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Abstract: We consider boosting, i.e. one of popular sta@$timachine-
learning meta-algorithms, as a possible tool fomisiming individual
volatility estimates under a quantile regressiorRYQframework. Short
empirical exercise is carried out for the S&P500ydeeturn series in the
period of 2004-2009. Our initial findings show thats novel approach is
very promising and the in-sample goodness-of-fithef QR model is very
good. However much further research should be otteduas far as the out-
of-sample quality of conditional quantile predictiois concerned.
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INTRODUCTION

Boosting refers to an iterative statistical macHearning meta-algorithm
which aims to enhance the predictive accuracy @emint weak classification
algorithms (weak learners), i.e. classifiers thatlence a substantial error rate. In
brief, the method is recognized as very complex effidient when making a new
prediction rule by combining different and often adcurate individual
classification rules. Different examples of speciioosting algorithms have been
proposed in the literature so far, and perhapsrbst renown one is the Adaptive
Boosting algorithm (i.e. AdaBoost) (see [Freund &etiapire 1997]). In short, the
AdaBoost algorithm iteratively evokes a new weakssification rule which
assigns more weights to these data points thateelwdrrect classification by
former classifiers. In this manner the algorithmep® reinforcing the focus of
additional weak learners on inappropriately clésgdifiata, thus improving the final
accuracy of prediction. Final classification is abed by appropriate weighting
votes of single classifiers. A thorough discussibthe boosting mechanism from
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the statistical perspective has been presented Fbgdman et al. 2000] or
[BUhImann and Hothorn 2007].

From an econometric viewpoint, boosting might bedugs an optimization
algorithm for choosing the best combination of axjltory variables (predictors)
with respect to an economic question at hand. Boaihd, based upon the nature of
the economic phenomenon under study as well asfispstatistical features of
dependent variable to be considered, many diffecest functions can be easily
accommodated in the boosting algorithm. These niightfor example, negative
binominal log-likelihood for a binary classificatigoroblem, L1-norm loss function
for median regression, L2-norm loss function fanstard (mean) regression or a
check function for quantile regression (see [Bulmmand Yu 2003]; [Buhimann
2006]; [Fenske at al. 2011]). Boosting methods halge been applied to density
estimation by [Ridgeway 2002] or [Di Marzio and Tay2005] or to survival
analysis by [Hothorn et al. 2006], [Lu and Li 20@8][Chen et al. 2013]. In short,
once the loss criterion is set, boosting algorifrerforms sequential updates of an
(parameter) estimator according to the steepedtagrdescent of the loss function
evaluated at the empirical data. At each iteratitap, separate regression models
(weak learners) are used to explain the negativgradient of the evaluated cost
function with the penalized ordinary least squamesthod (see [Fenske at al.
2011)).

The aim of this analysis is to provide a short tponpirical study on
possible application of boosting algorithm when bewng different volatility
estimates under a quantile regression (QR) frame\sme [Koenker 2005]). We
are inspired by the recent contribution of [Fenakal. 2011], where the functional
gradient boosting algorithm for quantile regresdias been thoroughly discussed.
For an empirical analysis we applied the softwaaekpge (application ‘mboost’)
developed under the R environment by [Hothorn eR@l0] and [Hothorn et al.
2013] (see also [R Development Core Team 2008}hikpilot study we intend to
consider a boosting-based model for a conditionantle of return distribution.
The gquantile regression model might be simply a@ats a (percentage) value-at-
risk model where the optimal combination of lingaedictors has been selected
(and accordingly weighted) from the set of volgtikstimates based upon different
specifications of GARCH models. In such a setugividual parametric GARCH-
based conditional quantile predictions might beneseverely biased, whereas the
boosting algorithm is awaited to combine them iroptimal way, hence enforcing
the quality of emerging value-at-risk measures.
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TEORETICAL FOUNDATIONS

The concept of value-at-risk is fundamentally msfato the notion of a
quantile function. Ifr, denotes a return on portfolio between tirbesl andt, the

corresponding (percentag¥pR, , would be equal taj, (r,) i.e. the conditional
a -quantile of return distribution:

Pr(r, <VaR , |F_)=d,(r), (2)

where F_, denotes an information set available tat1. In financial risk

management, VaR constitutes a popular risk meador@m equation (1) it
becomes clear, that VaR is a threshold value fercgntage) loss. Thus, the
probability that marked-to-market return on poitiovalue (over given time
horizon) will be lower than VaR will be equal teetichosen probability levedr .
There are plenty of value-at-risk models proposedhi literature (see [Jorion
2000]). The most popular VaR models are based upenRiskMetrics approach,
parametric GARCH models, semiparametric methodshvisombine parametric
GARCH models with nonparametric distribution estiesa(i.e. filtered historical
simulation) or CAViaR models that directly depiconditional quantiles as
observation-driven autoregressive processes (segdBnd Manganelli 2004]).

