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Abstract: The aim of the study is to examine the robustness of the estimates 7 
and standard errors in the case of different structure of the sample and its 8 
size. The two-level model with a random intercept, slope and fixed effects, 9 
estimated using maximum likelihood, was taken into account. We used 10 
Monte Carlo simulation, performed on a sample of the equipotent groups. 11 
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INTRODUCTION 13 

Sufficient sample is one of the most important problem in the multilevel 14 
modelling (see e.g. Mass and Hox [2004, 2005] or Snijders [2005] to mention just 15 
a few). The most basic design conditions like a number of groups at each level of 16 
the analysis and its size determine the ability to obtain accurate (unbiased) 17 
estimates of the regression coefficients, standard errors and power of tests1. 18 
Additionally, Busing [1993] found out the insufficient sample size (10 to 50 groups 19 
with 5 or 10 individuals) might be responsible for the model nonconvergence. 20 
Despite the asymptotic properties of the multilevel models estimators (like REML 21 
or IGLS), due to which larger sample guarantees the bias reduction, in the centre of 22 
interest is the downward limit of the sample [Mass and Hox 2005]. Accordingly, 23 
the adequate (sufficient) sample size can be define as such the minimum sample, 24 
which guarantees the unbiasedness (or more precisely: acceptable low size of the 25 
bias). Such definition is consistent with Snijders and Bosker [1993], who use the 26 

                                                 
1Other factors like the estimation method, proportion of singletons, value of the intraclass 

correlation, collinearity or model complexity, which also might affect the estimates, are not 

wider describe as they are not take into consideration in this study. 
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term ‘conditionally optimal’ to characterise the sample size which allows to yield 1 
the minimal standard errors for the particular parameters or other constraints. 2 
Although the literature about the sufficient sample size is large, there is still no 3 
consensus how it should looks like, what is the result of i.e. using different 4 
simulation conditions and/or simulation designs. Let review only the guidelines for 5 
2-level models estimated using the balanced sample. We start from the 6 
recommendations for the unbiased parameter and standard errors estimates, then 7 
concentrate on the suggestions based on the maximization the power of the tests. 8 

Kreft [1996] recommended ‘30/30’ rule which means minimum 30 9 
observations per group and minimum 30 units at each level of the analysis to 10 
unbiased estimate all parameters and their standard errors. As pointed by Mass and 11 
Hox [2005], such number of groups gives unbiased results except the standard 12 
error estimates of the random effects at the level-2. Accordingly, Hox [1998] 13 
recommended minimum 20 observations for 50 groups if the cross-level interaction 14 
is tested. Although both the number of groups and the number of observations per 15 
group are important to obtain the unbiased results, the sensitivity of the fixed and 16 
random effects (and their standard errors) estimates to above is different. When the 17 
accuracy of the variance components estimates is influenced strongly by the 18 
number of groups, fixed effects estimates are less susceptible to the data 19 
sparseness. Similar conclusions were drawn by Newsom and Nishishiba [2002] and 20 
Clarke and Wheaton [2007], who confirmed that the unbiased estimates of the 21 
fixed effects might be received even for the small sample. As the variance 22 
components estimates are often in the main centre of the interest in the multilevel 23 
models, additional suggestions dealing with the random effects were concerned in 24 
detail. Mok [1995] noticed that 5 groups at the second level gives a notably bias 25 
of the variance estimates, while Clarke and Wheaton [2007] suggested at least 10 26 
observation per group for at least 100 groups is needed to obtain the unbiased 27 
estimate of the intercept variance. If the slope variance is estimated they 28 
recommended at least 200 groups with minimum 20 observation per group. 29 
Although for the accurate estimates of the variance components (often 30 
underestimated) at least 100 units is needed, in practise such sample would be hard 31 
to obtain [see Mass and Hox 2004]. According to all of the mentioned guidelines, 32 
rather than the large number of observations per unit, the large number of groups 33 
seems to be more important to receive the accurate estimates. 34 

Sufficient sample size is considered also due to the accuracy of the standard 35 
errors estimates but such investigations are in the minority [Mass and Hox 2005]. 36 
In the simulation research the most common way to validate standard errors 37 
estimates is by checking the accuracy of the significance test or the coverage of the 38 
confidence interval (generated by using standard normal distribution and gamma 39 
distribution)2. Accordingly, Browne and Draper [2000] showed, using IGLS and 40 

