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INTRODUCTION 

The remarkable Black-Scholes equation [Black & Scholes 1973, Merton 
1971, Merton 1973, Black 1976] that describes the time evolution of the option 
prices of a European call under the Black-Scholes model belongs to a group of 
successful mathematical models related to the derivatives market. As such, it has 
been vigorously investigated from many different points of view. In particular, 
a transformation to the heat (diffusion) equations has been found that resulted in 
a convenient formula for a solution in terms of the standard normal cumulative 
distribution functions [Black 1976]. 

One of the most successful methods or perhaps the most successful method of 
analysis of partial differential equations (linear or nonlinear) is based on finding the 
symmetries of a given equation. In particular, thanks to the works by Lie and also 
Ovsyannikov, semi-algorithmic, effective methods of finding symmetry 
transformations have been found that are based on solving an overdetermined system 
of linear partial differential equations for the coefficients of the so-called generator 
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of symmetry [Ovsyannikov 1962, Olver 1986, Bluman & Kumei 1989, Stephani 
1990]. The generators of symmetry allow for finding special solutions to a given 
equation by lowering its dimensionality and obtaining new solutions from already 
known ones. The symmetry generators obtained in the classical Lie sense form a Lie 
algebra. It provides insight into the deep structure of the equation. If the Lie algebras 
for two different equations (or systems of equations) are isomorphic, they provide a 
means to find invertible transformations between these two equations [Bluman & 
Kumei 1989].  

There are good reasons to believe that the symmetry analysis has become more 
or less de rigueur in the modern theory (and practice) of partial differential 
equations. The original Black-Scholes equation has been investigated from the point 
of view of its symmetries in [Gazizov & Ibragimov 1998, Bordag 2015] among 
others. As for the BS equation with variable coefficients, only partial results exist (to 
our best knowledge), to which we add here our contribution. 

One of the limitations imposed on applications of the Black-Scholes formula 
under realistic circumstances is the assumption that its two important parameters, 
risk-free rate, and volatility, are constant. A version of the Black-Scholes equation 
with time-varying coefficients has been derived by Merton already in 1973 [Merton 
1973]. Interesting mathematical insights associated with non-constant parameters 
have been obtained, in particular, in [Harper 1994, Willmot et al. 1999, Rodrigo & 
Mamon 2006, Naz & Naeem 2020, Lyu & Wang 2017]. 

Thus, our objective has been to analyze the variable-coefficient (i.e. modified) 
Black-Scholes equations from the point of view of its symmetries. We allow the 
coefficients to depend on both independent variables. In particular, we identify the 
dependence of the coefficients that allow for maintaining the maximal symmetry of 
the Lie sense. 

The main body of this work is organized as follows. In Section 2 we derive 
the classical and conditional symmetries of the standard Black-Scholes equation 
using commutators instead of prolongations used in [Gazizov & Ibragimov 1998]. 
The creation operator for the corresponding eigenvalue problem with varying risk-
free interest rates has been obtained in Section 3. In Section 4 we find symmetries 
of the logarithmic dependence of the risk-free interest rate on the value of a security. 
Section 5 contains some concluding remarks. 

STANDARD BLACK-SCHOLES EQUATION AND ITS SYMMETRIES 

By standard Black-Scholes equation we will understand the following partial 
differential equation: 

∂𝑣

∂𝑡
+
1

2
𝜎 𝑠

∂ 𝑣

∂𝑠
+ 𝑟𝑠

∂𝑣

∂𝑠
− 𝑟𝑣 = 0. 
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Classical symmetries 

The method for calculating symmetries of the Black-Scholes equation as employed 
in GI has been based on the so-called second prolongation of the symmetry 
generator. However, for the case of linear equations, a simpler method exists. It takes 
into account more directly the fact that a vector field is a symmetry if it transforms 
a hypersurface of solutions of a partial differential equation into itself. By 
“hypersurface of solutions” we mean the hypersurface in the space spanned by the 
independent variables, dependent variables, and the derivatives of the latter as 
specified by the constraint given by the differential equation. 
Let ℱ be a set of all triple-differentiable functions of two variables (𝑡, 𝑠). Let 𝑄 =
𝑄(𝑡, 𝑠, ∂ , ∂ ) be a second-order linear partial differential operator with the domain 
ℱ. By a (first-order) symmetry (operator) of the partial differential equation 𝑄𝑓 =
0, 𝑓 ∈ ℱ, we will understand a first-order partial differential operator 𝐿 =
𝐿(𝑡, 𝑠, ∂ , ∂ ) such that [Miller 1984, Fushchych & Nikitin 1987]: 

