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Abstract: This paper presents the application of independent component 10 
analysis (ICA) for value at risk modelling (VaR). The probabilistic models 11 
fitted to hidden components from the time series help to identify the 12 
independent factors influencing the portfolio value. An important issue here 13 
is the choice of the ICA algorithm, especially taking into account the 14 
characteristics of the instruments with respect to higher-order statistics. The 15 
proposed ICA-VaR concept has been tested on transactional data of selected 16 
stocks listed on Warsaw Stock Exchange. 17 
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VALUE AT RISK MODELING  20 

One of the most popular concept of investment risk modelling is the concept 21 
of Value at Risk, which consists of estimating the risk for a specified time horizon 22 
at a given probability [Jorion 2001, Jajuga 2001, JP Morgan, 1995]. Although the 23 
concept itself is simple and intuitive, it is associated with a fundamental problem 24 
of estimating the probability that a given financial instrument (or portfolio) will 25 
reach specific values in the future. In this area, one of the most commonly used 26 
approaches are these based on simulations. They  aim to find the possibly best 27 
mathematical model for the instrument based on historical data, and then 28 
performing predictive simulation of the model behaviour. This opens up 29 
a discussion whether the model is adequately fitted to empirical data. In practice, 30 
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the model fit is a compromise between the characteristics of the empirical data, 1 
a priori assumptions about the nature of the original phenomenon and properties 2 
of the mathematical apparatus [Bollerslev et al. 1992, Shiryaev 1999]. 3 

Since the Markowitz publications [Markowitz 1952] the phenomenon 4 
of uncertainty and risk was mainly interpreted in terms of financial instruments 5 
volatility and correlation. Additionally, the rational expectations hypothesis 6 
justified the random nature of the changes in financial instruments, making popular 7 
the models which were based on Gaussian distribution. Bearing in mind that the 8 
variance/covariance fully identifies the Gaussian distribution, volatility expressed 9 
by the variance gives complete statistical information about the phenomenon 10 
of uncertainty and risk. Taking into account also the relationship between Gaussian 11 
distribution and Central Limit Theorem a comprehensive conceptual system was 12 
established and it prevails in the description of uncertainty and risk over the last 13 
decades. 14 

The experience of recent years and the current situation on the financial 15 
markets, however, indicate some limitations of this conceptual apparatus. It turned 16 
out that models based on Gaussianity and correlations cannot recognize some 17 
critical features of the financial markets such as rare events. Historical and actual 18 
volatility described by variance is often not applicable for the future situation 19 
reasoning, which, in fact, can change dramatically due to rare events such as 20 
market breakdown. As a result, unexpected change on financial instruments is not 21 
so much associated with the current volatility, but it is rather due to the occurrence 22 
of rare events such as panic in the stock market or bankruptcy of a large financial 23 
institution. 24 

That types of phenomena and behaviour can be observed in the short-term  25 
scales. As a result, we need to look for mathematical apparatus that can better deal 26 
with the rare phenomenon. Although the number of works devoted to rare events is 27 
substantial, the problem is still an open research issue [Embrechts et al. 1997, 28 
Harvey 2013]. 29 

One reason for the difficulty of modelling specific market behaviour may be 30 
the fact that they do not occur as isolated events. In other words, a crisis or crash is 31 
frequently preceded by a long process that develops on a seemingly normally 32 
functioning market. Similarly, after the collapse, its effect lasts for a long time. In 33 
addition, it should be noted that market instruments are generally interrelated, 34 
although the nature, timing and scope of this relationship can be difficult to 35 
determine and predict. As a result, we can assume that the morphology of such 36 
time series is so complex and the only one signal analysis can be very confusing. 37 
This is natural motivation for time series decomposition into components 38 
associated with its particular characteristics for their individual properties 39 
modelling. 40 

There are two main approaches for decompositions: (a) one-dimensional that 41 
is based on a decomposition of the time series (e.g. trend, cycles, noise) or (b) 42 
multi-dimensional, taking into account and exploring the relationships between few 43 
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different signals. In the following discussion we will focus on a multi-dimensional 1 
approach that recently led to a number of interesting decomposition methods with 2 
number of practical application. In particular, we consider the following method of 3 
VaR supported by ICA decomposition: 4 

