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Abstract: We introduce general formulas for the upper bound of gain 12 
obtained from any finite-time trading strategy in discrete and continuous time 13 
models. We consider strategies with constant number of assets traded and 14 
strategies with proportional number of assets traded. Unfortunately, the 15 
estimates obtained in the discrete case become trivial in the continuous case, 16 
hence we introduce transaction costs. This leads to the interesting estimates 17 
in terms of the so called truncated variation of the price series. We apply the 18 
obtained estimates in specific cases of financial time series.  19 
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INTRODUCTION 23 

In [Łochowski 2010] we considered the following investment problem: let 24 
P(n)  and 1,2,n Q(n),   be two non-stationary time series representing the 25 

evolution of the prices of futures contracts for two commodities P and Q. 26 
Assuming that the prices of P and Q are cointegrated, such that for some positive 27 

                                                 
1Research financed by the National Science Centre in Poland under decision no. DEC-

2011/01/B/ST1/05089. 

mailto:rlocho@sgh.waw.pl


30 Rafał Łochowski 

 and  the process Q-P   is stationary, we considered the following long-run 1 

investment strategy: buy the combination Q-P   when its value fails below some 2 

threshold a-  and sell it when the value of the combination exceeds threshold a.  3 
Buying the combination physically means entering into long positions in 4 

commodity P contracts and entering into   short positions in commodity Q 5 

contracts. Similarly, selling the combination physically means entering into short 6 

positions in commodity P contracts and entering into   long positions in 7 

commodity Q contracts. 8 
Naturally, similar problem may be considered for larger number of 9 

cointegrated commodity contract prices. 10 
The natural question arises whether the strategy described gives the best 11 

possible gains or, at least, to compare it with some upper bound for the best 12 
possible gain. To do so, in this article we introduce very general formulas for the 13 
upper bound for gain obtained from any finite-time trading strategy in discrete and 14 
continuous time. We consider two types of strategies:  15 
1. Strategies with constant number of contracts or assets traded. In these models 16 

one always buys the same number of contracts or assets.  17 

2. Strategies with proportional number of contracts or assets traded. In these 18 
models one always invests all money earned in the previous trading.  19 

The bounds obtained are closely related to the path variation of the price time 20 
series (which, on the other hand, is closely related to volatility). Unfortunately, the 21 
bounds obtained in the discrete case become trivial in the continuous case, hence 22 
we introduce (constant or proportional) transaction costs. This leads to interesting 23 
bounds in terms of the so called truncated variation of the price series.  24 

We apply the obtained bounds in specific cases. In the models with 25 
constant number of contracts traded we assume the AR(1) structure of the 26 
cointegrated price series and in the models with proportional number of assets 27 
traded we assume exponential random walk structure of the price series. The 28 
bounds obtained for the maximal gain in both cases reveal quite strong 29 
boundedness properties – they have finite moments of all orders.  30 

UPPER BOUND FOR GAIN IN MODELS WITH CONSTANT NUMBER 31 

OF CONTRACTS TRADED 32 

Discrete case 33 

Let R(n)  denote the value of the linear combination Q-P   of   long 34 

positions in commodity P contracts and  short positions in commodity Q contracts 35 

(or the value of linear combination of greater number of contracts, under the 36 

condition that it is stationary) at the moment .1,2,n   Buying this combination 37 
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at moments Tbbb0 n1     and selling it (i.e. closing all long and short 1 

positions) at moments Tsss0 n1     such that   211 sbsb  we obtain 2 

the following gain 3 

 )R(b-)R(s)R(b-)R(s)R(b-)R(sG nn2211   (1) 4 

(note that G  may be negative). The immediate upper bound for G  reads as  5 
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The right-hand side of Eq. (2) is simply the total path variation of the time series 7 
R(n)  and we will denote it as  8 
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Due to the triangle inequality  10 
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we simply obtain 12 
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Hence 14 
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(On the other hand, the opposite equality: 16 
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is also true and we have    
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1)-R(i-R(i)T0;R,TV )Knowing the specific 18 

structure of the series R(n)  we may calculate the distribution of the random 19 

variable 


T

1i

1)-R(i-R(i)  or e.g. certain characteristics of this distribution (like the 20 

expected value).  21 
 22 
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Remark. Reasoning similarly it is easy to obtain more accurate bound for G -the 1 

positive path variation of the time series R(n) - which may be calculated with the 2 

following formula 3 

        


