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Abstract: Most of the so far proposed Bonus–Malus Systems (BMSs) 9 
establish a premium only according to the number of accidents, without 10 
paying attention to the vehicle damage severity. [Frangos and Vrontos 2001] 11 
proposed the optimal BMS design based not only on the number of accidents 12 
of a policyholder, but also on the size of loss of each accident. In our work, 13 
we apply the approach presented by Frangos and Vrontos to construct the 14 
Bayesian confidence intervals for both the number of accidents and the 15 
amount of damage caused by these accidents. We also conduct some 16 
simulations in order to create tables of estimates for both the numbers and the 17 
sizes of losses and to compute the realizations of the corresponding Bayesian 18 
confidence intervals. We compare the results obtained by using our 19 
simulation studies with the appropriate results derived through an application 20 
of an asymmetric loss function and its certain modification. 21 

Keywords: optimal BMS, number of claims, severity of claims, Bayesian 22 
analysis, Bayesian confidence intervals, asymmetric loss functions 23 

INTRODUCTION 24 

The Bonus-Malus Systems are commonly used in the calculation 25 
of insurance premiums in the area of vehicle insurance. They penalize the car 26 
owners who caused accidents by premium surcharges and reward the drivers with 27 
accident-free year(s) by discounts. The term "Bonus" means a discount in the 28 
premium of the policyholder, which is given on the renewal of the policy if no at-29 
fault accident occurred to that client in the previous year. In turn, the term "Malus" 30 
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denotes an increase in the premium of the insured driver who caused an accident in 1 
the last year. The main drawback of the BMSs is that they calculate a premium 2 
only according to the number of accidents, disregarding the size (severity) of loss 3 
that each accident incurred; in this way, a policyholder who had an accident with 4 
a small size of loss is unfairly penalized like a policyholder who had an accident 5 
with a big size of loss (thus, the policyholders with the same number of accidents 6 
pay the same malus, irrespective of the size of damage). [Frangos and Vrontos 7 
2001] proposed the optimal BMS design based not only on the number 8 
of accidents, but also on the size of losses. It was a certain development of the 9 
method introduced by [Dionne and Vanasse 1989]. The works of the cited authors 10 
attracted our attention towards the subject of the optimal BMSs and encouraged us 11 
to undertake some research in this field. 12 

The objectives of our studies are: 13 
(i) application of the Frangos and Vrontos approach in the construction of the 14 

Bayesian confidence intervals for both the number of accidents and the size 15 
(severity) of damage that these accidents incurred, 16 

(ii)  application of the loss functions in the estimation of the expected number 17 
of losses and the expected size of losses in the year 1t , given the numbers 18 
and the sizes of losses in the previous years (i.e., in the years t,...,1 ), 19 

(iii)  conducting some simulation studies in order to create tables of estimates for 20 
both the number and the size of losses and to compute the realizations of the 21 
Bayesian confidence intervals for the expected number and size of claims, 22 

(iv)  calculation of the change in the frequency of the number of claims and the net 23 
premium in the optimal BMS, 24 

(v)  making comparisons of the results obtained by using our simulation studies 25 
with the appropriate results derived through an application of an asymmetric 26 
loss function and its certain modification. 27 

BAYESIAN CONFIDENCE INTERVALS FOR THE EXPECTED 28 

NUMBER AND THE EXPECTED SIZE OF LOSSES 29 

We denote by X  the number of accidents (claims) and by   the underlying 30 
risk of a policyholder to have an at-fault accident. We assume that the conditional 31 

distribution of X  given the parameter 0  is the )(Poisson  distribution, i.e., 32 
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The Poisson distribution is often applied to describe random and independent 34 
events, such as vehicle accidents. It is a particularly useful distribution for 35 
modeling numbers of automobile accidents in the case when a random variable is 36 
introduced into the regression component in the formula for the risk  . In this 37 
setting the regression component contains all significant information about 38 
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individual characteristics of the insured driver, which may affect the policyholder’s 1 
driving skills and habits. For more details on this issue see the paper of [Dionne 2 
and Vanasse 1989]. 3 

In addition, we assume that   is a random variable with the prior 4 

distribution  baGamma ,  , i.e., its density function is given by 5 
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Such a determination of   gives a certain a priori knowledge about the proneness 7 
of a policyholder to cause an accident (parameters a , b  specify our a priori 8 
knowledge about how accident-prone a policyholder is). 9 