 5 
1. Collect the original time series into one multivariate variable; 6 
2. Decompose the multivariate variable into hidden independent components 7 
(separation stage); 8 
3. Choose components for further analysis (filtration stage); 9 
4. Estimate the probability distributions for each component; 10 
5. Perform simulation for each component; 11 
6. Do re-mixing of the components using reverse system to decomposition 12 
(separation); 13 
7. Calculate VaR for given portfolio. 14 
 15 
This concept establishes the general research framework, in which 16 

components can be identified using different mathematical characteristics. In case 17 
of the components identified as noises the algorithm can also realize the filtration 18 
[Szupiluk 2004]. 19 

The following discussion will focus primarily on classic independent 20 
component analysis [Hyvärinen et al. 2001]. This method of decomposition has 21 
many practical applications including the blind signal separation problem 22 
[Cichocki and Amari, 2002]. However, in contrast to the relatively clear results 23 
obtained with a principal component analysis - PCA [Jolliffe 1986], ICA needs the 24 
deeper insight into the characteristics of the used algorithms. The motivation for 25 
ICA decomposition is due to the fact that blind separation is one of the most 26 
general methods of separation, exploring higher-order statistics. This is particularly 27 
important in case of rare events observed in financial time series, for which the 28 
kurtosis is one of the most important criterion of their assessment. 29 

CHARACTERISTICS OF INDEPENDENT COMPONENT ANALYSIS  30 

In the classical meaning independent component analysis is formulated as 31 
a method that allows separation of a multi-dimensional observation vector 32 

T
21 ],...,,[ nxxxx into statistically independent components 

T
21 ][ m,...,y,yyy .  33 

It is assumed that the estimation of the independent components is performed using 34 
a linear transformation Wxy  , where W  is separating matrix. 35 

Independent Component Analysis has been widely used for modelling 36 
economic and financial phenomena [Back and Weigend 1997]. Also, there are 37 
number of publications indicating the effectiveness of ICA for risk analysis [Chen 38 
et al. 2007, Wu et al. 2006]. Independent component analysis can be considered 39 
twofold. In first case, it can be assumed as a strict statistical decomposition 40 
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method, which allows to extract independent components from the 1 
multidimensional observations. In the second case, ICA can be treated as a method 2 
to solve blind separation problem.  3 

ICA as a statistical method 4 

The assessment of signals independence requires the knowledge of their 5 
probability distributions, which is a relatively complex task in case of financial 6 
time series. In addition, ICA models assume that independent components are 7 
mixed and hidden and their distributions are, by definition, unknown. As a result, 8 
the practical notion of statistical independence of components obtained in the ICA 9 
is not precise and the final effect is verifiable to a limited extent. Unlike the 10 
principal components analysis with linear algebra apparatus, separation of 11 
independent components requires adoption of certain criteria, concepts, principles 12 
and characteristics, which exploration (optimization) may result in certain 13 
numerical algorithms. The most popular approaches include the minimization of 14 
mutual information, entropy maximization, non-Gaussianity maximization 15 
(measured by negentropy or kurtosis) or non-linear decorrelation. 16 

One of the standard algorithms for finding the matrix W are Natural 17 
Gradient [Amari et al. 1997] 18 

    . )( )( )()1( T tEttt WyyfIWW    (1)
 

and FASTICA [Hyvärinen et al. 2001] 19 
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where E is expectation operator, µ(t) is a learning rate,
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where )( ii yp is pdf of signal iy .

