
QUANTITATIVE METHODS IN ECONOMICS 

Vol. XIV, No. 2, 2013, pp. 289 – 297 

FORECASTING OF INDIVIDUAL ELECTRICITY USAGE  1 

USING SMART METER DATA 2 

Tomasz Ząbkowski, Krzysztof Gajowniczek 3 
Department of Informatics 4 

Warsaw University of Life Sciences – SGGW 5 
e-mail: tomasz_zabkowski@sggw.pl, krzysztof_gajowniczek@sggw.pl 6 

Abstract: Forecasting electricity usage is an important task to provide 7 
intelligence to the smart gird. The customers will benefit from metering 8 
solutions through greater understanding of their own energy consumption and 9 
future projections, allowing them to better manage costs of their usage. 10 
In this proof of concept paper, we show the approach for short term 11 
electricity load forecasting for 24 hours ahead, calculated on the individual 12 
household level. In this context authors will develop an approach to the 13 
analysis and prediction using Multivariate Adaptive Regression Splines 14 
(MARSplines). 15 
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INTRODUCTION 18 

Smart metering is a quite new topic that has grown in importance all over the 19 
world and it appears to be a remedy for rising prices of electricity. One of the most 20 
important challenge of smart metering is to encourage users to use less electricity 21 
through being better informed about their consumption patterns. 22 

Forecasting electricity usage is an important issue to provide intelligence to 23 
the smart gird. Accurate forecasting will enable a utility provider to plan the 24 
resources and also to take control actions to balance the electricity supply and 25 
demand. The customers will benefit from metering solutions through greater 26 
understanding of their own energy consumption and future projections, allowing 27 
them to better manage costs of their usage. 28 

In this proof of concept paper, our contribution is the approach for short term 29 
electricity load forecasting for 24 hours ahead, not on the aggregate but on the 30 
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individual household level. The individual customer load profile is influenced by 1 
a number of factors, such as devices’ operational characteristics, users’ behaviours, 2 
economic factors, time of the day, day of the week, holidays, weather conditions, 3 
geographic patterns and random effects. In this context authors develop an 4 
approach to the analysis and prediction of smart metering data using such 5 
modelling techniques as Multivariate Adaptive Regression Splines (MARSplines) 6 
[Friedman 1991], to capture the factors responsible for accurate short term 7 
forecasting in smart metering applications. 8 

Over the last decades different methods have been applied to forecasting the 9 
electric load demand. Some of the most popular include time series analyses with 10 
autoregressive integrated moving average (ARIMA) [Brockwell and Davis 2002], 11 
fuzzy logic [Song et al. 2005], artificial neural network (ANN) [Beccali et al. 12 
2004], [Castillo et al. 2001], [Hippert et al. 2001] and support vector machines 13 
(SVM) [Lv et al. 2006]. Majority of them is devoted to analysis of larger loads 14 
such as region or the country grid, and therefore, forecasting is achieved with 15 
relatively high accuracy [Alfares and Nazeeruddin 2002], [Khotanzad et al. 2002], 16 
[Weron 2006]. 17 

Leveraging smart metering to support energy efficiency on the individual 18 
user level brings research challenges in monitoring usage and providing accurate 19 
load forecasting. However, it should be noted that forecasting loads of individual 20 
smart meter is not common practice since the volatility of the system is high thus 21 
resulting in high error rates [Javed et al. 2012]. 22 

CHARACTERISTICS OF DATA 23 

Electricity measurements data were prepared using Mieo HA104 meter 24 
installed in one of the households in Warsaw, Poland, for the purpose of SMEPI 25 
project1. The household consisted of two adult people and a child. The household 26 
lived in a flat which was equipped in various home appliances including washing 27 
machine, refrigerator, dishwasher, iron, electric oven, two TV sets, audio set, pot, 28 
coffee maker, desk lamps, computer, and a couple of light bulbs. The data were 29 
gathered during 60 days, starting from 29 August until 27 October 2012. 30 

Original source data contained the electricity usage readings of the 31 
Mieosmart meter at every second, every minute and every hour. From these 32 
readings, we extracted the hour loads (in kilowatt hour - kWh) for the purpose of 33 
short-term load forecasting.  34 

