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Abstract: Volatility is a subject of numerous studies. Many of them focus on 7 
predictive power of different sources of volatility. Most often, the Black-8 
Scholes implied volatility is believed to outperform historical volatility, 9 
although some research demonstrates that implied volatility is a biased 10 
forecast of future volatility. Taken into account different opinions, the paper 11 
aims at presenting alternative methods for estimating volatility. 12 
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INTRODUCTION 15 

In 1973 Black and Scholes developed an option pricing model that depends 16 
upon five variables: stock price, strike price, time to maturity, risk-free rate, and 17 
the standard deviation of returns from the underlying stock – volatility. Of the five 18 
variables that are necessary to specify the model, all are directly observable except 19 
the last one (the risk-free rate of interest may be closely approximated by the rate 20 
of return on short term government securities, however Beckers [1981] states the 21 
model is not very sensitive to an exact specification of the risk-free rate). Thus, the 22 
most important is to estimate the standard deviation of the stock’s rate of return 23 
over remaining life of the option.  24 

There are two basic ways to assess the volatility: the first one uses historical 25 
data on underlying asset prices, and the second technique uses option prices to find 26 
the option market’s estimate of the stock’s standard deviation. This estimate of the 27 
stock’s standard deviation drawn from the options market is called an implied 28 
volatility [Kolb, Overdahl 2007]. When evaluating volatility using historical data, 29 
there is no general rule how far back in the history the data should be used to 30 
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estimate the parameter. According to Hull [2012] more data generally lead to more 1 
accuracy. On the contrary, too old data may not be relevant for predicting the 2 
future volatility. He suggests to use closing prices from daily data over the most 3 
recent 90 to 180 days.  4 

There are also more sophisticated approaches to estimating historical 5 
volatility involving exponential weighted average or GARCH model. In practice, 6 
traders usually work with implied volatilities. They are used to monitor the 7 
market’s opinion about the volatility of a particular stock. Whereas historical 8 
volatilities are referred to as backward looking, implied volatilities are referred to 9 
as forward looking. The implied volatility can be interpreted as the average 10 
volatility that the underlying asset will have from now to the option’s expiration 11 
time, or it can be used to forecast the change of underlying asset price in a short 12 
term [Zahng 2006]. 13 

The volatility implied from option prices is widely believed to be 14 
informationally superior to the historical volatility of the underlying asset. Musiela 15 
and Rutkowski [2007] present studies, both confirming and negating the 16 
superiority of implied volatility over the historical one. They quote Latané and 17 
Rendleman [1976], Schmalensee and Trippi [1978], Beckers [1981] who found that 18 
estimates of the actual volatility based on market implied volatilities outperform, at 19 
least in terms of their predictive power, more straightforward estimates based on 20 
historical data. Contrary to these findings, subsequent studies of stock index 21 
options, reported in Canina and Figlewski [1992], Day and Lewis [1992], and 22 
Lamoureux and Lastrapes [1993] suggest that the implied volatility has virtually no 23 
correlation with future volatility. Moreover, Jiang and Tian [2005] note in their 24 
paper that nearly all research on the information content of implied volatility are 25 
focused on implied volatility derived from at-the-money options. By concentrating 26 
on at-the-money options alone, these studies fail to incorporate the information 27 
contained in other options. Taking into account all those pros and cons, the paper 28 
aims at presenting alternative methods for estimating, both historical and implied 29 
volatilities.  30 

HISTORICAL VOLATILITY 31 

To estimate volatility using historical data, several techniques could be 32 
used. In his book Haug [2007] presents historical volatility from close prices, high-33 
low volatility, high-low-close volatility, and exponential weighted historical 34 
volatility. 35 

Historical volatility from close prices 36 

The most widely used method for estimating historical volatility is 37 
calculation of the annualized standard deviation given by the formula (1): 38 
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where n is the number of observations. When assuming 252 trading days in a year, 2 
the annualized close volatility is obtained by multiplying  from formula (1) with 3 
the square root of 252. 4 

