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Abstract: The aim of this work is to present fuzzy clustering algorithm for 6 
objects, which can be described by mixed feature-type symbolic data and 7 
fuzzy data. The main idea is the transformation of mixed feature-type 8 
symbolic data and fuzzy data into histogram-valued symbolic data. Fuzzy 9 
classification is very useful in case, when classes are difficult separated, 10 
mixed objects can be classified into class with the fixed degree 11 
of membership. 12 
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INTRODUCTION 15 

Clustering algorithms of symbolic objects (e.g. only numeric values or 16 
interval-valued data) most often assume that the variables used for description are 17 
of the same type. However, there is a lot of real objects requiring the symbolic 18 
features for description which can be both numeric-valued, interval-valued, a set 19 
of categories-valued and an ordered list-valued with weights. 20 
The aim of this study is presenting the proposal of a generalization of the 21 
classification methods of symbolic objects, characterized by mixed type features, 22 
proposed in the work de Carvalho and de Souza [2010], relating to the case 23 
of fuzzy classification and the possibility of including fuzzy features to describe 24 
objects. These methods are based on iterative clustering methodology with 25 
adaptation of the Euclidean distance. Distances are changed in each iteration of the 26 
algorithm, and can either be the same for all classes, or different for particular 27 
groups. In the first step the transformation of symbolic values of various types is 28 
made to histogram-valued symbolic data. The modification proposed by the author 29 
allows to carry out the classification in both the classical sense (then the 30 
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classification method of de Carvalho and de Souza is used) as well as in terms 1 
of fuzzy classification. The fuzzy classification is very useful in a situation 2 
of classes separated with difficulty, the so called mixed objects can be classified 3 
into classes with a certain degree of membership. The classical classification forces 4 
the assigning of an object only to one class, therefore the objects whose similarity 5 
to several classes at the same time is quite high are not recognized, and the quality 6 
of the classification obtained is then low. The proposed algorithm, therefore, 7 
contributes to an additional opportunity for mixed-value symbolic data analysis. 8 

TRANSFORMATION INTO HISTOGRAM – VALUED SYMBOLIC 9 

DATA 10 

Each object i from the set },...,1{ n , described by the p-values 11 

of symbolic variables },...,{ 1 pXX , is identified with the vector of mixed-value 12 

symbolic data nixxx p
iiii ,...,1),,...,,( 21    x . This means that the symbolic variable 13 

jX  can assume for a given unit i the value j
ix  in the form of [Bock, Diday 2000]: 14 

 set–valued, if given an item i, j
j

ij AxiX )( , where },...,,{ 21
j

H

jj
j j

tttA   is set 15 

of categories;  16 

 ordered list–valued, if given an item i, j
ix  is set-list of ordered list of categories 17 

],...,,[ 21
j

H

jj
j j

tttA  ; 18 

 interval–valued, if given an item i, ];[];[)( babaxiX j
i

j
i

j
ij  , where 19 

J];[ ba  and J is set closed intervals defined from R; 20 

 histogram–valued, if given an item i,  )(),()( iiSxiX jjj
ij q , where 21 

),...,,()( 21
j

iH

j
i

j
i

j

j
qqqi q  is the vector of weights defined in )(iS j , such that 22 

a weight j
imq  corresponds to the category m from )(iS j  and )(iS j  is support 23 

of measure )(ij
q .  24 

The aim of standard clustering algorithm [Diday i Simon 1976] is to find a partition 25 

 KCCCP ,...,, 21  of the set   into a fixed number K of classes and their 26 

corresponding patterns  KggG 1,...,  by the local minimization of criterion 27 

function W. This criterion assesses the fitting between classes and their respective 28 
representatives. 29 

To overcome the difficulty, which is the representation of objects using 30 
ordered or non-ordered symbolic data of various types, the pre-processing is made, 31 
whose purpose is to obtain a suitable homogenization of symbolic data. It consists 32 
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in the transformation of mixed-value symbolic data to histogram-valued symbolic 1 
data. 2 