Denote by tXX ,...,1  the numbers of accidents that a policyholder caused in 10 

the i  th year, ti ,...,1 . We assume that tXX ,...,1  are conditionally independent 11 

given unobserved variable λ. It may be verified that tXX ,...,1  are unconditionally 12 

dependent and that, under the conditions in (1), (2), the unconditional distribution 13 

of the number of claims X  is the  baBinomialNegative ,     distribution, with 14 

a probability function of the form 15 
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 (3) 16 

Then, we have that the posterior distribution tXX ,...,1  (i.e., the a posteriori 17 

structure function of   for a policyholder with the historical claim numbers 18 

tXX ,...,1 ) is the ),( tbKaGamma   distribution, where 


t

i

iXK
1

= . 19 

Consequently, the   100%1   Bayesian confidence interval for 20 

 ttt XX ,...,= 111    – the expected number of losses in the year 1t   21 

of a policyholder with the claim numbers history tXX ,...,1  – may be derived from 22 

the relation       1=,...,11 tt XXBAP  by putting: 23 

  ,,,/= 2
1 tbKaA    (4) 24 

  ,,/2,= 1
1 tbKaB    (5) 25 

where  tbKa  ,,  1  stands for the corresponding quantile of the 26 

),( tbKaGamma   distribution. 27 

Now, let us refer to the issue concerning the size of claims of the insured 28 

drivers.We denote by Y  the size of claims (losses) and by   the mean size 29 
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of claims of each insured. We assume that the conditional distribution of Y  given 1 
the parameter 0  is the )(lExponentia distribution, i.e., 2 

 0.   ,1=)|( /    yeyYP  (6) 3 

Furthermore, we also assume that   is a random variable having the prior 4 

distribution ),(   msGammaInverse , i.e., its density function is given by 5 
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Denote by tYY ,...,1  the sizes of losses incurred as a result of accidents that 7 

a policyholder caused in the i  th year, ti ,...,1 . We assume that tYY ,...,1  are 8 

conditionally independent given unobserved variable  . It can be checked that9 

tYY ,...,1  are unconditionally dependent and that, under the conditions in (6), (7), 10 

the unconditional distribution of the size of losses Y  is the ),( msPareto  11 

distribution, i.e., it has a density function of the form 12 

     ,0>  0,   , =
1

msmyI
y

sm
yf

s

s




 (8) 13 

where I stands for the indicator function. 14 

Then, the posterior distribution tYY ,...,1  (i.e., the a posteriori structure function 15 

of   for a policyholder with the historical claim sizes tYY ,...,1 ) is the 16 

),(   LmtsGammaInverse   distribution, where 


t

i

iYL
1

= . 17 

Therefore, the   %1 100  Bayesian confidence interval for  ttt YY ,...,= 111    18 

– the expected size of losses in the year 1t  for a policyholder with the claim sizes 19 

history tYY ,...,1  – may be easily derived from the relation20 

      1=,...,11 tt YYDCP  by making the following substitutions: 21 

  ,,/2,= 1 LmtsIC    (9) 22 

  ,,/2,= 1
1 LmtsID    (10) 23 

where  LmtsI 
 ,,  1

 denotes the corresponding quantile of the 24 

),(   LmtsGammaInverse   distribution. 25 
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APPLICATION OF THE LOSS FUNCTIONS IN THE ESTIMATION 1 

OF THE EXPECTED NUMBER AND THE EXPECTED SIZE 2 

OF LOSSES
 

3 

A map of the form   1=  cxexL cx  is called an asymmetric Linex Loss 4 

function. It is now a widely used function in the actuarial statistics (for its 5 
applications in the area of BMSs, we refer to [Bermudez et al. 2001]). In contrast to 6 
the quadratic loss function, this type of loss function avoids high penalties by 7 
breaking the symmetry between the overcharges and underchages. If 0c , it gives 8 
a greater penalty for overestimation than for underestimation of losses. If 0c , it 9 
gives a greater penalty for underestimation than for overestimation of losses. 10 