High-Low volatility 5 

Parkinson [1980] suggests estimating the standard deviation by: 6 
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The result should be also multiplied with the square root of 252. The high-8 
low method is statistically much more efficient than the standard close method (in 9 
terms of number of observations needed to get the same interval compared with the 10 
standard close method). However, it assumes continuous trading and observations 11 
of high and low prices. Thus the method can underestimate the true volatility. The 12 
same is true for the high-low-close volatility [Haug 2007]. 13 

High-Low-Close volatility 14 

 Garman and Klass (1980) propose using a volatility estimator of the 15 
following form: 16 
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The annualized high-low-close volatility is obviously got by multiplying 18 
the result with the square root of 252. 19 
 20 

Exponential weighted historical volatility 21 

Exponential weighted volatility often referred to as exponentially weighted 22 
moving average (EWMA) puts more weight on more recent observations. It can be 23 
calculated as: 24 
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where 
t

 is the current volatility and 
1t

  is the volatility as calculated one 26 

observation ago (see also Hull [2012]). If one uses daily data, the volatility is 27 
annualized by multiplying the result with the square root of the number of trading 28 
days per year. In most markets  should be between 0.75 and 0.98. The 29 
RiskMetrics developed by J.P. Morgan uses an EWMA with =0.94 [Haug 2007]. 30 
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GARCH-based volatility 1 

A more sophisticated approach to estimating volatility is based on the 2 
GARCH (1,1) model. Since 1982 when Robert Engle first introduced the ARCH 3 
(autoregressive conditional heteroscedasticity) model, whose generalized version - 4 
GARCH was proposed by Bollerslev in 1986, a number of their extensions have 5 
arisen. Nevertheless, the simplest and the most widely used is the GARCH (1,1) 6 
model. It may be useful in predicting future volatility [Rouah, Veinberg 2007]: 7 
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where    measures the volatility persistence, and 1   is required for the 9 

variance to be mean-reverting. Moreover, the closer the value of    to one, the 10 

more volatility will persist, and the closer    is to zero, the faster volatility will 11 

revert to the long run variance. In the model (5) the forecast variance for time t+1, 12 
2

1t
 , is a weighted average of the squared return at time t, 

2

t
r , and the time-t 13 

estimate of the variance, 
2

t
  (the GARCH(1,1) model puts more weight on the 14 

most recent squared return). The long-run variance in the GARCH (1,1) model (5) 15 
is: 16 
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To annualize the volatility, one must multiply it with the square root of 252. 18 
Although the methods presented in this section are often easy to 19 

implement, Rouah and Veinberg [2007] note they constitute a retrospective 20 
estimate of asset volatility, since they are based on historical prices. Hence, many 21 
authors advocate the use of implied volatility as it reflects future expectations about 22 
volatility rather than reflecting past realization. 23 

BLACK-SCHOLES IMPLIED VOLATILITY 24 

The most popular type of implied volatilities are Black-Scholes implied 25 
volatilities. They are obtained by equating an observed market price with a given 26 
strike price and maturity to the Black-Scholes formula with the same strike price 27 
and maturity. The value of volatility in the Black-Scholes formula that yields the 28 
observed option price is the implied volatility. To find implied volatilities, one 29 
begins with established values for the stock price (S), the exercise price (X), the 30 
interest rate (r), the time until expiration (T), and the option price (C). Although it 31 
is impossible to solve the Black-Scholes equation directly for the standard 32 
deviation, one can use numerical search to closely approximate the standard 33 
deviation by any given option price. To do this, some iterative methods are applied. 34 
Chriss [1997] describes two of them: the method of bisections, and the Newton-35 
Raphson method. 36 
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The method of bisections 1 