If jX  is a set-valued variable, its transformation into a symbolic histogram-3 

valued variable jX
~

 is achieved as follows: ))(,(~)(
~

iAxiX j
j

j
ij q , where 4 

},...,,{ 21
j

H

jj
j j

tttA   is a domain of variable jX  and the support of the weight vector 5 

))(),...,(),(()( 21 iqiqiqi j

H

jjj

j
q . The weight ),...,1()( j

j
h Hhiq   of the category 6 

j
j

h At   is defined as [de Carvalho 1995]: 7 
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where )( j
ixc  is the cardinality of a finite set of category )( j

ixc . 9 

If jX  is an ordered list-valued variable, then it is transformed into 10 

a histogram-valued symbolic variable jX
~

 as follows:  )(,~)(
~

iAxiX j
j

j
ij Q , where 11 

],...,,[ 21
j

H

jj
j j

tttA   is support of the vector of cumulative weights 12 

))(),...,(),(()( 21 iQiQiQi j

H

jjj

j
Q . The cumulative weights ),...,1()( j

j
h HhiQ   of 13 

category j
ht  from the list jA  are defined as [de Carvalho 1995]: 14 
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)( j
ixl  is the length of an ordered list of category j

ix . 16 

In the case of interval-valued variable jX  it is transformed to histogram-17 

valued symbolic variable jX
~

 as follows: ))(,
~

(~)(
~

iAxiX j
j

j
ij Q , where 18 

},...,,{
~

21
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H
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j j

IIIA   is the list of elementary intervals, constituting support of the 19 

cumulative weight vector ))(),...,(),(()( 21 iQiQiQi j

H

jjj

j
Q . The cumulative weight 20 

),...,1()( j
j

h HhiQ   of the elementary interval j
hI  is defined as [de Carvalho 1995]: 21 
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    where , (3) 22 

l(I) is the length of the closed interval I. 23 
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It can be shown that: ),...,1(1)(0 j
j
h Hhiq   and 1)(

1
 

jH

h

j
h iq . In addition, 1 

that: )()( 11 iQiq jj   i ),...,2()()()( 1 j
j

h
j

h
j
h HhiQiQiq   . 2 

Limits of elementary intervals ),...,1( j
j

h HhI   are derived from the ordered limits 3 

of n+1 intervals  ];[,,...,, 21 baxxx j
n

jj  and the number of elementary intervals is at 4 

most 2n. The elementary intervals have the following properties [de Carvalho 5 
1995]: 6 
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j
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:},...,1{ . 10 

 11 

Figure 1. Parameterization of TFN 12 

 13 
Source: own elaboration 14 

The trapezoidal fuzzy numbers TFN (see Fig. 1) are in real applications 15 
often, represented as L-R fuzzy numbers. Let L (R) be decreasing, shape function 16 
from R+ to ]1,0[ , with 1)(,1)0(  xLL  for all x > 0, L(x) > 0 for all x < 1, L(x) = 0 17 

(L(x) > 0 for all x and 0)( L ). A fuzzy number A with its membership function 18 

A [Zimmermann 1991]: 19 
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is called an L-R type TFN. Symbolically, A can be denoted by LRmmA ),,,( 21  , 21 

where 0,0    are called left and right spreads, respectively. Using this 22 



Fuzzy classification of symbolic objects 55 

parametric representation can be presented four kinds of TFNs with real numbers, 1 
interval, triangular and trapezoidal fuzzy numbers. 2 

If 
jX  is variable of trapezoidal fuzzy value LR

jjjjj

i iiimimx ))(),(),(),(( 21  , 3 

its transformation into symbolic histogram-valued variable jX
~

 is accomplished in 4 

the following way (author’s proposal): ))(,(~)(
~

iAxiX j

j

j

ij Q , where 5 

},...,,{
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IIIA   is the list of interval fuzzy numbers constructed on elementary 6 

intervals, constituting support of the cumulative weight vector 7 

))(...,),(),(()( 21 iQiQiQi j
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Q . Cumulative weight ),...,1()( j

j
h HhiQ   interval 8 

fuzzy number j
hI  is defined as: 9 
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l(I) is a area under a membership function of fuzzy number I. 11 