It can be shown that in our model, the optimal Bayesian estimator of the 11 

parameter 1t  (interpreted as the expected number of losses in the year 1t ), 12 

obtained by minimizing the expectation  11
ˆ

  ttpostLE  , where postE  is 13 

calculated with respect to the posterior distribution tXX ,...,1 , has the following 14 

form (see Appendix for the corresponding proof) 15 

 .=   ,ln
1

=ˆ

1

)1( 




 











t

i

i

Ka

Linext XK
ctb

tb

c
  (11) 16 

For comparison, the mean of the posterior distribution tXX ,...,1  (i.e., 17 

an average of the ),( tbKaGamma   distribution) is equal to 18 

 .)/()(=ˆ
1 tbKat   (12) 19 

Let us now move on to the issue concerning the estimation of the parameter 20 

relating to the size of losses. Since there is no optimal Bayesian estimate of 1t  21 

for any 0>c  in our model, the Linex1 Loss function, instead of the Linex Loss 22 

function, is used in the estimation of 1t . [Basu and Ebrahimi 1991] proved that 23 

the optimal Bayesian estimator of 1t , obtained through an application of the 24 

Linex1 Loss function, has the following form 25 
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In order to obtain (13), we minimize  111 /ˆ  ttpost LE  , where L  is the 27 

Linex function and postE  is calculated with respect to the posterior distribution 28 

tYY ,...,1 . For comparison, the mean of the posterior distribution tYY ,...,1  (i.e., 29 

an average of the ),(   LmtsGammaInverse   distribution) is equal to 30 
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 .)1/()(=ˆ
1  tsLmt  (14) 1 

CALCULATION OF THE NET PREMIUM IN THE OPTIMAL BMS 2 

In this part of our work, we give the formulas for the changes in the 3 
frequency of the number of claims and for the net premium in the optimal BMS. 4 
Namely, let us notice that: 5 

(i) By using (12), we have the following formula for the change in the 6 
frequency of the number of losses 7 

 %100)/ˆ( 1  EXt , (15) 8 

where baEX /  is an unconditional expected value of the number of claims (we 9 

recall that  baBinomialNegativeX ,    ~ ); 10 

(ii) By using (11) (and the Linex Loss function in particular), we have the 11 
following formula for the change in the frequency of the number of claims 12 

 %100)/ˆ( )(1  EXLinext ; (16) 13 

(iii) By using (12), (14), we obtain the following formula for the optimal 14 
BMS net premium (interpreted as the total loss in the year 1t ) 15 

 11
ˆˆ
  tt  ; (17) 16 

(iv) By using (11), (13) (and the Linex Loss functions in particular), we get 17 
the following formula for the optimal BMS net premium (interpreted as the total 18 
loss in the year 1t ) 19 

 )1 (1)(1
ˆˆ

LinextLinext    . (18) 20 

By putting for the values of parameters ba   ,  the values considered in 21 

[Frangos and Vrontos 2001, p. 16], we may compute the quantity in (15) for 22 
different Kt  ,  and give the interpretations of the obtained results as follows: 23 

(1) Put: 0 ,3 ,825.2 ,228.0  Ktba . 24 

Then:  825.228,2.0    ~ BinomialNegativeX , 08.0/  baEX , and 25 

  %48%100/ˆ
4 EX . It means that provided a policyholder has not had any 26 

accident for the first 3 years of insurance duration, then the premium paid at the 27 
beginning of the 4th year of insurance duration should amount to %48   28 
of the premium paid at the beginning of the 1st insurance year; 29 

(2) Put: 1 ,4 ,825.2 ,228.0  Ktba . 30 

Then:  825.228,2.0    ~ BinomialNegativeX , 08.0/  baEX , and 31 

  %223%100/ˆ
5 EX . It means that provided a policyholder has had 1 accident 32 

for the first 4 years of insurance duration, then the premium paid at the beginning 33 
of the 5th year of insurance duration should amount to %223  of the premium paid 34 
at the beginning of the 1st insurance year. 35 
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SIMULATION STUDIES 1 

I. Simulation of the numbers of losses (claims) 2 

This subsection consists of two parts. In the first one, we construct (based on 3 
the previously introduced theoretical background) the procedure leading to the 4 
simulation of the numbers of losses; the simulated numbers of losses are collected 5 
in the appropriate table. In the second part, the realizations of the confidence 6 
intervals for the expected number of losses are computed by using the earlier 7 
derived formulas. 8 