 [𝑄, 𝐿]𝑓 = 𝑘(𝑡, 𝑠)𝑄𝑓, (1) 

for any 𝑓, where [𝑄, 𝐿] = 𝑄𝐿 − 𝐿𝑄 is the commutator of the operators 𝑄 and 𝐿, while 
𝑘(𝑡, 𝑥) is a function of the arguments (𝑡, 𝑠). Thus, the operator 𝐿 transforms the set 
of solutions of the equation 𝑄𝑓 = 0 into itself. 
The definition contained in Eq. (1) provides effective means to determine the 
symmetries. Indeed, let 𝑄 be the operator ∂ − 𝐵, and let us represent 𝐿 as: 

 𝐿 = 𝜏(𝑡, 𝑥) ∂ + 𝜉(𝑡, 𝑥) ∂ + 𝜙(𝑡, 𝑥), (2) 

where the functions 𝜏, 𝜉, and 𝜙 are at least twice differentiable. Substituting ∂ − 𝐵 
for 𝑄 and the representation (2) into Eq. (1) and equating to zero the coefficients 
standing at the consecutive derivatives of the function 𝑓 we obtain the following set 
of determining equations for the functions 𝜏, 𝜉 and 𝜙: 

 𝑠 𝜎 = 0, (3) 

 𝑠 𝜎 − 𝑠𝜎 𝜉 − 𝑠 𝜎 𝑘 = 0, (4) 

 + 𝜎 𝑠 + 𝑟𝑠 − 𝑘 = 0, (5) 

 𝜎 𝑠 + + 𝜎 𝑠 + 𝑟𝑠 − 𝑟𝜉 − 𝑟𝑠𝑘 = 0, (6) 

 + 𝜎 𝑠 + 𝑟𝑠 + 𝑟𝑘 = 0. (7) 

Due to the favorable structure of the above determining equations and their 
overdetermined character, it is possible to obtain their general solutions without 



80 Maciej Janowicz, Andrzej Zembrzuski 

difficulties. Indeed, we immediately realize that both 𝜏 and 𝑘 must be independent 
of 𝑠 with 𝑘 = 𝑘(𝑡) = ∂ 𝜏. Integration of (4) leads to: 

 𝜉(𝑡, 𝑠) = 𝑠 𝜉(𝑡) + 𝑘(𝑡)log(𝑠)   (8) 

while the integration of (6) yields: 

 𝜙(𝑡, 𝑠) = �⃐�(𝑡) −
⃐̇ ( ) ( )

−
̇ ( ) ( )

+ − log(𝑠)𝑘(𝑡),  (9) 

where the “dot" over a symbol indicates the derivative over time 𝑡. 
Finally, with the substitution of the above partial solutions to Eq. (7) and equating to 
zero the coefficients standing at log(𝑠) , log(𝑠), and the 𝑠-independent term, we 
obtain: 

 𝑘(𝑡) = 𝑘 + 𝑘 𝑡, 

 𝜉(𝑡) = 𝜉 + 𝜉 (𝑡), (10) 

 �⃐�(𝑡) = 𝜙 − − 𝑘 𝑡 −
)
𝑘 𝑡 + − 𝜉 𝑡 + 𝑘 𝑡. (11) 

The expression for 𝜏 is obtained by simple integration over 𝑡: 

 𝜏 = 𝜏 + 𝑘 𝑡 + 𝑘 𝑡 . (12) 

Thus, by the above straightforward calculations we have proved the following 
proposition: 
Theorem 1.  The most general first-order symmetry operator of the Black-Scholes 
equation is given by 

𝐿 = 𝜏 ∂ + 𝜉 ∂ + 𝜙, 

where the functions 𝜏, 𝜉, and 𝜙 are given by (12, 8, 10, 9, 11).  

We conclude that the algebra of invariance operators is generated by the following 
operators: 

 𝐿 = ∂ , 

 𝐿 = 𝑡 ∂ + 𝑠log(𝑠) ∂ − 𝑡 + ( − log(𝑠), 

 𝐿 = 𝑡 ∂ + 𝑠𝑡log(𝑠) ∂ − 𝑡 + −
( )

, 
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 𝐿 = 𝑠 , 

 𝐿 = 𝑠𝑡 + − 𝑡 −
( )

, 

 𝐿 = 𝐼. 

