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Abstract:  We consider boosting, i.e. one of popular statistical machine-
learning meta-algorithms, as a possible tool for combining individual 
volatility estimates under a quantile regression (QR) framework. Short 
empirical exercise is carried out for the S&P500 daily return series in the 
period of 2004-2009. Our initial findings show that this novel approach is 
very promising and the in-sample goodness-of-fit of the QR model is very 
good. However much further research should be conducted as far as the out-
of-sample quality of conditional quantile predictions is concerned.  
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INTRODUCTION 

Boosting refers to an iterative statistical machine learning meta-algorithm 
which aims to enhance the predictive accuracy of different weak classification 
algorithms (weak learners), i.e. classifiers that evidence a substantial error rate. In 
brief, the method is recognized as very complex and efficient when making a new 
prediction rule by combining different and often inaccurate individual 
classification rules. Different examples of specific boosting algorithms have been 
proposed in the literature so far, and perhaps the most renown one is the Adaptive 
Boosting algorithm (i.e. AdaBoost) (see [Freund and Schapire 1997]). In short, the 
AdaBoost algorithm iteratively evokes a new weak classification rule which 
assigns more weights to these data points that eluded correct classification by 
former classifiers. In this manner the algorithm keeps reinforcing the focus of 
additional weak learners on inappropriately classified data, thus improving the final 
accuracy of prediction. Final classification is obtained by appropriate weighting 
votes of single classifiers. A thorough discussion of the boosting mechanism from 
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the statistical perspective has been presented by [Friedman et al. 2000] or 
[Bühlmann and Hothorn 2007].   
 

From an econometric viewpoint, boosting might be used as an optimization 
algorithm for choosing the best combination of explanatory variables (predictors) 
with respect to an economic question at hand. To this end, based upon the nature of 
the economic phenomenon under study as well as specific statistical features of 
dependent variable to be considered, many different cost functions can be easily 
accommodated in the boosting algorithm. These might be, for example, negative 
binominal log-likelihood for a binary classification problem, L1-norm loss function 
for median regression, L2-norm loss function for standard (mean) regression or a 
check function for quantile regression (see [Bühlmann and Yu 2003]; [Bühlmann 
2006]; [Fenske at al. 2011]). Boosting methods have also been applied to density 
estimation by [Ridgeway 2002] or [Di Marzio and Taylor 2005] or to survival 
analysis by [Hothorn et al. 2006], [Lu and Li 2008] or [Chen et al. 2013]. In short, 
once the loss criterion is set, boosting algorithm performs sequential updates of an 
(parameter) estimator according to the steepest gradient descent of the loss function 
evaluated at the empirical data. At each iteration step, separate regression models 
(weak learners) are used to explain the negative of gradient of the evaluated cost 
function with the penalized ordinary least squares method (see [Fenske at al. 
2011]).  
 

The aim of this analysis is to provide a short pilot empirical study on 
possible application of boosting algorithm when combining different volatility 
estimates under a quantile regression (QR) framework (see [Koenker 2005]). We 
are inspired by the recent contribution of [Fenske at al. 2011], where the functional 
gradient boosting algorithm for quantile regression has been thoroughly discussed. 
For an empirical analysis we applied the software package (application ‘mboost’) 
developed under the R environment by [Hothorn et al. 2010] and [Hothorn et al. 
2013] (see also [R Development Core Team 2008]). In this pilot study we intend to 
consider a boosting-based model for a conditional quantile of return distribution. 
The quantile regression model might be simply treated as a (percentage) value-at-
risk model where the optimal combination of linear predictors has been selected 
(and accordingly weighted) from the set of volatility estimates based upon different 
specifications of GARCH models. In such a setup, individual parametric GARCH-
based conditional quantile predictions might be even severely biased, whereas the 
boosting algorithm is awaited to combine them in an optimal way, hence enforcing 
the quality of emerging value-at-risk measures. 
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TEORETICAL FOUNDATIONS 

The concept of value-at-risk is fundamentally related to the notion of a 

quantile function. If tr  denotes a return on portfolio between times 1−t  and t , the 

corresponding (percentage) α,tVaR  would be equal to )( trqα  i.e. the conditional 

α -quantile of return distribution:  

 Pr(rt <VaRt ,α | Ft−1) = qα (rt ) ,  (1) 

where 1−tF  denotes an information set available at 1−t . In financial risk 

management, VaR constitutes a popular risk measure. From equation (1) it 
becomes clear, that VaR is a threshold value for (percentage) loss. Thus, the 
probability that marked-to-market return on portfolio value (over given time 
horizon) will be lower than VaR will be equal to the chosen probability level α . 
There are plenty of value-at-risk models proposed in the literature (see [Jorion 
2000]). The most popular VaR models are based upon: the RiskMetrics approach, 
parametric GARCH models, semiparametric methods which combine parametric 
GARCH models with nonparametric distribution estimates (i.e. filtered historical 
simulation) or CAViaR models that directly depict conditional quantiles as 
observation-driven autoregressive processes (see [Engle and Manganelli 2004]).   