The method of bisections works as follows: 2 
1. Step 1. Choose a first guess for the implied volatility that must be greater than 3 

the actual implied volatility, and write 
0

  for this guess (if the Black-Scholes 4 

value computed using 
0

  is greater than the market price of option, 
0

  is 5 

greater than implied volatility). 6 

2. Step 2. This step produces the next implied volatility guess. As we have already 7 

ensured that 
0

  is greater than the actual implied volatility, we need to make 8 

our next volatility guess lower. We set 
1

  to 
0

  reduced by 50% 9 

(
0001

50,02/   ). This is the first “real” guess – 
1

 . 10 

3. Step 3. In this step, we produce the next guess 
2

 . First, we need to compute 11 

the Black-Scholes value with given input parameters C(S, X, T, 
1

 , r). If it is 12 

larger than the actual option price, then we set the next guess by reducing 
1

  by 13 

half as much as we did last time ( 4/
012

  ). If C(S, X, T, 
1

 , r) is 14 

smaller than the actual option price, we increase 
1

  by 4/
0

  15 

( 4/
012

  ). 16 

4. Step 4. Iterate the process: compute 
k

  from 
1k

 , compute the Black-Scholes 17 

value using 
1k

 , the volatility guess from the previous step. If it is larger than 18 

the market price, form the next guess by reducing 
1k

  by 
k2/

0
  19 

(
k

kk
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The most obvious place to stop is when a volatility guess produces a Black-21 
Scholes price exactly equal to the market price. We can also have a preset “error 22 
tolerance”. The only drawback of the method is its speed. It converges rather 23 
slowly. A faster technique is the Newton-Raphson method. 24 

The Newton-Raphson method 25 

The Newton-Raphson method works in a following way: 26 

1. Step 1. The first step is to guess what the correct implied volatility is and call 27 

this guess 
1

 . Haug [2007] presents an efficient seed value when the Newton-28 

Raphson method is used to compute the implied volatility. The seed value 29 
developed by Manaster and Koehler in 1982 will guarantee convergence (if the 30 
implied volatility exists) for European Black-Scholes stock options. The seed 31 

value is:   trTXS /2/ln
1

 . Next we compute the Black-Scholes 32 
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value of the option with 
1

 , denoted )(
1

C , and the vega of this option, 1 

denoted  
1

V . 2 

2. Step 2. We compute the value of our next volatility guess: 3 

)(/))((
1112

 VCC  , where C is the market value of the option.  4 

3. Step 3. The nth volatility guess is given by: )(/))((
111 


nnnn

VCC  . 5 

The Newton-Raphson method requires knowledge of the partial derivative of 6 
the option pricing formula with respect to volatility (vega) when searching for the 7 
implied volatility. For some options (exotic and American options in particular), 8 
vega is not known analytically and Haug [2007] suggests using the bisection 9 
method to estimate implied volatility when vega is unknown.  10 

Normally, implied volatilities are larger for options with shorter time to 11 
maturity. This is the term structure of volatility that describes how implied 12 
volatility varies with time until expiration. Another important feature of Black-13 
Scholes implied volatilities is that they resemble a smile or smirk when plotted 14 
against the strike or moneyness1. Figure 1 presents an example of volatility smile. 15 
It shows that, all else equal, at-the-money options have a lower implied standard 16 
deviation than options that are in- or out-of-the money (the pattern can differ across 17 
option markets and across related options that differ only in their expiration dates).  18 

Figure 1. Volatility smile 19 

 20 
Source: Geman [2007], p. 101 21 

As the implied volatility of a European call option is the same as that of 22 
European put option when they have the same strike price and time to maturity2, 23 

                                                 
1 Plotting implied volatility as a function of moneyness and maturity produces a three-

dimensional graph called an implied volatility surface. 
2 Zahng [2006] presents examples showing that implied volatilities can be different for put 

and call options even with the same strike price and time to maturity. The difference may 



310 Monika Krawiec 

this means that the volatility smile for European calls with a certain maturity is the 1 
same as that for European puts with the same maturity [Hull 2012]. In classical 2 
practice, call options are used to build the right part of the smile (i.e. out-of-the 3 
money calls), and out-of-the money put options are used for the left part. 4 
According to Rouah and Veinberg [2007] one explanation of a volatility smile is 5 
that the true distribution of asset prices has fatter tails than the distribution assumed 6 
in option pricing models. Smiles can occur, because returns show greater kurtosis 7 
than stipulated under normality, so that extreme returns are more likely. This 8 
implies that deep-in-the money options and deep-out-of-the money options are 9 
more expensive relative to the Black-Scholes price.  10 