Although the shape of the above operators may seem a bit complicated, they form 
a Lie algebra with a fairly simple commutation table: 

[𝐿 , 𝐿 ] = 𝐿 −
(𝜎 + 2𝑟) )

8𝜎
𝐿 ,

[𝐿 , 𝐿 ] = 𝐿 +
1

4
𝐿 ,

[𝐿 , 𝐿 ] = 0,

[𝐿 , 𝐿 ] = 𝐿 +
𝑟

𝜎
−
1

2
𝐿 ,

[𝐿 , 𝐿 ] = 0,
[𝐿 , 𝐿 ] = 𝐿 ,

[𝐿 , 𝐿 ] = −
1

2
𝐿 −

𝑟

2𝜎
−
1

4
𝐿 ,

[𝐿 , 𝐿 ] = 0,
[𝐿 , 𝐿 ] = 0,

[𝐿 , 𝐿 ] = −
1

2
𝐿 ,

[𝐿 , 𝐿 ] = 0,
[𝐿 , 𝐿 ] = 0,

[𝐿 , 𝐿 ] = −
1

𝜎
𝐿 ,

[𝐿 , 𝐿 ] = 0,
[𝐿 , 𝐿 ] = 0.

 

The Lie algebra rederived above is isomorphic to the so-called extended 
Schrödinger algebra of invariance of both the one-dimensional Schrödinger (with at 
most quadratic potential) and one-dimensional heat (diffusion) equation. It is 
precisely this isomorphism that allows for the well-known transformation from the 
Black-Scholes to the heat equation. 

Conditional symmetries 

Let 𝑄 be a second-order partial differential operator with the domain as above. By a 
conditional symmetry of the partial differential equation 𝑄𝑓 = 0 we will understand 
a first-order partial differential operator 𝐿 such that 

 [𝑄, 𝐿] = 𝑘(𝑡, 𝑠)𝑄 +𝑚(𝑡, 𝑠)𝐿,  (13) 
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where 𝑚(𝑡, 𝑠) is another first-order partial differential operator. The intuition behind 
the above definition is as follows. The number of symmetries can be enlarged if we 
add a condition to the solutions. Namely, even though the hypersurface 𝑄𝑓 = 0 is 
not invariant under transformations generated by 𝐿, a subset 𝑈 of that hypersurface 
can be invariant if it satisfies certain additional conditions (𝐿𝑓 = 0 in this case). That 
subset 𝑈 is, therefore, defined by the two conditions: 𝑄𝑓 = 0, 𝐿𝑓 = 0. 
The general form of the operator 𝑚(𝑡, 𝑠) is: 

𝑚(𝑡, 𝑠) = 𝜇(𝑡, 𝑠)
∂

∂𝑡
+ 𝜈(𝑡, 𝑠)

∂

∂𝑠
+ 𝜌(𝑡, 𝑠). 

However, this form is, in fact, too general - on employing it we obtain a family of 
uncountably many symmetry operators parametrized by the arbitrary functions 𝜇, 𝜈 
without any effective means to calculate them explicitly. Thus, we will restrict our 
discussion to the case of 𝑚 reduced to the function 𝜌 multiplied with the identity 
operator. What is more, we will assume that 𝜌 is constant. 
From (13) we obtain the following set of determining equations. The first two of 
them coincide with (3), (4) while the remaining three are just a little bit more 
complicated: 

∂𝜏

∂𝑡
+
1

2
𝜎 𝑠

∂ 𝜏

∂𝑠
+ 𝑟𝑠

∂𝜏

∂𝑠
− 𝜌𝜏 − 𝑘 = 0, 

𝜎 𝑠
∂𝜙

∂𝑠
+
∂𝜉

∂𝑡
+
1

2
𝜎 𝑠

∂ 𝜉

∂𝑠
+ 𝑟𝑠

∂𝜉

∂𝑠
− 𝜉𝜌 − 𝑟𝜉 − 𝑟𝑠𝑘 = 0, 

∂𝜙

∂𝑡
+
1

2
𝜎 𝑠

∂ 𝜙

∂𝑠
+ 𝑟𝑠

∂𝜙

∂𝑠
− 𝜌𝜙 + 𝑟𝑘 = 0. 

The results appear to be somewhat trivial at the first sight. The generators 
obtained from the above equations are those of the previous subsection but 
multiplied by the factor exp(𝜌𝑡). This seemingly innocent factor changes quite 
radically the structure of the set of generators: they no longer form a Lie algebra 
because the commutators contain the factor exp(2𝜌𝑡). However, it is to be noted that 
the commutators of the symmetry operators found are still symmetries. 