 

 23 

The key issue in these algorithms is the selection of non-linearity (3). One of 24 
the simplest but well working rules are these using higher-order statistics and based 25 
on the observation that the non-linearity (3): (i) takes the linear form for the 26 
Gaussian distribution; (ii) for the distributions with the slope higher than Gaussian 27 
it is growing faster than linear; (iii) for the distributions with the slope lower than 28 

Gaussian it is growing slower than linear. Taking the kurtosis  iy4  as 29 

distribution slope parameter we obtain a rule of non-linearity selection [Cichocki et 30 
al. 2007]: 31 
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The above rule can be effective for simple, unimodal and symmetric cases, 1 
taking into account a small number of signals with relatively different distributions. 2 
In more complex cases it requires more accurate non-linearity determination what 3 
makes it difficult since the distribution of independent component is a priori 4 
unknown. As a possible solution we can propose either, heuristic methods, 5 
parametric models or adaptive techniques. Nevertheless, one of the most versatile 6 
approaches is a method based on the Extendend Generalized Lambda Distribution 7 
(EGLD) in which it is possible to model a wide range of distributions with different 8 
kurtosis and skewness parameters [Karian et al. 1996, Karvanen et al. 2002]. 9 

It should be noted that at the theoretical level, with certain assumptions and 10 
simplifications, the criteria that establish the ICA algorithms lead to a situation in 11 
which the mutual independence is approximated or reduced to a fourth-order 12 
statistical relationships. In this case, for decorrelated and symmetric data ICA can 13 
be expressed as [Comon 1994]: 14 
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where  iyJ  is negentropy of the signals iy ;  yI  is join mutual entropy.  15 

Therefore, it can be assumed that, although the ICA algorithms derived from 16 
different criteria have their particular numerical specificity, in practice the effect is 17 
linear and non-linear decorrelation, resulting in removal of the second and fourth 18 
order statistics. These observations led to the development of ICA methods based 19 
on fourth-order statistics, including also tensor approach, e.g. JADE algorithm 20 
[Cardoso 1999]. 21 

ICA as a blind signal separation method 22 

The problem of blind signal separation is defined as the extraction 23 
of unknown signals mixed in the unknown system, with limited a priori knowledge. 24 
If we additionally assume that the sought source signals are statistically 25 
independent and the mixing is a linear combination of the signals, then the problem 26 
of blind signal separation and independent component analysis are identical. 27 
However, to separate the real signal, then we need a criterion to measure the 28 
independence. This is conditioned by the approximation accuracy using fourth 29 
order statistics of the estimated signal probability distribution function. 30 
Unfortunately, the form of this distribution is not known a priori in separation 31 
problem. Therefore, there is also a question of accuracy assessment in the 32 
separation process. While in some practical applications e.g. physical separation 33 
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of speech signals, the evaluation can be quite simple; then in case of financial time 1 
series (signals), the situation is quite complex. First of all, a separation using 2 
different algorithms within ICA is possible. If their results comply then we can 3 
state that satisfactory solution was achieved, otherwise it will be difficult to assess 4 
which solution is better. 5 

Consequently, an essential issue of ICA algorithm choosing is to fit 6 
properties and characteristics of the algorithm to a given problem. In case 7 
of financial time series it is a non-stationarity of time series with respect to the 8 
higher order statistics.  9 

Figure 1 shows an example of kurtosis and squared skewness distribution 10 
calculated on logarithmic returns of the WIG20 index (for different periods, 11 
covering time span from 1994 till 2012). Kurtosis is calculated in a standardized 12 
form and for a Gaussian distribution it has zero value.  13 

Figure 1.  The points represent WIG20 index characteristics (kurtosis and squared 14 
skewness for different length of time windows (minimum 2 years) and covering 15 
time span from 1994 till 2012 16 

 17 
Source: own calculation 18 

This example from Warsaw Stock Exchange shows that even for single time 19 
series the statistical characteristic is volatile and highly influenced by chosen time-20 
window.  21 

EXPERIMENT ON EMPIRICAL DATA  22 

In this section an experiment on financial data was conducted. We 23 
considered eight stocks from Warsaw Stock Exchange covering the time span 24 
19/12/2012 – 18/01/2013. Data consisted of 1783 observations of 5 minute data. 25 
Half of them (19/12/2012 – 07/01/2013) was used for decomposition matrix and 26 
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probability density functions (PDF's) estimation and the second half (08/01/2013–1 
18/01/2013) was used for testing. A portfolio of stocks consisted of JSW, KGH, 2 
PGN, LTS, PKN, PKO, PZU, PEO. For their characteristics, please see Fig. 2. 3 