There is a strong trend in the recent literaturéniprove the prediction
accuracy of different forecasts by combining thdfor a standard regression
problem, simple averages or weighted averages @ividual forecasts (i.e.
averages weighted by inverses of prediction errams)usually used. For example,
[Aiolfi et al. 2010] show that the equally-weightaderage of survey forecasts and
forecasts from various time-series models leadsmaller out-of-sample prediction
errors. Quite recently, combining the individualatdity forecasts (see [Amendola
and Storti 2008], [Jing-Rong et al. 2011]) or edemsity forecasts attracted much
attention. For example, [Hall and Mitchell 2007}t ke weights of individual
density forecasts as the weights that minimize ‘th&tance’ (measured by the
Kullback-Leibler information criterion) between therecasted and the true
(unknown) density. The most modern approach isotabine forecasts under the
quantile regression framework. [Chiriac and PohémeR012] propose new
methods for combining individual value-at-risk foasts directly. They show how
to mix information from different VaR specificatiorin an optimal way using a
method-of-moments estimator. Alternatively, theymbine individual VaR
forecasts under the QR framework. [Jeon and Tyt32 enrich the CAViaR
model of [Engle and Manganelli 2004] with the inggli volatility measure that
reflects the market’s expectation of risk and esrnew information in comparison
to historical volatility estimates.
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In this pilot study we consider seven differentatiity estimatesd; . Each
of these is derived from a different GARCH spea@ifion:

1. Standard ‘plain vanilla’ GARCH(1,1) model of [Balgtev 1986]:
o = w+agl + foiy (2)

Wheregt2 denotes the residuals from the mean filtratiorcess. (For the sake

of parsimony, ARMA(1,1) model has been used in toaditional mean
equation.)

N

Integrated GARCH(1,1) model of [Engle and Bollevsi®86]:
of = w+agl + (- )0, (3)

3. Exponential GARCH(1,1) model of Nelson (1991):
2
In(o?) = w+ agt—z‘lﬂ{ —\/z}+ﬂln(dt2_1) (4)
T

Ot-1
4. GJR GARCH model of [Glosten et al. 1993]:
0f = wragl, + |l + Bot, (5)

&

Oi—1

where |,_, denotes the indicator function (; =1 if £&_,<0 and |, =0
otherwise).

5. The asymmetric power ARCH(1,1) (APARCH) model ofri@et al. 1993]:
o =w+a 5t—1‘ - Ve ] + B0y (6)

where J > 0 denotes a parameter of the Box-Cox transformatiom’o

6. The absolute value GARCH (AVGARCH) model of [Tayld©986] and
[Schwert 1990]:

Oy =w+ a‘gt—l‘ + B0 (7)

7. The Nonlinear Asymmetric GARCH model of [Engle agl 1993]:
&
"71(t—1 - ’72)]&2—1 + B0t (8)

01

&1
— 1]

o? =w+ao?,
Ot

where/}, denotes a “rotation” parameter arpgdenotes a “shifts” parameter,
respectively.
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All the ‘sigma’ estimates obtained from the aforem@ned models will be
treated as explanatory variables in a boostingebagmntile regression analysis.
Accordingly, we aim to search for the optimal weigh algorithm of these
volatility estimates under the QR framework.

Under the QR setup the conditional quantile of metdistribution is given
as:

Ay (F %) =Nyt =XiBg 9

where x, denotes an[Lx1] vector of VaR predictors at time (individual
explanatory variables, including the obtained siggetimates) ang, denotes a
correspondindel] parameter vector. The parameter veqtgr can be estimated
by finding a minimum of the following QR optimizati problem:

ua u=0
u(@-1) u<o0’
The functional gradient boosting algorithm looks the minimum of the

;
argminzlpa(rt ~XiBo) where p, (u) ={
t=

. . .17 . — . .
empirical risk functlon:FZLt , where L, denotes its-th contribution, which, in
t=1

the case of a quantile regression problem, is gager = p,(r; =77,;) (where
N4+ denotes a theoretical value of a conditiooal quantile or, in other words, it
is a linear combination of individual predictorsab§iven conditionaty -quantile).