I.1. Table of the numbers of losses 9 

We simulated the numbers of claims for a portfolio of 100 polyholders by 10 
applying the following procedure: 11 

(i) We generated a sample of size 100 from the  3/1 0.3, Gamma  12 

distribution (i.e., we generated 100 values of the random variable13 

 3/1 3,.0 ~ Gamma  (see (2))), 14 

(ii) For the given )(s  ( 1,...,100=s ) from the generation in (i), we 15 

generated 100 independent 10 –element samples         ssss xxx 1021 ,...,,=x  from the16 

))(( sPoisson   distribution, which represented the numbers of losses in a 17 

portfolio of 100 polycyholders in the period of 10  years. 18 

Based on the generations in (i), (ii), we obtained the simulated numbers of 19 
losses in the course of 10 years. The corresponding results are collected in Table 1. 20 

Table 1. The simulated numbers of losses (claims) 21 

Years/Numbers of losses 

 0 1 2 3 4 5 6 7 8 9 10 ≥11 

1 67 16 7 6  1  1  2   

2 73 11 5 3 3 2 2   1   

3 78 9 4 3 2 1  1 2    

4 77 9 4 6 2 1 1      

5 71 14 6 3 2 2     1 1 

6 69 12 8 5 2 1 2     1 

7 70 15 8 2 1 2  1    1 

8 76 9 4 5 2  1 2    1 

9 74 13 6 2 1 1 2     1 

10 78 8 5 4  1 1 1    2 

Source: own calculations 22 
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I.2. Realizations of the confidence intervals for the expected number of losses 1 

Based on the first 10  observations 
   1

10

1

1 ,..., xx  (relating to the simulated 2 

numbers of losses of the first polycyholder - see the generation  1
x  in (ii) above), 3 

we obtained the realization of the 95%  confidence interval (CI) for 111 =  t  by 4 

putting: 3.0=a , 3/1=b ,  
19=

10

1

1




i

ixK , 10=t  into the formulas in (4), (5). 5 

The received realization of the 95%  CI for 11 - the expected number of losses in 6 

the 11th year - was  2.79 1.13; . 7 

Fig. 1 depicts the Bayesian estimates of 11 , obtained through an application 8 

of the Linex Loss function   1=  cxexL cx  for c  from 20  to 20  with the 9 

step 1.0 . The outer horizontal lines correspond to the limits 13.1 , 79.2 , of the 10 

estimated 95%  Bayesian CI for 11 . In addition, by the inner horizontal line the 11 

expected value 87.1 , of the posterior distribution 101,..., XX , which is the 12 

 103/19,10.3 Gamma  distribution, is presented (this expected value has been 13 

calculated by substituting the values: 3.0=a , 19=K , 3/1=b , 10=t  into (12)). 14 

Figure 1.  The Bayesian estimates of 11 (based on the application of the Linex Loss 15 

function), the estimated 95%  Bayesian CI for 11 and the expectation of an 16 

appropriate posterior distribution 17 

 18 
Source: own calculations 19 
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In practise, the values of a , b are unknown, but we may estimate them from 1 

a portfolio by the method of moments (MM). Since X - the number of losses - has 2 
the negative binomial distribution with the mean baEX /  and the variance 3 

  bbaVarX // 11 , then: )/(ˆ ,ˆˆ 2 XSXbbXa  , where X and 
2S  are the 4 

sample mean and the sample variance. The obtained values of the MM estimators 5 
(calculated for the previously generated samples relating to 100 policyholders): 6 

35.0ˆ  ,25.0ˆ  ba  are very close to the true values of 3.0=a , 3/1=b . The 7 

realization of the approximated Bayesian CI for 11 , computed by substituting the 8 

estimates â , b̂  for a , b into (4), (5), is  78.2 13;.1 . 9 

It may be verified that the MM estimators â , b̂  are the consistent estimators 10 
of the parameters a , b , respectively. 11 

II. Simulation of the sizes of losses (claims) 12 

We simulated the sizes of claims by using the following scheme: 13 

(i) We generated a 1 -element sample from the  5000/2.5,1      GammaInverse  14 

distribution (i.e., we generated a value of the random variable15 

 5000/1 5,.2   ~ GammaInverse  (see (7))), 16 

(ii) From the Exponential(β) distribution, where   was a value generated in 17 

(i), we generated a sample 1021 ,...,, yyy , of the sizes of losses in the period 18 

of 10 years. 19 

Based on the first 10 observations 1021 ,...,, yyy , of the sample generated in 20 