                                                 
2  Although the assumption about the normality is not optimal, especially if the confidence 

intervals of the random effects are considered (because of the lack of the confidence 
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RIGLS estimators, that for at least 48 groups the coverage of the nominal 95% 1 
intervals is unbiased (for the fixed effects estimates), when the intervals for the 2 
covariance matrix parameters are substantially biased (below 95%). Similarly, 3 
Mass and Hox [2005] found out that negative influence of as small as 30 number 4 
of groups is small for the standard errors of the fixed effect coefficients (6.0% and 5 
6.4% for the intercept and regression coefficient) and higher for the standard errors 6 
of the variance components (around 9% for the level-2 intercept and slope 7 
variances). Additionally, in a large (5760 conditions) Monte Carlo experiments 8 
Bell et al. [2010] found out that for each type of the predictor variable, treated as 9 
the fixed effect, estimated confidence interval coverage is rather constant and 10 
higher than for the level-2 estimates, what is consistent with the previous reviewed 11 
researches. Finally, according to Snijders [2005] group size is less important for the 12 
power of the tests than the number of groups, what is similar to the results for the 13 
estimates. The only limitation of the small group size for the power of testing are 14 
the random slope variances. As the power of the tests is the result of the standard 15 
error size, consistency of the conclusions seems to be natural. 16 

There is no agreement about the negative influence of the data sparseness on 17 
the convergence. Although Bell et. al. [2010], Mass and Hox [2004] found out that 18 
there is no problem with the model convergence using ML and RIGLS estimator, 19 
according to Busing’s [1993] findings such problem might occurs if the sample is 20 
too small. In practice the generalisation of the presented rules is always limited to 21 
the specific cases, e.g. the type of the estimated effect (random, fixed, interaction, 22 
cross-level, etc.) or the estimation method. 23 

In the literature, to set the optimal/sufficient sample size, in the multilevel 24 
modelling, the simulation method has been chosen more frequently. Another way 25 
is to use the approximate formula, relating effect size and standard errors to 26 
statistical power of the significance test [Snijders and Bosker 1993]. As was 27 
showed by Snijders [2005], the way of computing the sufficient sample size 28 
depends on the parameter estimates which the researcher is interested in. Also 29 
Moerbeek et al. [2001] presented formulas for calculating the optimal design (the 30 
sample size) for the 2-level models with detailed evaluation using D-optimality and 31 
L-optimality criteria. Although the approximate formula seems to be faster in 32 
using, its limitation (like the lack of the generalisation) makes Monte Carlo 33 
simulation more flexible tool for evaluation the sufficiency of the sample size. 34 

The motivation for this paper is to evaluate by the Monte Carlo simulation 35 
the influence of the sample size and its structure on the estimates biasness. The 36 
fixed and random parameter estimates and their standard errors are examined in the 37 
2-level model estimated by maximum likelihood (ML). The rest of the paper is 38 
divided into the simulation method description and the results discussion. 39 

                                                                                                                            
symmetry), in most of the simulation studies such method of evaluation of the standard 

errors estimates are using [see e.g. Busing 1993, Van der Leeden et al. 1997]. 
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SIMULATION DESIGN 1 

The 2-level model (for the continuous outcome variable Yij) with two 2 

explanatory variables X1,ij, X2,ij on the level-1 was examined. The random  3 

(or stochastic) part of the model contains: residual error terms at the level-2: 4 

μ0,j~N(0, σμ0
2 ),  μ1,j~N(0, σμ1

2 ) and individual-level (level-1) residuals εij~(0,1). 5 

The fixed (or determinist) part contains β0,  β1, β2 coefficients. This model can be 6 
written as [Goldstein 2010]: 7 

 𝑌𝑖𝑗 = 𝛽0,𝑗 + 𝛽1,𝑗𝑋1,𝑖𝑗 + 𝛽2𝑋2,𝑖𝑗 + 𝜀𝑖𝑗,  (1) 8 

 𝛽0,𝑗 = 𝛽0 + 𝜇0,𝑗, 9 

 𝛽1,𝑗 = 𝛽1 + 𝜇1,𝑗, 10 

where: 𝑖 = 1, … , 𝑀 and 𝑗 = 1, … , 𝐽. We assume the structure of the variance-11 

covariance matrix as in the standard multilevel models: ∀i ≠ i′ cov(εij, εi′j) = 0, 12 