CREATION OPERATOR FOR EIGENVALUE PROBLEM 

The problem considered above sends us to another consideration of non-
vanishing interest. Let us consider the following eigenvalue problem for the Black-
Scholes operator: 

𝐵(𝑣) = −
1

2
𝜎 𝑠

∂ 𝑣

∂𝑠
− 𝑟𝑠

∂𝑣

∂𝑠
+ 𝑟𝑣 = 𝜆𝑣, 
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where 𝜆 is an eigenvalue (complex, in principle). And let us look for a first-order 
ordinary differential operator 𝑎  such that: 

 𝐵, 𝑎 = 𝑘𝑎 . (14) 

Both the notation of 𝑎  and the name by which we call it here - the creation 
operator - are borrowed, of course, from quantum mechanics. The merit of the 
creation operator, if it exists, is that it transforms one solution of the eigenvalue 
problem into another belonging to, in general, a different eigenvalue. 
Let us represent 𝑎  in the same way as the symmetry operator 𝐿 before: 

𝑎 = 𝜉(𝑠)
𝑑

𝑑𝑠
+ 𝜙(𝑠). 

Upon substitution of the above expression into (14) we obtain the immediately obtain 
the following solutions for 𝜉 and 𝜙: 

𝜉(𝑠) = 𝜉 𝑠, 

𝜙(𝑠) = 𝜙 −
𝑘𝜉 log(𝑠)

𝜎
. 

Unfortunately, there are further constraints for the solution 𝜙 that results in: 

𝜉
𝑘 log(𝑠)

𝜎
+
𝑘𝑟

𝜎
−
𝑘

2
−
𝑘𝜉

2
= 0. 

from which it follows that either 𝑘 = 0 or both 𝜉  and 𝜙  vanish. We must, therefore, 
conclude that the standard Black-Scholes operator has no non-trivial creation 
operators. Now, the following question naturally arises: can we improve the Black-
Scholes operator in such a way that a creation operator is admitted. 
Let us make a somewhat exotic assumption that the risk-free interest rate 𝑟 depends 
on the value of 𝑠, 𝑟 = 𝑟(𝑠). Under this assumption, the expressions for 𝜉 and 𝜙 are 
only slightly changed: 

𝜉 = 𝜉 𝑠, 

𝜙 = 𝜙 + 𝜉
𝑟(𝑠) − 𝑘log(𝑠)

𝜎
. 

The constraint that must be fulfilled by 𝜙 leads to the following non-linear second-
order differential equation for 𝑟(𝑠): 

−
1

2
𝜉 𝑠 𝑟 (𝑠) − 𝜉 𝑠

𝑟(𝑠)

𝜎
+ 1 𝑟 (𝑠) + 𝜉

𝑘 log(𝑠)

𝜎
− 𝑘𝜙 −

𝑘𝜉

2
= 0. 

It is not difficult to find a special solution to the above equations that, by the way, 
simplifies 𝜙, namely: 
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𝑟(𝑠) = 𝑎log(𝑠) + 𝑏. 

We immediately find: 
𝑘 = 𝑎, 

𝜙 = −𝜉
𝑏

𝜎
+ 1 . 

Thus, we have found a modified Black-Scholes equation with a non-trivial creation 
operator. The modification is very minor here. 

SYMMETRIES IN THE CASE OF NON-CONSTANT RISK-FREE 
INTEREST RATE 

In this section, we will find symmetries of a modified Black-Scholes equation 
in which the risk-free interest rate 𝑟 depends either on 𝑠 or on time. 

Motivated by the results for the creation operator, we pay particular attention 
to the case: 

𝑟(𝑠) = 𝑎log(𝑠) + 𝑏. 