T

1i

1-iRiRmaxT0;R,UTV   4 

To illustrate the possible application of the obtained bound in a specific case, 5 
let usassume as in [Łochowski 2010] that R(n)  is a stationary, mean zeroAR(1) 6 

process, such that for some  1;1-  and the sequence  Z(2)Z(1)Z(0)  of 7 

independent random variables with normal  20,N   distribution we have 8 

     nZnR1)R(n   (5) 9 

Knowing that R(0)  and Z(2)Z(1)Z(0),  are independent, we obtain that (cf. 10 

[Łochowski 2010]) 0,1,n R(n),   has normal distribution    20,N  11 

Hence  12 
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From (6) we easily obtain the expected value of the variable   .T0;R,TV  14 
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  15 

where Y is a standard normal random variable and 3.1415926.  16 

Continuous case with constant transaction costs 17 

Now let us turn to the situation when the price process is observed in 18 
continuous time and we may sell or buy the combination of the contracts at any 19 

time between the moments 0 and T.As it was already noticed in [Łochowski 20 

2010], for  0;1  the continuous counterpart of the AR(1) process given by the 21 

recursion (5) is the Ornstein-Uhlenbeck process given by the following sde 22 
(stochastic differential equation): 23 
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where    ttW  is a standard Brownian motion.  1 

It is well known that the total variation of any process being the solution of any sde 2 

driven by a standard Brownian motion,           tdWtRt,dttRt,tdR   3 

satisfying some mild regularity conditions (e.g. the  continuity of the functions 4 

  and  ) has infinite total variation, given by the right-hand side of Eq. (2) 5 

and Eq. (3) (see [Revuz and Yor 2005, Chapt. IV Proposition 1.2]), 6 

    T0;R,TV   7 

Thus, our estimate (2) becomes trivial. Notice however, that it is no longer the 8 
case, when we introduce constant transaction costs.  9 

Let 0c/2  be the value of a constant commission, paid for every transaction 10 
(regardless of the transaction value). In this setting, the right-hand side of Eq. (1) 11 
shall be replaced with 12 
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and the estimate (1) becomes  14 
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 (9) 15 

The last estimate we will call truncated variation of the process    ttR  and we 16 

will denote it as  17 

       
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Remark. Again, more accurate bound for G in continuous time setting with 19 
constant transaction costs is the upward truncated variation of the process 20 

   ttR  which is defined with the following formula 21 
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It is possible to prove that the truncated variation is always finite for any 23 

process    ttR  with continuous (cf. [Łochowski 2011]), càdlàg (cf. 24 

[Łochowski 2012]) or even regulated paths (cf. [Ghomrasni and Łochowski 2013]). 25 

By a càdlàg path we mean a path which is right continuous,     0tt
tRtRlim

0
 and 26 

its left limits,     0tt
tRtRlim

0
 exist but may not coincide with the right limit 27 
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limits.A regulated path is a path with left     0tt
tRtRlim

0
and right limits 1 

    0tt
tRtRlim

0
 which may not coincide with the value  0tR  2 

The properties of the truncated variation as the function of parameters c  3 
and T  are well known for broad class of stochastic processes (see [Łochowski 4 
2012], [Bednorz and Łochowski 2012]). In particular, for the process given by Eq. 5 

(7) we have the following estimate of the exponential moments of   T0;R,TV c
 6 

stemming from [Bednorz and Łochowski 2012, Theorem 2]: 7 
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Here,     and     are constants depending on   and   only and   T,  9 

and   T,  are constants depending on T,  and   10 

UPPER BOUND FOR GAIN IN MODELS WITH PROPORTIONAL 11 

NUMBER OF ASSETS TRADED 12 

Discrete case 13 

Now let us turn to another situation, when we buy assets (or portfolio of 14 
assets) but we exclude the possibility of a short sale. Let 15 