Data characteristics showing the daily and hourly data readings for the 35 
analyzed period are illustrated in Figure 1. 36 

                                                 
1 SMEPI – Smart Metering Poland, a Hi-Tech project to develop smart metering solutions 

partially financed by National Centre for Research and Development (NCBiR) and led by 

Vedia S.A in cooperation with GridPocket and Faculty of Applied Informatics and 

Mathematics at SGGW. 
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Figure 1. Daily and hourly load in kWh 1 
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Source: own preparation 3 

Taking into account that forecasting loads of individual smart meter may be 4 
associated with high volatility [Javed et al. 2012] we prepared the box and whisker 5 
plot for each of 24 hours using load data over all 60 day, please see Figure 2. The 6 
whiskers show the minimum and maximum value in a given hour and box encloses 7 
50% of the total data (top edge represents 75th quartile and bottom edge 25th 8 
quartile and line in the middle is the median). The results show that the volatility is 9 
rather high (especially during day hours) what can have impact on forecast 10 
accuracy. 11 

Figure 2. Box and whisker plot for electricity consumption over each of 24 hours 12 
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In this research, we focused on forecasting the electricity usage 1 
of a particular household for 24 hours ahead. In order to forecast the load we 2 
constructed a feature vector with variables as presented in Table 1. 3 

Table 1. Variables used in forecasting 4 

Variable 

no. 
Description Formula 

1 - 24 Load of previous 24 hours ihW
, 1hW

 … 24hW
 

25- 28 
Average load of previous 3, 6, 12, 24 

hours 
24,12,6,3,)(

1
 iW

i
ih

 

29 - 32 
Maximum load of previous 3, 6, 12, 24 

hours 
24,12,6,3},max{ iW

ih  

33 - 36 
Minimum load of previous 3, 6, 12, 24 

hours 
24,12,6,3},min{ iW

ih  

37 - 40 
Range of load of previous 3, 6, 12, 24 

hours 
24,12,6,3},min{}max{  iWW

ihih  

41 Day of the week wD
 

42 
Day part (morning, noon, afternoon, 

evening, night) 
Dp 

43 Temperature observed in each hour ihT
 

Source: own calculations 5 

These 43 attributes were empirically derived. The individual, the average, 6 
the minimum, the maximum and the range loads information were obtained from 7 
the hourly load time series. The temperature information inside the flat, for each 8 
hour, was collected with Mieo smart meter. 9 

FORECASTING METHOD 10 

In the experiment we used Multivariate Adaptive Regression Splines 11 
(MARSplines) which is nonparametric regression procedure that makes no 12 
assumption about the underlying functional relationship between the dependent and 13 
independent variables. MARSplines constructs the relation from a set of 14 
coefficients and so-called basis functions that are entirely determined from the 15 
regression data set. In a sense, the method is based on the divide and conquer 16 
strategy, which partitions the input space into regions, each with its own regression 17 
equation. In general, nonparametric models are adaptive and very flexible what can 18 
ultimately result in over fitting. Although such models can achieve very low error 19 
on training data, they have the tendency to perform very bad with new 20 
observations. To overcome this problem, MARSplines uses a pruning technique 21 
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(similar to pruning in classification trees) to limit the complexity of the model by 1 
reducing the number of its basis functions.  As basis functions MARSplines uses 2 
two-sided truncated functions (hinge function) for linear or nonlinear expansion, 3 
which approximates the relationships between the response and predictor variables. 4 
A hinge function takes the form: 5 

(𝑥 − 𝑡)+ = {
𝑥 − 𝑡, 𝑥 > 𝑡

0, 𝑥 ≤ 𝑡
 (1) 

where parameter 𝑡 is a constant, called the knot, of the basis functions which 6 
defining the pieces of the segmented linear regression. It should be stressed, that 7 
only positive results of the respective equations are considered, otherwise the 8 
respective functions evaluate to zero. 9 

MARSplines can be proposed even in situations where the relationship 10 
between the predictors and the dependent variables is non-monotone and difficult 11 
to approximate with parametric models, therefore seem much more capable of 12 
solving forecasting problem. The general MARSplines model equation is given as 13 