In the following, we present the outline of boogtstrategy after [Fenske at

al. 2011] with slight modifications (and changesotation) in order to adjust the
algorithm to the setup of our study.

1. Choose an appropriate starting value for parametetor §, :Bg. Define a
maximum number of boosting iteratioma, , and set the iteration index at

m=0.

stop

2. Compute [Tx1]vector of negative gradients of the empirical risikction
(evaluated at each t):

d .
U= - p =almd p=12 T (10)
a’]a,t
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In the case of quantile regression, the first @eive of L, with respect ta7,
IS:
roif r-gihts
=p',( -An 11) 0 if r-AmYU=0 (11)
r-1 if ,7['“—11 <0

3. With the OLS, fit possible explanatory variables ttee obtained negative
gradients in order to obtain tme-step estimatesﬁw (for  =12,....L). These

regressions are the base learners assigned toidinalivparameterss,
Estimation of B[G']] is done by minimizing the standard-, loss:
min(u, - 0,)'(u, —0,) where G, =x,b,, (optimization is performed for
eachx, variable separately).

4. If the best-fitting variable has an indicatior (1<I* <L), then the coefficient
that corresponds to this variable is updated adugisdas:

A = g M + vl where v € (0,1]is a given step size, i.e. shrinkage
parameter. All other parameters are kept constant:
,B[m] —Ig[ﬁll—ll, | #]*

5. Increase m by one untith=m,_ or go back to [2].

stop

Functional gradient boosting has a very intuitiveipretation. In step [3] of
the algorithm,L separate linear regression models are estimatednby the best
one (according to mean square criterion) is saletcteipdate the m-step parameter

vector [i[aml. Accordingly, at each iteration, boosting algaritithooses only one

variable that explains in the best way the negagradient of the empirical loss
function. In step [4] the parameter correspondingthis variable is changed

proportionally to the value of achieveﬁgf‘], whereas some shrinkage should be
made according to the chosen sizevof

EMPIRICAL EXERCISE

Time series of daily log returns on S&P500 closieqy between January
2004 and December 2009 has been selected as @medédr the exercise. The
huge heterogeneity of the time span under studyvalko cover a ‘calm’ period of
2004-2006 and the very turbulent period of a rederancial turmoil of 2007-
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2009. In Table 1 we present some standard baakgestieasures of individual
GARCH-based quantile estimates of return distrioutiThese are the results of
popular unconditional coverage test of [Kupiec J9®8&. test statistics Llc) and
of conditional coverage test of [Christoffersen 8P9(i.e. test statistics Ldc).
Large values of the obtained test statistics evidahat the in-sample fit of all
GARCH-based conditional quantile forecast is vegorp This can be well
understood if we take into account the structurabk of July 2007 (first signals of
the upcoming turmoil) or the crash of September82Qthe fall of Lehman
Brothers) that should have been taken into conaiaer while constructing
GARCH models. Moreover, all GARCH specifications/@deen estimated with
the assumption of Gaussian distribution for theoreterms, which significantly
underestimates the true thickness of the loweriligton tail.

Table 1. Quality of (in-sample) VaR estimates unddferent GARCH specifications.
LLuc denotes the unconditional coverage statistics &hdc denotes the
conditional coverage statistics. Bolded values terstatistically significant (at
5%) outcomes.

model Llyc LL cc LL uc LL cc
VaRy,05 VaR 05 VaRy,01 VaRy,01
GARCH 4,972 713.883 22.902 370.251
IGARCH 1.237 655.023 11.579 305.938
EGARCH 2.809 684.453 8.927 287.563
GJR GARCH 3.841 696.225 8.926 287.563
APARCH 2.108 672.681 8.927 287.563
AVGARCH 2.447 678.567 7.708 278.376
NAGARCH 1.237 655.023 11.579 305.938

Source: own calculations.