E(μ1,j) = E(μ0,j) = 0, j ≠ j′ cov(μ0,j′ , μ0,j) = cov(μ1,j′ , μ1,j) = 0,  cov(μ0,j, εij) =13 

cov(μ1,j, εij) = 0. The values of the predictors were drawn independently from the 14 

normal distribution with variance 1. Model (1) was estimated via ML. 15 

 Three conditions were varied in the simulation: (1) number of groups J={5, 16 
10, 20, 30, 50, 70, 90}, (2) number of observations per group M={5, 10, 20}, (3) 17 
values of the parameters (in Table 1). As the value of the intraclass correlation 18 
(ICC) influence the results the two different values of ICC were tested. The ICC 19 
was calculated as follows: (σμ0

2 + σμ1
2 )/(σμ0

2 + σμ1
2 + σ𝜀

2). 20 

Table 1.Target values of parameters 21 

variant/parameter 𝛽0 𝛽1 𝛽2 σμ0
2  σμ1

2  ICC 

1 0.60 0.50 0.30 0.50 0.40 0.47 

2 0.20 0.30 0.80 0.20 0.30 0.33 

3 0.30 0.70 0.80 0.20 0.30 0.33 

Source: own calculation 22 

The large variation of the groups number was evaluated because this factor 23 
might affects the estimate much more than the group size. For each of the 63 24 
conditions 1000 datasets were simulated using user-written syntax in STATA3 25 
based on the xtmixed command which allows for the multilevel model estimation. 26 

The accuracy of the estimates was indicated using two measures commonly 27 
used in the evaluation of the simulation results: 28 

 Relative bias of an estimator 𝜃�̂� for parameter 𝜃𝑙, defined as: 29 

                                                 
3 Monte Carlo simulation syntax is available at: https://sites.google.com/site/elaszkiewicz. 
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 𝐵(𝜃�̂�) =
𝜃�̂�
̅̅ ̅−𝜃𝑙

𝜃𝑙
⋅ 100%,  (2) 1 

where θî
̅  is the arithmetic mean calculated from K=1000 simulation runs of  θlk̂. 2 

According to Hoogland and Boomsm (1998) unbiased estimates are those for 3 
which the relative bias is less than 5%. The relative biases were calculated to 4 
evaluate only the parameter estimates. 5 

 Rate of the coverage, calculated as: 6 

 𝐶 (𝑠𝑒(𝜃�̂�)) =
∑ 𝐶(𝑠𝑒(𝜃𝑙�̂�))

𝐾
⋅ 100% (3) 7 

 𝐶(𝑠𝑒(𝜃𝑙�̂�)) = {
1 𝑖𝑓𝜃𝑙 ∈ 𝐶𝐼
0 𝑖𝑓𝜃𝑙 ∉ 𝐶𝐼

,  8 

where 𝑠𝑒(𝜃𝑙�̂�) is the estimated standard error of the 𝜃𝑙�̂� at k-th run, CI is the 95% 9 

confidence interval established separately for the fixed effects as: 𝜃𝑙�̂� ± 𝑢∝ ⋅10 

𝑠𝑒(𝜃𝑙�̂�) and for the random effects as: exp (ln (𝜃𝑙�̂�) ± 𝑢∝ ⋅
1

𝜃𝑙�̂�
⋅ 𝑠𝑒(𝜃𝑙�̂�). The 11 

indicator was used to check the bias of the standard error estimates. 12 

Additionally, to compare different conditions ANOVA (for the parameter 13 
estimates) and logistic regression (for the confidence interval evaluation) were 14 
used. 15 

RESULTS AND DISCUSSION 16 

The convergence of model was achieved almost in each case, even for the 17 
smallest sample size. However, for the sample of 5 groups with 5 observations per 18 
group it was more frequently impossible to estimate standard errors for the random 19 
effects variance components due to the singular variance-covariance matrix of the 20 
random effects [see e.g. Henderson 1986]. 21 

Parameter estimates 22 

The average relative bias for the fixed effect estimates (0.01%) was lower 23 
from the random effect estimates bias, which was 1.07%. Although, there was no 24 
significant differences in the relative bias across the fixed parameter estimates, the 25 
biases of the σ̂μ0