(ii), we obtained the realization of the 95%  CI for 111 =  t  by substituting the 21 

values: 2.5=s , 5000/1=m , 10=t , 93608.96==

1=

10

i

i

yL   into (9), (10). 22 

The received realization of the 95%  CI for 11  – an average size of losses 23 

in the 11th year – was [4606.00; 14296.96]. Furthermore, we simulated the sizes 24 
of losses from the last 10 years and obtained the following values: 1351.418, 25 
24872.665, 15063.568, 1083.870, 27508.688, 14729.373, 1839.331, 1332.476, 26 
4024.451, 1803.115. 27 

Figure 2 depicts the Bayesian estimates of 11 , obtained through an 28 

application of the Linex1 Loss function for c  from 20  to 20 , with the step .1.0  29 
The outer horizontal lines correspond to the limits 4606.00, 14296.96, of the 30 

estimated 95%  Bayesian CI for .11  Furthermore, by the inner horizontal line the 31 

expected value 8139.91, of the posterior distribution 101,...,YY , which is the 32 

GammaInverse  93608.96)5000/10,1(2.5   distribution, is presented (this 33 
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expected value has been calculated by substituting the values: 5000/1=m , 1 
L = 93608.96, s = 2.5, t = 10 into (14)). 2 

Figure 2.  The Bayesian estimates of 11  (based on the application of the Linex1 Loss 3 

function), the estimated 95%  Bayesian CI for 11  and the expectation of an 4 

appropriate posterior distribution 5 

 6 
Source: own calculations 7 

If the prior parameters s , m  are unknown, we may estimate them by the 8 
method of moments (MM). We proceed as follows. By generating from the Inverse 9 
Gamma(2.5,1/5000) and the appropriate Expotential(β) distributions, we simulate 10 
100 independent sizes of losses according to the steps (i), (ii) from the current 11 
subsection (with the difference that, we generate a sample of size 100 in (i) and 12 
100 10 –element samples in (ii)). Then, by using the formulas for the mean and the 13 
variance of the Pareto distribution and the mentioned method of moments, we have 14 

the following formulas for the MM estimators: ,ˆ/)1ˆ(ˆ sYsm  cs  11ˆ , 15 

where 
22 / SYc  . Based on these formulas and the generated sample, we obtain 16 

the following values of the MM estimators: ,108.0ˆ 4m 13.2ˆ s . 17 

The realization of the approximated Bayesian CI for 11 , computed by 18 

substituting the estimates m̂ , ŝ  for m , s  into (9), (10), was  14873.424716.05;  . 19 

It may be verified that the MM estimators m̂ , ŝ  are the consistent 20 
estimators of the parameters m , s , respectively. 21 
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III. Some simulations of the net BMS premium and the related quantities 1 

In this subsection, the values of the derived estimators are presented. The 2 
calculations have been carried out for the following parameter values: 3 

5000/15.296.9360819103/13.0  , , , , , ,  msLKtba . The remarks “a, b, 4 

s, m - estimated” mean that the values a, b, s, m are replaced by the MM estimates: 5 
4108.0ˆ ,13.2ˆ ,35.0ˆ  ,25.0ˆ  msba . 6 

Table 2. The simulated net BMS premiums and the related estimates 7 

Estimators
 

Computed 

values 
Numbers of the 

applied formulas 

%100
ˆ
11 

EX


 208 (12), (15) 

%100
ˆ
11 

EX


 (a, b - estimated) 260 (12), (15) 

%100
ˆ

)(11


EX

Linex
 

169, c=-5 

284, c=5 
(11), (16) 

%100
ˆ

)(11


EX

Linex
 (a, b - estimated) 

212, c=-5 

356, c=5 
(11), (16) 

95%Bayesian CI (in %) 
11 [126; 

310] 
(4), (5) 

95%Bayesian CI (in %) (a, b- estimated) 
11 [157; 

389] 
(4), (5) 

1111
ˆˆ    15203 (12), (14), (17) 

1111
ˆˆ    (a, b, s ,m - estimated) 15643 (12), (14), (17) 

)1 (11)(11
ˆˆ

LinexLinex    
8828, c=-5 

21426, c=5 
(11), (13), (18) 