It can be show, that: ),...,1(1)(0 j
j
h Hhiq   and 1)(

1
 

jH

h

j
h iq . Moreover, 12 

again )()( 11 iQiq jj   i ),...,2()()()( 1 j
j

h
j

h
j
h HhiQiQiq   . 13 

The boundaries of fuzzy numbers ),...,1( j
j

h HhI   are obtained from the ordered 14 

boundaries of supports and cores of all considered fuzzy numbers },...,,{ 21
j
n

jj xxx . 15 

After the pre-processing step every object i (i=1,…,n) is represented by 16 

a histogram-valued symbolic data vector  p
iii xx ~,...,~~ 1x , and  )(,~ iDx j

j
j

i u , 17 

where jD  (a domain of variable jX
~

) depending on the type of the primary variable 18 

is the set of categories, an ordered list of categories or a list of elementary intervals, 19 
a list of fuzzy numbers with supports resulting from the elementary intervals, 20 

))(),...,(()( 1 iuiui j

H

jj

j
u  is a vector of weights or of cumulative weights. The 21 

pattern of class  KkCk ,...,1  is also represented by a histogram-valued symbolic 22 

data vector ),...,( 1 p
kkk ggg , ))(,( kDg j

j
j
k v ),...,1( pj   with a vector of weights 23 

or of cumulative weights ))(),...,(()( 1 kvkvk j

H

jj

j
v , where jD  is the set 24 

of categories, list of categories or a list of elementary intervals. It is noteworthy 25 

that for each variable jX
~

),...,1( pj   the support is the same for all units and 26 

patterns.  27 
According to the general scheme, the iterative classification algorithm 28 

[Diday i Simon 1976] is searching for a set   partition ),...,,( 11
  KCCCP  into 29 

a fixed number K of classes, corresponding to K patterns ),...,( 1
  KggG  30 
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representing the classes in P , and K of weight vectors parametrizing the squares 1 
of adaptive Euclidean distances, for which the criterion function value is minimum: 2 

     
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In the formula (4) the following is considered: 4 

 squares of adaptive Euclidean distances parameterized by the same vector of 5 

weights ),...,1( Kkk   , where ),...,( 1 p  changes at each iteration but 6 

is the same for all classes: 7 
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 squares of adaptive Euclidean distances parameterized by the weight vectors 9 

),...,1(),,...,( 1 Kkp
kkk   , that change with each iteration and are different 10 

for particular classes: 11 
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In the first case the weight vector is estimated globally for all classes at once, 13 
while in the second case the weights are estimated locally for each class. 14 

FUZZY CLUSTERING ALGORITHM FOR SYMBOLIC OBJECTS 15 

The generalization of de Carvalho and de Souza procedure [2010] proposed 16 
by the author in this paper for the case of the fuzzy classification will permit, in 17 
a situation of classes separated with difficulty, to use the partial membership of 18 
classes of objects whose similarity to several classes at the same time is high. 19 
Given the degree of membership to particular classes, one can define a function 20 
representing the classification criterion as follows: 21 
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assuming that 1r  is the degree of fuzziness, whereas )(ik  is the degree of the 23 

object i membership of class kC  and 1)(
1

 

K

k k i . 24 

Assuming that the weights are the same in each class or different, one can 25 
use the method of Lagrange multipliers and solve the corresponding systems of 26 
equations, to determine the degree of individual objects membership of the classes 27 
as follows, respectively: 28 