2 and σ̂μ1
2 were significantly different and higher for the first one. 26 

Additionally, there was no significant differences between the relative bias of the 27 
fixed parameter estimates when three variants of the target values of the parameters 28 
were compared. However, the influence of the ICC on the random effect estimates 29 
was revealed. For the higher value of the ICC, the lower relative bias of the random 30 
effect estimates was achieved. This is consistent with e.g. Newson and Nishishiba 31 
[2002], who showed that the ICC value determines the accuracy of the estimates. 32 
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The unbiased estimates were achieved for the fixed effect estimates for each 1 
of the simulated sample size (Figure 1). Even for the sample as small as 25 2 
observations the relative biases were less than 1% for all of the fixed parameters 3 
estimates. In the case of the random effects estimates only for the sample of 25 4 
observations the results were biased. The relative bias for the random intercept 5 
variance estimates was 16% and for the random slope variance estimates almost 6 
10%. The relative biases less than 1% for the variance components estimates were 7 
achieved for the sample size equal to 100 or higher. Additionally, as the sample 8 
size increases, the variance of the parameters estimates has decreased strongly. 9 

Figure 1. Effect of group size on the relative bias of the parameter estimate 10 

 11 
Source: own calculation 12 

Table 2. Relative biases (in %) and significance of the group size effect 13 

parameter /group size 5 10 20 p-value* 

β0 -0.15 0.10 -0.10 0.89 

β1 -0.22 0.01 0.43 0.27 

β2 -0.20 0.08 0.16 0.22 

σμ0
2  2.70 0.92 0.55 0.00 

σμ1
2  1.97 0.53 -0.25 0.00 

* p-value for the effect of group size on the relative bias of the parameter estimate 14 

Source: own calculation 15 

Although the unbiased results might be obtained even if 5 observation per 16 
unit occurs, the sensitivity of the fixed and random effects estimates for the group 17 
size was different (presented in Table 2). Only for the variance components 18 
estimates (σμ0

2 , σμ1
2 ) increase of the group size affects significantly the value of the 19 

relative bias of the estimates. Such results are similar to Newsom and Nishishiba 20 
[2002], Clarke and Wheaton [2007]. 21 

According to Table 3, all of the fixed effects estimates are unbiased for the 22 
sample consisting of 5 groups. In the opposite, the random effects estimates are 23 
biased in such a case. It means that for the unbiased estimates for all of the 24 
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parameters the sample of at least 10 groups with 5 observations per group is 1 
needed. This is less than in Kreft’s ‘30/30’ rule or as Hox [1998] suggested. The 2 
differences in the recommendations are the result of not taking into account the 3 
unbiasness of the standard errors estimates. 4 

Table3. Relative biases (in %) and significance of the number of groups effect 5 

parameter / 

nr of groups 
5 10 20 30 50 70 90 p-value* 

β0 -0.15 -0.01 -0.08 -0.10 0.67 -0.75 0.08 0.79 

β1 0.80 0.23 -0.29 -0.11 -0.10 -0.20 0.18 0.65 

β2 -0.27 0.06 0.04 0.15 0.12 -0.03 0.02 0.89 

σμ0
2  7.90 1.48 0.45 0.14 -0.14 0.26 -0.38 0.00 

σμ1
2  4.73 0.63 0.21 -0.18 -0.46 0.16 0.15 0.00 

* p-value for the effect of number of groups on the relative bias of the parameter estimate 6 

Source: own calculation  7 

The results showed that unbiasness of the random effects estimates depends 8 
more on the number of groups in the sample, than the group size. This conclusion 9 
is consistent with Snijders and Bosker[1994]. 10 

Standard errors 11 

The coverage of the 95% confidence interval (CI) was similar for the fixed 12 
effect parameters (93.47%) and for the random effect estimates (94.78%). The 13 
results of the logistic regression showed that the rate of the coverage rate for the CI 14 
for the random effects depends on the ICC but the fixed effects seems to be not 15 
affected by the level of the ICC.  16 

Table4. Influence of the ICC value on the coverage of the 95% confidence interval 17 

parameter / 

nr of groups* 
5 10 20 30 50 70 90 

σμ0
2  0.00 0.00 0.23 0.79 0.95 0.90 0.15 

σμ1
2  0.00 0.16 0.39 0.53 0.47 0.20 0.51 

* p-value from the logistic regression, where the value of ICC was independent variable 18 