𝑃 = 𝛽0 + ∑ 𝛽𝑚ℎ𝑚(𝑥)

𝑀

𝑚=1

 (2) 

where the summation is over the 𝑀 nonconstant terms in the model. To summarize, 14 
𝑃 is predicted as a function of the predictor variables 𝑥. This function consists 15 
of an intercept parameter 𝛽0 and the weighted by𝛽𝑚 sum of one or more basis 16 
functions ℎ𝑚(𝑥). 17 

Implementing MARSplines involves a two-step procedure that is applied 18 
successively until a desired model is found. In the first step, the model is build, i.e. 19 
increase its complexity by adding basis functions until a preset maximum level 20 
of complexity has been reached. After implementing the forward stepwise selection 21 
of basis functions, a backward procedure is applied in which the model is pruned 22 
by removing those basis functions that are associated with the smallest increase 23 
in the goodness of fit.  24 

The so-called Generalized Cross Validation error is a measure of the 25 
goodness of fit that takes into account not only the residual error but also the model 26 
complexity as well, which is given by: 27 

𝐺𝐶𝑉 =
∑ (𝑊ℎ𝑖 − 𝑃ℎ𝑖)

2𝑛
𝑖=1

(1 −
𝐶

𝑛
)
2  (3) 

with 28 

𝐶 = 1 + 𝑐𝑑 29 

where Whi is the observed load in hour 𝑖 and Phi is the forecasted load in hour i, 30 
n is the number of observations in the original data set, d is the effective degrees 31 
of freedom which is equal to the number of independent basis functions and 32 
finally,c is the penalty for adding a basis function. 33 



294 Tomasz Ząbkowski, Krzysztof Gajowniczek 

The MARS algorithm can be described and implemented as follows: 1 

1. Start with the simplest model involving only the constant basis function 2 
(an intercept parameter 𝛽0). 3 

2. Search the space of basis functions, for each variable and for all possible 4 
knots, and add those which maximize a certain measure of goodness of fit 5 
(minimize prediction error). 6 

3. Step 2 is recursively applied until a model of pre-determined maximum 7 
complexity is derived. 8 

4. Finally, in the last stage, a pruning procedure is applied where those basis 9 
functions are removed that contribute least to the overall (least squares) 10 
goodness of fit. 11 

EVALUATION MEASURES 12 

To assess the model performance for forecasting, we used two measures: 13 
precision and accuracy [Javed 2012].  14 

Precision shows how close the model is able to forecast to the actual load. 15 
To measure precision we used mean squared error (𝑀𝑆𝐸) given by: 16 

𝑀𝑆𝐸 =
∑ (𝑊ℎ𝑖 − 𝑃ℎ𝑖)

2𝑛
𝑖=1

𝑛
 (4) 

where 𝑊ℎ𝑖 is the observed load in hour i  and 𝑃ℎ𝑖 is the forecasted load in hour 𝑖. 17 
In case of accuracy, this measure shows how many correct forecasts the 18 

model makes. For this purpose we need to define a correct forecast as the value 19 
within a percentage range of the actual load. However, for very low loads, a 20 
percentage range may become insignificant. For instance, having a load of 0.1 21 
kWh, a 10% correctness range would be 0.09–0.11 kWh and a forecast of 0.2 kWh 22 
will be considered as wrong, but in practice such forecast would be acceptable. 23 
To overcome this false loss of accuracy we set two scales to measure accuracy. We 24 
set a 10% range of error for accuracy, but if the load is smaller than 1 kWh then we 25 
consider range of ±0.10 kWh as range of acceptable forecast. Therefore, accuracy 26 
for hour i is given as: 27 

𝐴𝐶 =∑1{𝑊ℎ𝑖 > 1&|𝑊ℎ𝑖 − 𝑃ℎ𝑖| < 𝑃ℎ𝑖 × 0.10}

+∑1{𝑊ℎ𝑖 < 1&|𝑊ℎ𝑖 − 𝑃ℎ𝑖| < 0.10}. 
(5) 