There is a strong trend in the recent literature to improve the prediction 
accuracy of different forecasts by combining them. For a standard regression 
problem, simple averages or weighted averages of individual forecasts (i.e. 
averages weighted by inverses of prediction errors) are usually used. For example, 
[Aiolfi et al. 2010] show that the equally-weighted average of survey forecasts and 
forecasts from various time-series models leads to smaller out-of-sample prediction 
errors. Quite recently, combining the individual volatility forecasts (see [Amendola 
and Storti 2008], [Jing-Rong et al. 2011]) or even density forecasts attracted much 
attention. For example, [Hall and Mitchell 2007] set the weights of individual 
density forecasts as the weights that minimize the ‘distance’ (measured by the 
Kullback–Leibler information criterion) between the forecasted and the true 
(unknown) density. The most modern approach is to combine forecasts under the 
quantile regression framework. [Chiriac and Pohlmeier 2012] propose new 
methods for combining individual value-at-risk forecasts directly. They show how 
to mix information from different VaR specifications in an optimal way using a 
method-of-moments estimator. Alternatively, they combine individual VaR 
forecasts under the QR framework. [Jeon and Tylor 2013] enrich the CAViaR 
model of [Engle and Manganelli 2004] with the implied volatility measure that 
reflects the market’s expectation of risk and carries new information in comparison 
to historical volatility estimates.      
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In this pilot study we consider seven different volatility estimates tσ̂ . Each 
of these is derived from a different GARCH specification: 
 

1. Standard ‘plain vanilla’ GARCH(1,1) model of [Bollerslev 1986]: 

 2
1

2
1

2 = −− ++ ttt βσαεωσ   (2) 

where 2
tε  denotes the residuals from the mean filtration process. (For the sake 

of parsimony, ARMA(1,1) model has been used in the conditional mean 
equation.) 

 
2. Integrated GARCH(1,1) model of [Engle and Bollerslev 1986]: 
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3. Exponential GARCH(1,1) model of Nelson (1991): 
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4. GJR GARCH model of  [Glosten et al. 1993]: 
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where 1−tI  denotes the indicator function ( 11 =−tI  if 01 ≤−tε  and 01 =−tI  

otherwise). 
 

5. The asymmetric power ARCH(1,1) (APARCH) model of [Ding et al. 1993]: 

 ( ) δδδ βσγεεαωσ 111= −−− +−+ tttt  (6) 

where 0>δ denotes a parameter of the Box-Cox transformation of 2
tσ . 

 
6. The absolute value GARCH (AVGARCH) model of [Taylor 1986] and 

[Schwert 1990]: 

 11= −− ++ ttt βσεαωσ  (7) 

 
7. The Nonlinear Asymmetric GARCH model of [Engle and Ng 1993]: 
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where 1η  denotes a “rotation” parameter and 2η denotes a “shifts” parameter, 
respectively. 



Boosting under Quantile Regression…  11 

All the ‘sigma’ estimates obtained from the aforementioned models will be 
treated as explanatory variables in a boosting-based quantile regression analysis. 
Accordingly, we aim to search for the optimal weighting algorithm of these 
volatility estimates under the QR framework.  

Under the QR setup the conditional quantile of return distribution is given 
as: 
 
 ααα η βxx ttttrq ′== ,)|(   (9) 

 
where tx  denotes an [ ]1xL  vector of VaR predictors at time t (individual 

explanatory variables, including the obtained sigma estimates) and αβ  denotes a 

corresponding [ ]1xL  parameter vector. The parameter vector αβ  can be estimated 
by finding a minimum of the following QR optimization problem: 
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The functional gradient boosting algorithm looks for the minimum of the 

empirical risk function: ∑
=

T

t
tL

T 1

1
, where tL  denotes its t-th contribution, which, in 

the case of a quantile regression problem, is given as: )( ,ttt rL αα ηρ −=  (where 

t,αη  denotes a theoretical value of a conditional α - quantile or, in other words, it 

is a linear combination of individual predictors of a given conditional α -quantile).  
 