The general form of the symmetry generator is as before. The determining equations 
take the following form: 

𝜎 𝑠
∂𝜏

∂𝑠
= 0, 

𝜎 𝑠
∂𝜉

∂𝑠
− 𝜎 𝑠𝜉 −

1

2
𝜎 𝑠 𝑘 = 0, 

∂𝜏

∂𝑡
+
1

2
𝜎 𝑠

∂ 𝜏

∂𝑠
+ 𝑠𝑟

∂𝜏

∂𝑠
− 𝑘 = 0, 

𝜎 𝑠
∂𝜙

∂𝑠
+
∂𝜉

∂𝑡
+
1

2
𝜎 𝑠

∂ 𝜉

∂𝑠
+ 𝑠𝑟

∂𝜉

∂𝑠
− 𝑠

∂𝑟

∂𝑠
𝜉 − 𝑟𝜉 − 𝑠𝑟𝑘 = 0, 

∂𝜙

∂𝑡
+
1

2
𝜎 𝑠

∂ 𝜙

∂𝑠
+ 𝑠𝑟

∂𝜙

∂𝑠
+
∂𝑟

∂𝑠
𝜉 + 𝑟𝑘 = 0. 

They differ very little from the determining equations for the standard Black-Scholes 
equation, but the dependence of 𝑟 of 𝑠 spoils the symmetry quite radically. But with 
the logarithmic dependence of 𝑟 on 𝑠 we obtain the following solution: 

𝑘(𝑠, 𝑡) = 𝑘(𝑡) = 𝑐 𝑒 + 𝑐 𝑒 , 

𝜏(𝑠, 𝑡) = 𝜏(𝑡) = 𝑐 +
1

2𝑎
(𝑐 𝑒 − 𝑐 𝑒 ), 
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 𝜉(𝑠, 𝑡) = 𝑠 𝜉 (𝑡) + 𝑘(𝑡)log(𝑠) , 

𝜙(𝑠, 𝑡) = 𝜙 (𝑡) +
𝑏𝜉

𝜎
+

1

4𝜎
log(𝑠) 2𝑏𝑘 −

∂𝑘

∂𝑡
+

1

4𝜎
4𝑏𝜉 + 2𝑎𝑘 − 4

∂𝜉

∂𝑡
− 𝑘 . 

The dependence of 𝑥𝑖  on 𝑡 is given by: 

𝜉 (𝑡) =
1

4𝑎
(𝜎 + 2𝑏)(𝑐 𝑒 + 𝑐 𝑒 ) + 𝑐 𝑒 + 𝑐 𝑒 , 

while 𝜙(𝑡) is obtained by the integration of the formula: 

𝑑𝜙

𝑑𝑡
+
1

2

𝑑𝜉

𝑑𝑡
−
1

4

𝑑𝑘

𝑑𝑡
+

1

2𝜎
(2𝑏 + 𝜎 )𝑎𝜉 (𝑡) +

1

8
8𝜎 +

4𝑏

𝜎
+ 4𝑎 + 4𝑏 𝑘(𝑡) = 0. 

The above symmetry generator allows, of course, for an attempt to perform 
similarity reduction and find non-trivial solutions to the modified Black-Scholes 
equation. This, however, would be only meaningful if our logarithmic dependence 
of the risk-free interest rate on 𝑠 can be in any sense justified. 

We have also studied the dependence on the risk-free interest rate on time, 
𝑟 = 𝑟(𝑡). We have found, however, that even the simplest, linear time dependence 
largely reduces the symmetry algebra: the function 𝑡𝑎𝑢(𝑡) depends in this case on 
one (instead of three) arbitrary parameters. Let us notice that Naz and Naeem [Naz, 
Naeem 2020] provided an interesting treatment of the case time dependence of both 
𝑟 and 𝜎  with 𝑟(𝑡) = (1/2)𝜎 (𝑡) using the so-called potential symmetries. 

We plan to provide a more comprehensive treatment of similarity reductions 
in another paper where multidimensional versions of the Black-Scholes equation 
with time-dependent risk-free interest rates will also be studied. 

CONCLUDING REMARKS 

In this work, we have considered the standard as well as modified Black-
Scholes equations from the point of view of their symmetries. Known results about 
it have been rederived using a different method. An eigenvalue problem for the 
Black-Scholes operator has also been considered for a non-trivial, logarithmic 
dependence of the risk-free interest rate. For the same dependence of that quantity, 
the symmetry of the modified Black-Scholes equations has been found. Work is in 
progress to provide a more comprehensive exposition of the symmetries of variable-
coefficient versions of that equation and to extend the symmetry approach to the 
parameter-dependent multidimensional Black-Scholes equation. 

As is usually the case with variable-coefficient partial differential equations, 
only for very peculiar dependence of the coefficients on independent variables can 
we obtain non-trivial symmetries? This can be in some sense remedied if a small 
parameter is present in the equation; the resulting approximate symmetries can be 
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richer than the set of "exact" symmetries. This case will also be addressed in our 
future work. 
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