Source: own calculation  19 

Inspired by Mass and Hox [2005], who proved that for the ICC=0.1, 0.2, 0.3, 20 
the influence of the ICC value on the coverage rate (for the random effects 21 
estimates) occurs only for the extremely small sample size (like 10 groups with 22 
5observations), we checked if the influence of the ICC varies across the number of 23 
groups. Our results (presented in Table 4) are more detailed than Mass and Hox 24 
[2005] as for each variant of the number of groups separate regression has been 25 
done. For at least 10 groups in the sample the impact of the ICC value on the 26 
coverage of the 95% CI for random intercepts variance was statistically significant. 27 
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In comparison, the CI for random slopes variance was affected by the ICC value 1 
only in the sample of 5 groups. 2 

Next, the sample size effect was tested. As expected, with increasing of the 3 
sample size results the rate of the coverage grows (Figure 2). For the samples 4 
of less than 100 observations at least for one of the parameters the coverage rate 5 
of the CI was lower than 90%. It means that for the unbiased standard errors 6 
estimates such sample size is the minimum. 7 

Figure 2. Coverage rate of the 95% confidence interval by the group size 8 

 9 
Source: own calculation 10 

Although for the smallest sample size there are significant differences in the 11 
coverage rate of the CI for the fixed (89.70%) and random (81.52%) effects 12 
parameters, the differences decrease as the sample size increase. For the sample of 13 
1800 observations each of the parameter achieved the coverage rate around 95%. 14 

Table 5. Coverage rate of the 95% CI (in %) by group size with significance 15 

parameter /group size 5 10 20 p-value* 

β0 93.22 93.15 93.03 0.45 

β1 92.67 93.11 92.90 0.54 

β2 93.91 94.51 94.69 0.00 

σμ0
2  92.31 95.35 95.34 0.00 

σμ1
2  93.80 95.94 95.93 0.00 

* p-value from the logistic regression, where groups size was independent variable 16 

Source: own calculation 17 

Similar to the relative bias behaviour, the coverage rate increases when the 18 
size of the groups grows (Table 5). The positive, significant effect of rising of the 19 
group size was noticed for the variance components (boththe intercepts and the 20 
slopes) and for the one of the fixed effect parameter. However, difference between 21 
coverage rate of the CI for fixed and random parameters was small.Additionally, 22 
the significance of the number of groups effect was tested (Table 6). For each of 23 
the parameter the coverage rate of the 95% CI depends on the number of groups in 24 
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the sample. In the sample of 5 groups 7.09-12.64% of the cases were outside of the 1 
95% CI. As the number of groups increased, the coverage rate also increased.  2 

Table 6. Coverage rate of the 95% CI (in %) by number of groups with significance 3 

parameter / 

nr of groups 
5 10 20 30 50 70 90 p-value* 

β0 89.29 92.12 93.22 93.91 94.32 94.60 94.48 0.00 

β1 88.01 91.28 93.36 93.92 94.44 94.69 94.56 0.00 

β2 92.91 93.50 94.82 94.69 94.70 94.74 95.22 0.00 

σμ0
2  87.36 93.48 95.94 96.16 96.06 95.70 95.64 0.00 

σμ1
2  92.21 94.79 96.16 96.49 95.98 95.56 95.36 0.00 

* p-value from the logistic regression, where number of groups was independent variable 4 

Source: own calculation  5 

Surprisingly, for each variant of the number of groups the coverage rate was 6 
higher for the variance components estimates. In the case of the 30 groups the non-7 
coverage rate for the fixed effects parameters was 6% (the same as in Mass and 8 
Hox [2005]), however for the random effects parameters we obtained 3%, when in 9 
Mass and Hox [2005] study the non-coverage rate was 8%. The differences in the 10 
results are the effect of the way how the CIs were build. Mass and Hox [2005] used 11 
standard normal distribution to establish the CIs for the variance components 12 
parameters, when we used Wald-type CIs, which were better performed.  13 

CONCLUSIONS 14 

Our results are consistent with the previous investigation. The unbiased 15 
estimates of the fixed effects parameters might be obtained even for the extremely 16 
small samples. The structure of the sample (number of groups and group size) do 17 
not affect negatively the fixed effects estimates. For the unbiased estimates of the 18 
variance components both design conditions are important, but only for too small 19 
(less than 10) number of groups results were biased. The evaluation of the standard 20 
errors estimates once again proved the major role of the number of groups to 21 
guarantee the satisfactory coverage rate of the CIs. Also, we showed that for the 22 
random effects the Wald-type confidence interval are better than based on the 23 
standard normal distribution. Our results might be generalized but only to the 24 
presented conditions. Additional researches are required to examine more advanced 25 
multilevel model specification, e.g. cross-classified or multiple membership. 26 
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