In the following, we present the outline of boosting strategy after [Fenske at 
al. 2011] with slight modifications (and changes in notation) in order to adjust the 
algorithm to the setup of our study.   

 

1. Choose an appropriate starting value for parameter vector 0
αα ββ = . Define a 

maximum number of boosting iterations stopm  and set the iteration index at 

0=m . 
 

2. Compute  1]x[T vector of negative gradients of the empirical risk function 
(evaluated at each t): 
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In the case of quantile regression, the first derivative of tL  with respect to t,αη  

is: 
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3. With the OLS, fit possible explanatory variables to the obtained negative 

gradients in order to obtain the m-step estimates: ][
,

ˆ m
lbα  (for L,...,2,1=l ). These 

regressions are the base learners assigned to individual parameters l,αβ . 

Estimation of ][
,

ˆ m
lbα  is done by minimizing the standard 2L  loss: 

)ˆ()ˆmin( αααα uuuu −′−  where llb ,ˆ αα xu =  (optimization is performed for 

each lx  variable separately). 

 
4. If the best-fitting variable has an indicator *l  ( L*1 ≤≤ l ), then the coefficient 

that corresponds to this variable is updated accordingly as: 
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 where � ∈ (0,1]	is a given step size, i.e. shrinkage 

parameter. All other parameters are kept constant: 
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5. Increase m by one until stopmm =  or go back to [2]. 

Functional gradient boosting has a very intuitive interpretation. In step [3] of 
the algorithm, L  separate linear regression models are estimated, but only the best 
one (according to mean square criterion) is selected to update the m-step parameter 

vector ][ m
αβ . Accordingly, at each iteration, boosting algorithm chooses only one 

variable that explains in the best way the negative gradient of the empirical loss 
function. In step [4] the parameter corresponding to this variable is changed 

proportionally to the value of achieved ][
,

ˆ m
lbα , whereas some shrinkage should be 

made according to the chosen size of ν . 

EMPIRICAL EXERCISE 

Time series of daily log returns on S&P500 close prices between January 
2004 and December 2009 has been selected as the dataset for the exercise. The 
huge heterogeneity of the time span under study allows to cover a ‘calm’ period of 
2004-2006 and the very turbulent period of a recent financial turmoil of 2007-
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2009. In Table 1 we present some standard backtesting measures of individual 
GARCH-based quantile estimates of return distribution. These are the results of 
popular unconditional coverage test of [Kupiec 1995] (i.e. test statistics LLUC) and 
of conditional coverage test of [Christoffersen 1998]  (i.e. test statistics LLCC). 
Large values of the obtained test statistics evidence that the in-sample fit of all 
GARCH-based conditional quantile forecast is very poor. This can be well 
understood if we take into account the structural break of July 2007 (first signals of 
the upcoming turmoil) or the crash of September 2008 (the fall of Lehman 
Brothers) that should have been taken into consideration while constructing 
GARCH models. Moreover, all GARCH specifications have been estimated with 
the assumption of Gaussian distribution for the error terms, which significantly 
underestimates the true thickness of the lower distribution tail.   

Table 1. Quality of (in-sample) VaR estimates under different GARCH specifications. 
LLUC denotes the unconditional coverage statistics and LLCC denotes the 
conditional coverage statistics. Bolded values denote statistically significant (at 
5%) outcomes.    

   model  LLUC  
VaR0,05 

LLCC  
    VaR0,05 

LLUC  
VaR0,01 

LLCC  
VaR0,01 

GARCH 4.972 713.883 22.902 370.251 
IGARCH 1.237 655.023 11.579 305.938 
EGARCH 2.809 684.453 8.927 287.563 

GJR GARCH 3.841 696.225 8.926 287.563 
APARCH 2.108 672.681 8.927 287.563 

AVGARCH 2.447  678.567 7.708 278.376 
NAGARCH 1.237 655.023 11.579 305.938 

Source: own calculations.  

Volatility estimates resulting from the seven different, but in fact incorrect 
GARCH specifications have been used as potential predictors in a boosting 
mechanism together with a one-day lagged “High-Low” price range measure for 
S&P500. As suggested by [Bühlmann, Hothorn 2007] we centered all individual 
predictors (by subtracting their mean value) before initializing boosting algorithm. 
The initial value for the intercept in the QR model has been selected as the 
unconditional 0.05-quantile or the unconditional 0.01-quantile, respectively. The 
shrinkage parameter has been set as 05.0=ν , thus we allow for more shrinkage 
than [Fenske et al 2011], in order to account for a considerable multicollinearity 
between predictors. The optimal number of boosting iterations (m) has been 
selected with the application of a standard 25-fold bootstrap procedure in order to 
avoid overfitting of the learning mechanism.  
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Figure 1. Value of the empirical loss function for increasing number of boosting iterations. 
Results from 25 individual subsamples corresponding to the 25-fold bootstrap 
procedure (grey lines) and their average (black line) with respect to the 0.05-
quantile (left panel) and the 0.01-quantile (right panel).    