)1 (11)(11
ˆˆ

LinexLinex    (a, b, s, m - estimated) 
8997, c=-5 

22044, c=5 
(11), (13), (18) 

Source: own calculations 8 

COROLLARY 9 

In our paper, the Bayesian confidence intervals for the expected number 10 
of losses and the expected size of losses in the optimal Bonus-Malus Systems have 11 
been established. Although both of the parameters of the prior distribution, relating 12 
to the number and the size of loss, respectively, are unknown, they may be 13 
estimated by the method of moments. The realizations of the obtained confidence 14 
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intervals have been compared with the Bayesian estimates of the corresponding 1 
parameters, obtained with the help of the Linex Loss function and its modification, 2 
called the Linex1 Loss function. The proposed constructions of the Bayesian 3 
confidence intervals can be easily generalized to the models with additional 4 
explanatory, deterministic variables. Apart from the constructions of the 5 
confidence intervals, the procedures leading to the simulations of the numbers and 6 
the sizes of losses are also presented. Furthermore, the formulas for the net 7 
premiums and the related quantities have been established and applied. 8 

APPENDIX 9 

Our objective here is to prove the formula in (11). 10 
Let ∆= �̂� − 𝜃 .  For the Linex Loss function 𝐿(𝑥) = 𝑒−𝑐𝑥 + 𝑐𝑥 − 1, we search �̂� 11 

minimizing the posterior risk 𝐸𝑝𝑜𝑠𝑡𝐿(𝜃 − 𝜃 ), where the expected value is computed with 12 
respect to the posterior distribution 𝜃|𝑋1, … , 𝑋𝑡. Since the function 𝐿 is convex, the given 13 
expected value attains its minimum if it is finite. 14 

Thus, it is sufficient to find the solution of the equation 
𝜕𝐸𝑝𝑜𝑠𝑡𝐿(∆)

𝜕�̂�
= 0. By taking the 15 

derivative of the integral, we obtain that – 𝑐𝐸𝑝𝑜𝑠𝑡𝑒𝑐�̂�−𝑐𝜃 + 𝑐 = 0. Therefore,  16 

�̂� =
1

𝑐
𝑙𝑛(𝐸𝑝𝑜𝑠𝑡𝑒𝑐𝜃). 17 

In the case when 𝑋1, … , 𝑋𝑡 have the marginal Poisson distribution with the parameter 18 
𝜆, the prior distribution of 𝜆 is the 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏) distribution and the corresponding 19 
posterior distribution is the 𝐺𝑎𝑚𝑚𝑎(𝑎 + 𝐾, 𝑏 + 𝑡) one, where 𝐾 = ∑ 𝑋𝑖 .

𝑡
𝑖=1  Hence, 20 

𝐸𝑝𝑜𝑠𝑡𝑒𝑐𝜆 = ∫ 𝑒𝑐𝜆 𝜆𝑎+𝐾−1(𝑏+𝑡)𝑎+𝐾

Γ(𝑎+𝐾)

∞

0
𝑒−(𝑏+𝑡)𝜆𝑑𝜆 = (

𝑏+𝑡

𝑏+𝑡−𝑐
)

𝑎+𝐾

. 21 

Consequently, we obtain �̂�(𝐿𝑖𝑛𝑒𝑥) =
1

𝑐
ln (

𝑏+𝑡

𝑏+𝑡−𝑐
)

𝑎+𝐾

, which is a desired result (11). 22 

REFERENCES  23 

Basu A.P., Ebrahimi N. (1991) Bayesian approach to life testing and reliability estimation 24 
using asymmetric loss function, Journal of Plann. and Inferen., 29, pp. 21-31. 25 

Bermudez L., Denuit M., and Dhaene J. (2001) Exponential bonus-malus systems 26 
integrating a priori risk classification, Journal of Actuarial Practice, 3, pp. 67-95. 27 

Dionne G., Vanasse C. (1989) A generalization of automobile insurance rating models: the 28 
negative binomial distribution with a regression component, ASTIN Bulletin, 19(2),  29 
pp. 199-212. 30 

Frangos N.E., Vrontos S.D. (2001) Design of optimal Bonus-Malus systems with 31 
a frequency and a severity component on an individual basis in automobile insurance, 32 
ASTIN Bulletin, 31(1), pp. 1-22. 33 