Volatility estimates resulting from the seven diéfet, but in fact incorrect
GARCH specifications have been used as potentiatigtiors in a boosting
mechanism together with a one-day lagged “High-Lgsite range measure for
S&P500. As suggested by [BUhlmann, Hothorn 2007]cemtered all individual
predictors (by subtracting their mean value) befoitalizing boosting algorithm.
The initial value for the intercept in the QR models been selected as the
unconditional 0.05-quantile or the unconditionadldquantile, respectively. The
shrinkage parameter has been set as005, thus we allow for more shrinkage
than [Fenske et al 2011], in order to account faoasiderable multicollinearity
between predictors. The optimal number of boosiiegations (n) has been
selected with the application of a standard 25-fwddtstrap procedure in order to
avoid overfitting of the learning mechanism.
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Figure 1. Value of the empirical loss function focreasing number of boosting iterations.
Results from 25 individual subsamples correspondinghe 25-fold bootstrap
procedure (grey lines) and their average (blac&)liwith respect to the 0.05-
guantile (left panel) and the 0.01-quantile (righhel).
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Source: own calculations with the application af tmboost’ library.

The results of the boosting-based model for theb-Quantile are the
following. Out of eight potential individual predars, five were selected by the
algorithm:

+ standard GARCH-based voIatiIit)ﬁ(Lol05 =-0499),

*  IGARCH-based volatility 3, = 0160),

«  EGARCH-based volatility 3, 4,5 = — 0573),

*  GJR GARCH-based volatility4, ,,; =~ 0911), and the

* H-L price range [38’0.05 = 0060).
In the case of 0.01-quantile regression, once again
» standard GARCH-type volatility is select<7*:€1_]o.01 =-0888, and then

*  IGARCH-based volatility {3, ,,, = 0095),
«  EGARCH-type volatility (8., = — 0774),
+  GJR GARCH:-type volatility (3, ,,, = — 0650) and

*  H-L price range [38’0.01 =-0047).

Therefore, we can formulate the following conclusio First, weights of
volatility estimates selected by a boosting aldgwnidiffer for 0.05-quantile and the
0.01-quantile, although the types of selected nwoddhy the same. Second,
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majority of selected sigma-predictors have, as etguk negative impact for the
conditional quantile. Third, leverage or non-lingaeffects play an important role
as suggested by a large parameter values for tlyennastric GARCH
specifications, both for the 0.05-quantile and @0ntile.

Figure 3. S&P returns between January 2004 and rbleee 2009 (grey line) and the
corresponding boosted Value at Riski@a0.05 anda=0.01 (black lines).

s idaslysalpiiots piieh

2004 2005 2006 2007 2008 2009 12010

Source: own calculations with the application af tmboost’ application.

In Figure 2 we present the return series underystodether with the
obtained boosting-based time-varying VaR estima¥és. can observe that the
estimated conditional quantiles seem to suitaldgtréo the down- and upswings in
the return series and to capture volatility clusgpeffects in a satisfactory manner.
Moreover, boosting mechanism allows for a very gfibdf the (in sample) QR
model. According to the results of both, the undboal coverage and the
conditional coverage tests, the observed fractib’VaR exceedances does not
significantly differ from the probability level sat the model. We are also not able
to reject the null, that the exceedances are imiép# in time (Llc is equal to
0.002 and Lkc is equal to 0.17 for VafRsand LLyc is equal to 0.055 and kkis
equal to 0.399 for Vafy).

This new approach seems to set forth a promisisgareh direction in VaR
modelling. Its merits lie in a properly chosen Idesction, which, contrary to
majority of GARCH specifications, does not imposg g@arametric assumptions
on the distribution of financial returns. As oppdse GARCH models, it estimates
the conditional quantile directly and in semiparamdashion, which stays in line
with the CAViaR approach. The dynamics of the math be easily driven by
different forms of volatility estimates or otherrigbles as lagged transaction
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volumes or implied volatility estimates. The drawkaof this approach is its
sensitivity to selection of a shrinkage factor caximum numbers of performed
boosting iterations. The approach can be alsoil&ap possible structural breaks
in the series, which may pose a further need tone-varying weights. Moreover,
much more effort should be put on a proper evalnatf the out-of-sample
properties of the model, which is of utmost impoda as far as the model
application in the risk management is concerned.
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