  
 

Source: own calculations with the application of the ‘mboost’ library. 

The results of the boosting-based model for the 0.05-quantile are the 
following. Out of eight potential individual predictors, five were selected by the 
algorithm:  

• standard GARCH-based volatility ( 499.0ˆ
05.0,1 −=β ),  

• IGARCH-based volatility ( 160.0ˆ
05.0,2 =β ),  

• EGARCH-based volatility ( 573.0ˆ
05.0,3 −=β ),  

• GJR GARCH-based volatility ( 911.0ˆ
05.0,4 −=β ), and the  

• H-L price range ( 060.0ˆ
05.0,8 =β ).  

In the case of 0.01-quantile regression, once again  

• standard GARCH-type volatility is selected 888.0ˆ
01.0,1 −=β , and then  

• IGARCH-based volatility ( 095.0ˆ
01.0,2 =β ),  

• EGARCH-type volatility ( 774.0ˆ
01.0,3 −=β ),  

• GJR GARCH-type volatility ( 650.0ˆ
01.0,4 −=β ) and  

• H-L price range ( 047.0ˆ
01.0,8 −=β ).  

Therefore, we can formulate the following conclusions. First, weights of 
volatility estimates selected by a boosting algorithm differ for 0.05-quantile and the 
0.01-quantile, although the types of selected models stay the same. Second, 

25-fold bootstrap

Number of boosting iterations

E
m

p
ir

ic
al

 lo
ss

 (
Q

R
)

1 13 27 41 55 69 83 97 113 131 149

0
.0

0
12

0.
0

01
4

0.
0

01
6

0.
0

01
8

0.
0

02
0

25-fold bootstrap

Number of boosting iterations

E
m

p
ir

ic
al

 lo
ss

 (
Q

R
)

1 13 27 41 55 69 83 97 113 130 147

0
.0

0
04

0.
0

00
8

0.
00

12
0.

00
1

6



Boosting under Quantile Regression…  15 

majority of selected sigma-predictors have, as expected, negative impact for the 
conditional quantile. Third, leverage or non-linearity effects play an important role 
as suggested by a large parameter values for the asymmetric GARCH 
specifications, both for the 0.05-quantile and 0.01-quantile.  

Figure 3. S&P returns between January 2004 and December 2009 (grey line) and the 
corresponding boosted Value at Risk at α=0.05 and  α=0.01 (black lines). 

Source: own calculations with the application of the ‘mboost’ application. 

In Figure 2 we present the return series under study together with the 
obtained boosting-based time-varying VaR estimates. We can observe that the 
estimated conditional quantiles seem to suitably react to the down- and upswings in 
the return series and to capture volatility clustering effects in a satisfactory manner. 
Moreover, boosting mechanism allows for a very good fit of the (in sample) QR 
model. According to the results of both, the unconditional coverage and the 
conditional coverage tests, the observed fraction of VaR exceedances does not 
significantly differ from the probability level set in the model. We are also not able 
to reject the null, that the exceedances are independent in time (LLUC  is equal to 
0.002 and LLCC is equal to 0.17 for VaR0.05 and LLUC  is equal to 0.055 and LLCC is 
equal to 0.399 for  VaR0.01). 

This new approach seems to set forth a promising research direction in VaR 
modelling. Its merits lie in a properly chosen loss function, which, contrary to 
majority of GARCH specifications, does not impose any parametric assumptions 
on the distribution of financial returns. As opposed to GARCH models, it estimates 
the conditional quantile directly and in semiparametric fashion, which stays in line 
with the CAViaR approach. The dynamics of the model can be easily driven by 
different forms of volatility estimates or other variables as lagged transaction 
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volumes or implied volatility estimates. The drawback of this approach is its 
sensitivity to selection of a shrinkage factor or maximum numbers of performed 
boosting iterations. The approach can be also ‘fragile’ to possible structural breaks 
in the series, which may pose a further need for a time-varying weights. Moreover, 
much more effort should be put on a proper evaluation of the out-of-sample 
properties of the model, which is of utmost importance as far as the model 
application in the risk management is concerned. 
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