Using the method of Lagrange multipliers can solve the corresponding 29 
systems of equations and determine the degree of individual objects membership 30 
of the classes as formula (10) when the weights are the same in each class 31 
or formula (11), when the weights are different: 32 
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Next, proceeding in the analogous manner, one can designate vector of class 3 
patterns that minimizes the classification criterion: 4 
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Similarly, the best weights can be determined for which the criterion function 6 

reaches a local minimum, and 0j  and   
jp

j 1 , where R  is constant: 7 
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If in the criterion function W the squared Euclidean distance is considered, 9 
parameterized by weights, which may be different for particular classes, and 10 

change with each iteration, then assuming that 0j
k  and   

j
k

p
j 1 , where 11 

R  is constant, to determine the weights that minimize the criterion W one can 12 

use the method of Lagrange multipliers and some elements of algebra and obtain 13 
the formula: 14 
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The particular steps in the algorithm for fuzzy classification of symbolic data with 16 
different types of features are as follows: 17 

1. For ni ,...,1  and pj ,...,1  calculate ))(,(~ iDx j
j

j
i u , using equality (1), (2), 18 

(3), (5) depending on the type of symbolic variable. 19 

2. Assume 0t .  20 

3. Fix the degree of fuzziness 1r , the initial fuzzy partition  )()(
1

)( ,..., t
K

tt    21 

and the number 0 . 22 
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4. Calculate the vector of class patterns )()(
1 ,..., t
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5. Determine the weight vector values for particular variable and classes using the 4 
formulas (13) or (14).  5 

6. Calculate the new value of membership function  )1()1(
1

)1( ,...,   t
K

tt   using 6 

formulas (10) or (11). 7 

7. If   )()( tt 1  then assume 1:  tt  and go back to step 4. Otherwise 8 

STOP. 9 

EMPIRICAL EXAMPLE 10 

A set of objects consists of 10 brands of cars from four companies: Skoda, 11 
Fiat, Citroen and Renault. Each brand is characterized by six features: company, 12 
engine capacity, price, available colour, comfort, fuel consumption. The features: 13 
company, engine capacity, colour take symbolic values, the price is an real valued, 14 
comfort and safety are fuzzy data. The data set is shown in Table 1. 15 

Table 1. Data set of cars 16 

Lp. Brands Company 
Engine 

capacity 
Price Colour1 Comfort 

Fuel 

consumption 

1 Fabia Skoda 1,4 43,35 

B, Br, C, Cz, 

Cz1, F, M, 

M1, N, N1, P, 

S, S1, S2, Z, 

Ż 

[6.5;6.7;

1.5; 0.7] 

[5.4; 6.4; 

0.7; 1.6] 

2 Oktavia Skoda 1,4 54,5 

B, Br, C, Cz, 

M, M1, N, 

N1, P, S, S1, 

S2, 

[7.35;7.3

5; 0.65; 

0.65] 

[5.9;6.9; 

0.8; 1.6] 

3 Superb Skoda 1,8 88,3 

B, Br, C, Cz, 

M, M1, N, 

N1, P, S, S1, 

S2, 

[8.3;9.3;

0;0] 

[7.5;8.7; 

0.9;1.9] 

                                                 
1 In the colour feature the following notation is adopted: B-white, B1-pearl white, Br-

burgundy, C-red, Cz-black, Cz1-black pearl, F-violet, Gr-graphite, M- sea green, M1-

light sea green, N-blue, N1-light blue, P- pistachio-green, Ps- sand-coloured, S-silver, S1-

light gray, S2-gray, Z-green, Zł-golden, Ż-yellow. 
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Lp. Brands Company 
Engine 

capacity 
Price Colour1 Comfort 

Fuel 

consumption 

4 Panda Fiat 1,2 26,99 

B, C, , Cz, F, 

M1, N, N1, 

Ps, S2, Zł, Ż 

[6.0;7.0;

0.1;0.4] 

[4.9;4.9; 

0.9; 1.5] 

5 Bravo Fiat 1,6 66,99 
B, B1, C, Cz, 

N, N1, S1, S2 

[7.5;7.5;