Kolb, Overdahl [2007] note that sometimes volatility smiles are an artifact of 11 
the exchange settlement procedure. For most listed options, at- or near-the-money 12 
options are the most liquid and quotations for this options are representative of 13 
market opinion. For deep in- or out-of-the money options, trades take place less 14 
frequently. For these illiquid options with stale prices, exchange settlement 15 
committees may set the price for clearing purposes only. This means that implied 16 
standard deviations obtained from these prices are not reflecting the market 17 
consensus. 18 

In some markets, the volatility pattern resembles a smirk. Figure 2 presents 19 
an example of a volatility smirk with no symmetry between upward and downward 20 
movements.  21 

Figure 2. Volatility smirk 22 

 23 
Source: Geman [2007], p. 102 24 

Rouah and Veinberg [2007] explain that smirks can occur because returns 25 
often show negative skewness, which of course the normal distribution does not 26 

                                                                                                                            
imply the imperfection of the actual market which violates the assumptions of the Black-

Scholes model. The imperfect factors may include taxation, transaction costs, liquidity, and 

others. 
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allow. This implies that large negative returns are more likely, leading to implied 1 
volatilities for in-the-money calls that are higher than implied volatilities for out of 2 
the money calls. Similarly, implied volatilities for out-of-the money puts are higher 3 
than implied volatilities for in-the-money puts. They note that smiles and smirks 4 
are more pronounced for short-term options, and less pronounced for long-term 5 
options, which is synonymous with long-term returns being closer to normally 6 
distributed than short term returns. 7 

At the market, there are several options on the same underlying with 8 
different strike prices and expirations traded at once. Each of them might have a 9 
different implied volatility. How to obtain a “collective assessment of volatility”, 10 
then? Trippi [1977] calculated an arithmetic average, although Latané and 11 
Rendleman had previously labeled the use of such an arithmetic average as 12 
“unreasonable”. In their paper [1976], they employed a weighted average of 13 
implied standard deviations as a measure of market forecasts of return variability. 14 
Their weighting system was: 15 
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where 
it

WISD = weighted average implied standard deviation for company i in 17 

period t, 
ijt

ISD = implied standard deviation for option j of company i in period t, n 18 

denotes the number of options analyzed for company i and is always greater than or 19 

equal to 2, 
ijt

d = partial derivation of the price of option j of company i in period t 20 

with respect to its implied standard deviation using the Black-Scholes model.  21 

Chiras and Manaster [1978] notice that Latané and Rendleman’s weighted 22 
average is not truly a weighted average since the sum of the weights is less than 23 
one. Therefore, the weighted average implied standard deviation (WISD) for Latané 24 
and Rendleman is biased towards zero. Furthermore, the bias increases with an 25 
increase in the sample size even if every option was observed to have the same 26 
ISD. They relate Latané and Rendleman intended to weight the ISDs by the partial 27 
derivatives of the Black-Scholes model with respect to each implied standard 28 
deviation. That is equivalent to weighting ISDs according to the sensitivity of the 29 
dollar price change for the options relative to the incremental change in the implied 30 
standard deviations. A rational investor measures returns as the ratio of the dollar 31 
price change to the size of the investment, but Chiras and Manaster point out that 32 
reasoning of Latané and Rendleman emphasizes the total dollar return without 33 
regard to the size of the investment (a one-dollar price change on a one-dollar stock 34 
is considered equivalent to the same price change on a fifty-dollar stock). They 35 
give an opinion that in order to be consistent with a rational measure of returns, the 36 
price elasticity of options with respect to their ISDs must be considered. One must 37 
be concerned with the percentage change in the price of an option with respect to 38 
the percentage change in its ISD. To obtain the weighted implied standard 39 
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deviation of the options on one stock for each observation date, they use the 1 
following equation: 2 
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where N = the number of options recorded on a particular stock for the observation 4 
date, WISD= the weighted implied standard deviation for a particular stock on the 5 

observation date, 
j

ISD = the implied standard deviation of option j for the stock, 6 

j

j

j

j

W

v

v

W




= the price elasticity of option j with respect to its implied standard 7 

deviation (v).  8 
In an efficient market prices will fully reflect all available information. 9 

