007  +B,(§1)0% 1 +1Es¢ (16)

WM (&,50,080,050) = P (&, 50,070, 05 )e eS0T, 17)

(PdH(Sz' 50'012,0'022,0) = ff’dH(f' 50»0'12,0'0'22,0)3_[[550- (18)
RESULTS

The determination of the most efficient approacthbio the Heston and the
double Heston models, is based on the results genewith the use of codes
developed in Mathematica 10.2. The methodology @seg in the research is
compatible with the approach applied previouslyzgahowski 2020]. It means that
the theoretical prices of European calls have les@tuated numerically by means
of the Gauss-Kronrod quadrature. Additionally tmapdps have been smoothed by
averaging runs of five elements. It is also womting that hardware with the same
characteristics has been used for the computatigropes. Cache memory has been
cleared before starting codes allowing for the atun of options.

The results of the research carried out are showhda graphs below - see
Figures 3 and 4.
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Figure 3. Computational speed in the Heston mosiiming thatS, € [70, 130],
K =100,0, =0.2,r =5%,v=03,k=15,1=3,0 =0.04, p = 0.8 for

(@)= = 0.01, ()= = 0.2, ()= = 0.5, () — = 0.7 and (e} = 0.9
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Figure 4. Computational speed in the double Hestodel assuming tha$; € [70, 130],
K= 100, O-l,f = 0.2, 0‘21 = 0.25, r = 5%, v, = 0.3, Uy = 0.35, K1 = 1.5,
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The results obtained allow to state that the caichs drawn previously
[Orzechowski 2020] can be extended onto the dodielton model. It means that
the computational efficiency of pricing Europeartiops depends on the way the
characteristic functions and their inverse Fouttansforms are calculated. Such
statement is correct not only for the Heston moblet,also for the double Heston
model used to pricing European options that argecto expiration. On the basis of
Figures 3 and 4 it can be also easily concludettiigacloser the time to expiration
of the European options, the more computationdflgient is the method based on
eq. 15. This is, however, not true for the Europeptions close to the moment of
their writing. In this case the results are mordigimous.

SUMMARY

Two models of pricing European options, i.e. thaetde model and the double
Heston model were analyzed in this article and tkempared in terms of
computational speed. Special attention in this netgsas paid to the way the
characteristic functions and their inverse Fouri@nsforms are calculated.

On the basis of the results obtained it can beladed that the closer the time
to expiration the greater is the advantage of ththod based on eq. 15, regardless
the model being considered. At the same time theeclthe time to writing European
options the more blurred become the differencexffiniency between the models.
It is also important to note that these propettiglsl under the assumptions that the
prices of the European calls are evaluated numbribg means of the Gauss-
Kronrod quadrature.
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