0.4; 0.7] 

[4.9;4.9; 

0.8; 1.4] 

6 
C3  

Picasso 
Citroen 1,4 56,6 

B1,C, Cz, N, 

Ps,S2, Z 

[6,5;7,5;

0.2;0.2] 

[6.1;7.1; 

1.1; 1.6] 

7 C1 Citroen 1 43,1 
B, C, Cz, N, 

P, Ps,S1, S2 

[6.8;6.8;

1;1] 

[4.5;4.5; 

0.6;1] 

8 C5 Citroen 1,6 101,7 

B, B1, Br, 

Cz1, Gr, M, 

S, S1, S2 

[8.5;9.5;

0;0] 

[6.6;7.6; 

1.1; 1.2] 

9 Thalia Renault 1,2 29,9 
B, C, Cz1,N1, 

Ps, S, S1, S2 

[6.8;6.8;

0.7; 0.8] 

[5.9;5.9; 

1.1; 1.7] 

10 Megane Renault 1,6 54,45 
B, Cz, N, S, 

S1, S2, 

[7.2;8.2;

0; 0.1] 

[6.3;7.3; 

0.8; 1.8] 

Source: the author’s own elaboration on the basis of www.skoda-auto.pl; www.fiat.pl; 1 
www.renault.pl; www.citroen.pl; opinie.auto.com.pl 2 

Table 2. Membership for cars calculated by fuzzy clustering algorithm 3 

Lp. 1 2 3 4 5 6 7 8 9 10 

)(1 i  0,747 0,694 0,186 0,769 0,640 0,721 0,706 0,177 0,761 0,523 

)(2 i  0,253 0,306 0,814 0,231 0,360 0,279 0,294 0,823 0,239 0,477 

Source: the author’s own elaboration  4 

Table 2 shows the values of the membership function of two classes for 10 5 
objects, obtained as a result of the application of fuzzy classification algorithm for 6 
various types of symbolic and fuzzy variables using different weights for particular 7 
classes, assuming that r = 2, K = 2 i 0001,0 . 8 

Analyzing the results in Table 2, two determined classes can be isolated: 9 
C1={Fabia, Oktawia, Panda, Bravo, C3 Picasso, C1, Thalia, Megane}, 10 
C2={Superb, C5}. Renault Megane is a mixed object whose belonging to both 11 
classes is considerably high. It is also possible to notice that Fiat Bravo and Skoda 12 
Octavia have a fairly high degree of belonging to the second class, which means 13 
that there is a relatively high degree of similarity of these vehicles to the objects 14 
belonging to class 2. 15 

CONCLUDING REMARKS 16 

The presented iterative algorithm of the classical and fuzzy classification 17 
permits to cluster objects featured by mixed-value symbolic data. The algorithm 18 

http://www.citroen.pl/
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using distances with different weights for particular classes is able to identify the 1 
classes of different shapes and sizes, which is a definite advantage. The 2 
disadvantage is that they are dependent on the initial partition. The experimental 3 
evaluations for the interval-valued data have showed the superiority 4 
of classification algorithm applying the same weights, in terms of class recognition 5 
quality (assessed using the corrected Rand index) in the configuration of data with 6 
a priori almost equal dispersion of classes, and the superiority of the algorithm 7 
using different weights for particular classes where dispersion of classes is preset in 8 
advance as a different one. The proposed fuzzy classification methods for symbolic 9 
data with different types of features are a generalization of the methods presented 10 
in the work of de Carvalho and de Souza [2010], and therefore they have the same 11 
advantages and disadvantages. They allow, however, to assign to the individual 12 
objects the degrees of membership of different classes in the range from 0 to 1. 13 
This is of particular importance when the classes are separated with difficulty and 14 
the classical clustering forces the assignment of a given object to one class only. 15 
Therefore, in this case, the fuzzy classification may give better results, identifying 16 
the mixed objects whose similarity to several classes at the same time is high. 17 
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