Therefore, estimated variances calculated from option prices should reflect not 10 
only the informational content of stock price history but also any other available 11 
information. Thus one may suspect that the WISD values reflect future standard 12 
deviations more accurately than do the historic sample standard deviations [Chiras, 13 
Manaster 1978]. 14 
 Beckers [1981] used an alternative weighting scheme that concentrates 15 
mainly on the implied standard deviations (ISDs) for at-the-money options. 16 
Specifically, on any single observation day the following loss function was 17 
minimized: 18 
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where Ci = market price of option i, BSi = Black-Scholes option price as a function 20 
of the ISD, I = total number of options on a given stock with the same maturity, wi 21 

= weight for the i-th option= ISDISDBS
i

 /)(  (i.e., the first derivative of the 22 

Black-Scholes option pricing formula with respect to the standard deviation).  23 
 This procedure comes down to minimizing the weighted sum of the 24 
squared deviations between market value and the corresponding Black-Scholes 25 
price. The actual weights used in the procedure are proportional to the squared 26 
values of the Latané-Rendleman’s weights. This method therefore tends to put 27 
more weight on the options that are highly sensitive to an exact specification of the 28 
standard deviation. Beckers believes his measure tends to outperform Latané-29 
Rendleman’s WISD. In contrary to the Latané-Rendleman’s study suggesting that 30 
the best predictive performance could be obtained by using the information 31 
available in all options, he concludes that most of relevant information is reflected 32 
in the price of at-the-money options. However, he admits it is not clear whether this 33 
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result is due solely to the fact that the other options are not as sensitive to an exact 1 
specification of the underlying variance. Their prices could also have a higher 2 
tendency toward distortion. Systematic biases in the ISD’s due to the fact that the 3 
Black-Scholes model does not hold exactly for in-the-money or out-of-the money 4 
options could also influence this result [Beckers 1981]. 5 

The smile-shaped pattern, which constantly appears in volatilities extracted 6 
from a wide variety of options, has provided evidence against the constant 7 
volatility assumption inherent in the Black-Scholes model (if returns were normal, 8 
then implied volatility would be constant across moneyness and maturity). As a 9 
result, estimation procedures that use the Black-Scholes model to estimate implied 10 
volatilities may produce biased estimates. Moreover, using in forecasting 11 
experiments at-the-money implied volatility only, discards all potential information 12 
contained in the rest of option prices, especially that in practice options rarely trade 13 
exactly at-the-money. Britten-Jones and Neuberger [2000] derived a model-free 14 
implied volatility measure that incorporates the whole cross-section of option 15 
prices, not only at-the-money prices. 16 

MODEL-FREE IMPLIED VOLATILITY 17 

Under the assumptions that the underlying asset does not make dividend 18 
payments and the risk-free rate is zero, Britten-Jones and Neuberger [2000] derive 19 
the risk-neutral expected sum of squared returns between two dates (T1, T2) as: 20 
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where  QE  refers to expectation under the risk-neutral measure Q, C(T, X) is an 22 

observed call price with maturity T and strike price X, and St is the asset price at 23 

time t. The asset return variance 
2)/(

tt
SdS , which is also the squared volatility, is 24 

a function only of observed call prices at one point in time. No model for the 25 
underlying asset price is required in the derivation of (10), hence it is a “model-26 
free” measure of variance. It only requires two cross sections of call prices with 27 
varying X, one with time to maturity T1 and the other with time to maturity T2. 28 
Since (10) is the model-free implied variance, the model free implied volatility is 29 
obtained as its square root [Rouah, Veinberg 2007]. 30 