       0,1,2,nnVexp0SnS   denotes the price of the asset at the moment n.  16 

Again, we assume that we buy this asset at moments Tbbb0 n1    and sell it 17 

at moments Tsss0 n1     such that   211 sbsb  but contrary to the 18 

previous strategy, where we were buying constant amount of the combination of 19 
contracts, we invest all money available. To make it clear, we will calculate the 20 

return from this strategy. The return from buying at the moment 1b  and selling at 21 

the moment 1s reads as  22 
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Similarly, the return from buying at the moment 2b  and selling at the moment 2s  24 

reads as  25 
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When we invest all the money obtained from selling the asset at the moment 1s  to 27 

buy the asset at the moment 2b  the return from all four operations reads as  28 
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Similarly, when we always invest all the money earned in the previous trading to 2 
buy the asset again, the return from buying the asset at moments 3 

Tbbb0 n1    and selling it at moments Tsss0 n1     reads as 4 
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Reasoning similarly as in the preceding section we obtain the following upper 6 
bound 7 
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Remark. Similarly as for models with constant transaction costs, more accurate 9 

bound forG is expressed with the exponent of the positive path variation of the 10 

time series R(n)  and may be calculated with the following formula 11 
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Assuming the specific structure of the series    nnV  we may 13 

again calculate the distribution or characteristics of the upper bound obtained. The 14 

simple yet widely used model assumes that the series    nnV  is a random 15 

walk, i.e.  16 

         nX2X1XnV   (12) 17 

where    nnX  are i.i.d. (independent and identically distributed). In 18 

particular, assuming that       N2X1X   we may calculate  19 
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Continuous case with proportional transaction costs 1 

Similarly as before, let us now turn to the situation when the price process is 2 
observed in continuous time and we may sell or buy the assets at any time between 3 

the moments 0 and T.The continuous counterpart of the discrete random walk (12) 4 

with normally distributed increments       N2X1X   is the classical 5 

Black-Scholes model of the evolution of stock prices, given by the following sde: 6 
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where    ttW  denotes, as before, the standard Brownian motion. Under the 8 

assumption that    ttW  is independent from  0S  the solution of Eq. (13) 9 

reads as: 10 

       tWtexp0StS   (14) 11 

and the process    0ttV  may be written as 12 

    tWttV   (15) 13 

(From the properties of the standard Brownian motion we immediately obtain that  14 
 15 
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are for i  i.i.d. random variables.) 17 

Again, in the continuous case, for  tV  given e.g. by Eq. (15), the upper bound 18 

given by Eq. (11) becomes trivial, since  19 

    T0;V,TV   20 

Thus, similarly as in the previous section, let us introduce transaction costs. In the 21 
present case the transaction costs shall not be constant but rather proportional to the 22 

transaction value. Let    denote the ratio of every transaction value paid as a 23 

commission. Now, the return from buying at the moment 1b  and selling at the 24 

moment 1s  reads as  25 
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Similarly, the return from buying the asset at moments Tbbb0 n1    and 1 

selling it at moments Tsss0 n1     reads as 2 
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Denoting 





1
lnc  we obtain the following estimate4 
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Remark 5 

Again, more accurate bound for G in continuous time setting with proportional 6 
transaction costs is expressed with the exponent of the upward truncated variation 7 

of the process    ttV  8 
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 9 

By results of [Łochowski 2011, Sect. 2] it follows that for V  being the 10 

Wiener process with drift, given by Eq. (15), for any real p  we have  pR  11 

and from the results of [Bednorz and Łochowski 2012, Theorem 2]) we get more 12 
precise estimate of the form 13 

           ppTcTpexpT0;V,pTVexpR -1cp    14 

Here    and    are constants depending on   only. 15 
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