Figure 2. Stocks used in the experiment 4 

 5 
Source: own preparation 6 

Histograms of latent signals obtained as a result of JADE decomposition 7 
calculated on log returns for all stocks (time span for analysis 19/12/2012–8 
07/01/2013) are presented on Fig. 3. We can observe that kurtosis of the signals 9 
ranges from 2 to 51 in this sample. 10 

Figure 3. Histograms of latent components obtained after decomposition 11 

 12 
Source: own preparation 13 



Multivariate decompositions for Value at Risk MODELLING 247 

The PDFs of latent signals were estimated using t-scale location distribution 1 
with shape parameter df, location parameter m and scale parameter s. Degrees of 2 
freedom ranges from 1 to 4. Please see Table 1 for details.  3 

Table 1. PDF characteristics of latent signals 4 

m s df 

-0.0031 0.2110 1.1382 

0.0171 0.7546 4.2239 

-0.0445 0.7035 3.5227 

0.0360 0.5241 2.3067 

-0.0352 0.5056 2.1233 

0.0429 0.5553 2.4985 

0.0251 0.7277 4.1791 

-0.0076 0.6633 3.2060 

Source: own calculation 5 

QQ plots of observed PDF’s vs. fitted distribution are presented in Figure 4. 6 
Fitted kurtosis ranges from 2 to 60 and it is close to expectations. Therefore, we 7 
can conclude that used distributions seem to be an adequate choice. 8 

Figure 4. QQ plots observed PDF’s vs. fitted distribution 9 

 10 
Source: own preparation 11 

Finally, the VaR calculation results on test data (08/01/2013–18/01/2013) 12 
are presented in Table 2. It presents the percentage of cases exceeding specified 13 
VaR level using 100 000 simulations based on given decompositions and also in 14 
comparison to VaR level estimated on historical data (19/12/2012–07/01/2013).  15 

In other words, we show VaR level not taking into account the value  16 
of a specific stock in this portfolio but total portfolio value.  17 
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Table 2. VaR results of portfolio consisted of eight stocks 1 

VaR level EGLD ICA VaR Jade VaR Historical VaR 

0,01  0 % 1,2% 2,1% 

0,025 1,4% 2,1% 4,2% 

0,05 4,6% 6,0% 7,9% 

0,1 9,7% 10,9% 12,7% 

Source: own calculation 2 

We showed that in an environment characterized by non-linearities and the 3 
occurrence of interactions between the stocks, the ICA methodology can 4 
advantageously reveal an underlying structure in financial time series for the 5 
purpose of risk measurement. The results obtained on the test dataset indicate the 6 
advantage of ICA approach over VaR calculation based on historical data. The best 7 
results were achieved for EGLD ICA method, which allows to simulate 8 
distributions in a wide range of kurtosis and skewness. 9 

CONCLUSIONS 10 

In this paper the application of independent component analysis in the  11 
multidimensional decomposition framework for VaR was proposed. In contrast to 12 
the relatively explicit algebraic decomposition methods, different ICA algorithms 13 
have their own characteristics, what can significantly influence the results. In 14 
particular, it refers to the case of ICA as a blind source separation method. 15 
Therefore, the choice of appropriate algorithm with respect to the third and fourth 16 
order statistics is the key issue here. These higher order statistics play an important 17 
role in ICA algorithms both, for the optimization task and for the numerical 18 
implementation of the algorithm. In the case of financial instruments we can 19 
observe both the instability of these statistics and the volumes which are 20 
significantly different from the Gaussian distribution. In such circumstances, it 21 
seems appropriate to select an adaptive algorithm for non-linearity selection taking 22 
into account a wide range of kurtosis and skewness. One of them is a system based 23 
on EGLD distribution. For the VaR modelling EGLD adoption led to better results 24 
than JADE, although the last one is recognized as one of the most popular and 25 
effective algorithms.  26 

In this study, we focused mainly on distribution fitting and forecasting. 27 
Nevertheless, it should be noted that under the proposed approach a filtration and 28 
elimination of the specific components, can be also considered. 29 
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