ELECTRICITY USAGE FORECASTING 28 

Before estimating and assessing the MARSplines model, we have randomly 29 
selected data into two samples. The first set (training) was used to estimate the 30 
model, while the second set (test) was used to validate the model. The training and 31 
the testing sample included 80% and 20% of the observations, respectively. 32 
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As loss function we chose the least squares estimator. In the most general 1 
terms, least squares estimation is aimed at minimizing the sum of squared 2 
deviations of the observed values for the dependent variables from those forecasted 3 
by the model. Technically, the least squares estimator is obtained by minimizing 4 
SOS (sum of squares) function: 5 

𝑆𝑂𝑆 =∑(𝑊ℎ𝑖 − 𝑃ℎ𝑖)
2

𝑛

𝑖=1

 (6) 

where 𝑊ℎ𝑖 is the observed load in hour i  and 𝑃ℎ𝑖 is the forecasted load in hour 𝑖. 6 
The calculations were prepared in Statistica ver. 10. Due the limitations 7 

of the theory and software in the experiment we build 24 models, each for single 8 
hour of a day. As a maximum number of basis functions we selected 70 functions, 9 
which mean that very complex model will be built in the third step of the 10 
algorithm. The forward step usually builds an over fitted model, therefore to build 11 
a model with better generalization ability, the backward step prunes the model 12 
taking into account c parameter (in our case c=2) which is the penalty for adding a 13 
one more basis function. A further constraint which we faced on the forward step is 14 
specification of a maximum allowable degree of interaction. Typically, only one or 15 
two degrees of interaction are allowed, but higher degrees can be used when the 16 
problem require it. Therefore, we choose value 20 as a maximum degree of 17 
interaction between independent variables. 18 

The final results obtained by MARSplines and aggregated over all hours are 19 
shown in Table 2. 20 

Table 2. Model results aggregated over all hours 21 

Measure Training dataset Test dataset 

Accuracy (%) 62% 59% 

MSE 0.10 0.11 

Source: own calculations 22 

For training sample, the accuracy which measures of how many correct 23 
forecasts the model makes is 62% and the precision of how close the model is able 24 
to forecast to the actual load (MSE) is 0.10. The results associated with the test set 25 
are close to these obtained on training set. For this sample MARSplines obtained 26 
59% of accuracy and 0.11 for MSE. 27 

Detailed results per single hour using proposed measures for test sample are 28 
shown in Figure 3. 29 
  30 
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Figure 3.  Results in terms of accuracy and MSE for each single hour calculated on the test 1 
dataset 2 
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From the Figure 3 we can observe that almost all hours can be forecasted 5 
with relatively high accuracy (more than 50%) which is rather stable over all hours 6 
and it does not drops down unexpectedly. 7 

The results presented above are promising but it should be underlined that 8 
forecasting on individual household level is perceived as a difficult task since the 9 
hourly and daily behaviour may change drastically due to different circumstances, 10 
e.g. using particular home appliances, weather conditions, holidays of household 11 
members. In larger populations such as local grid or region, smaller loads tend to 12 
neutralize to produce a stable time series but for an individual home load, the time 13 
series volatility is quite high, thus accurate forecasting becomes challenging task. 14 

CONCLUSIONS AND FUTURE WORKS 15 

In this paper, we presented an approach to forecast electricity load 16 
on individual household level what can potentially provide greater intelligence in 17 
smart metering systems. The result of MARS model used for 24 hours ahead short 18 
term load forecast shows that it has good performance and reasonable prediction 19 
accuracy can be achieved. 20 
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Accurate forecasting brings value added both, to a utility provider and 1 
individual customers. The first one can plan the resources and also to take control 2 
actions to balance the electricity supply and demand. The customers can benefit 3 
from metering solutions through greater understanding of their own energy 4 
consumption and future projections, allowing them to better manage costs of their 5 
usage. 6 

As future work we see the need to undertake home appliance recognition 7 
problem under the nonintrusive appliance load monitoring (NIALM) concept. 8 
It may generate additional value to smart meters since the electricity usage  9 
of a household changes over time based on the operation of various appliances 10 
used by the family. Therefore, appliance detection might be additional input 11 
variable used for more accurate electricity usage forecasting. 12 
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