As Britten-Jones and Neuberger derived the model-free implied volatility 31 
under diffusion assumptions, it was unclear whether it was still valid when the 32 
underlying asset price process included jumps. This could be a serious limitation 33 
since random jumps are an important aspect of the price dynamics of many assets. 34 
Jiang and Tian [2005] extend the model and demonstrate that it is still valid even if 35 
the underlying asset price process has jumps. They also show how to relax original 36 
assumptions of no dividends and a zero risk-free rate. Results of their empirical 37 
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tests conducted using the S&P 500 index options traded on the Chicago Board 1 
of Trade (CBOE) ensure the generality of the model-free implied volatility. 2 

The volatility index VIX published by the CBOE constitutes one important 3 
application of model-free volatility. The index was originally defined in terms 4 
of Black-Scholes implied volatilities calculated from at-the-money options on the 5 
S&P 100 index. The revision of the VIX uses options on the S&P 500 index, on 6 
a wide range of moneyness, not only at-the-money. It also uses model-free implied 7 
volatility rather than the Black-Scholes implied volatility [Rouah, Veinberg 2007].  8 

CONCLUDING REMARKS 9 

The volatility of an asset is a measure of our uncertainty about the returns 10 
provided by the asset. There has been extensive research regarding the prediction 11 
of future volatility. In particular, researchers have examined what sources 12 
of information are the best predictors of volatility. According to Chriss [1997], 13 
some obvious candidates are: historical volatility, implied volatility, some 14 
combination of the first two. The aim of the paper was presenting those alternative 15 
approaches to estimate volatility as in the literature there are different studies 16 
supporting different opinions on practical usefulness of separate methods.  17 

Most often, the Black-Scholes implied volatility is believed to be superior 18 
to the historical volatility of the underlying asset, since it is derived from options 19 
prices that reflect market participants’ expectations of future movements of the 20 
underlying asset. Even though early studies found that implied volatility was 21 
a biased forecast of future volatility and contained little incremental information 22 
beyond historical volatility, more recent studies present evidence that implied 23 
volatility is a more efficient forecast for future volatility than historical volatility. 24 
Research on the information content of implied volatility usually focuses on the 25 
Black-Scholes implied volatility from at-the-money options. Being more actively 26 
traded than other options, they can be a good starting point. However, by 27 
concentrating on at-the-money options alone, one omits the information embedded 28 
in other options. 29 

An important departure from previous research is the model-free implied 30 
volatility derived in 2000 by Britten-Jones and Neuberger. Their model is not 31 
based on any specific option pricing model. It is derived entirely from no-arbitrage 32 
conditions and utilizes the whole cross-section of option prices. Although Britten-33 
Jones and Neuberger had derived the model-free implied volatility under diffusion 34 
assumptions, Jiang and Tian [2005] extended their model to asset price processes 35 
with jumps and developed a simple method for implementing it using observed 36 
option prices. Their results obtained from the S&P 500 index options suggest that 37 
the model free implied volatility subsumes all information content in the Black-38 
Scholes implied volatility and past realized volatility, and is a more efficient 39 
forecast for future realized volatility. As they write, their findings also provide 40 
theoretical and empirical support for the CBOE decision to modify its VIX index. 41 
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Now, it is based on the model-free implied volatility instead of the Black-Scholes 1 
volatility of at-the-money options. 2 

In Poland, one of the first to study the subject was Piontek, who in 1999 3 
published his paper presenting historical and the Black-Scholes implied volatilities 4 
obtained from currency options on PLN/USD exchange rate. He tried to assess the 5 
predictive power of historical and implied volatilities and concluded they both faild 6 
to forecast future volatility of the exchange rate as option market in Poland was 7 
small and illiquid at that time. Krawiec and Krawiec [2002] analyzed volatilities 8 
implied in commodity options traded at Poznań Exchange3 and at the Warsaw 9 
Commodity Exchange. In their opinion, implied volatilities derived from the 10 
options under consideration could not be a reliable source of information on 11 
realized volatilities. The Warsaw Stock Exchange, that introduced options on 12 
WIG20 index in September 2003, does not publish any own implied volatility 13 
index, although there have been already proposed some concepts [Ślepaczuk, 14 
Zakrzewski 2007, Rudzki 2008]. 15 
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