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Abstract: In this paper we proved that a fast fixed poinbaltym known as

FastICA algorithm depending on maximization the gerssianity by using
the negentropy approach is one of the best algorftr solving ICA model.

We compare this algorithm with Gradient algoritifhe Abu Dhabi Islamic
Bank (ADIB) used as illustrative example to evatudhhe performance of
these two algorithms. Experimental results show tha FastICA algorithm
is more robust and faster than Gradient algorithistock market analysis.
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INTRODUCTION

Independent Component Analysis (ICA) is a mathesabind computation-
al technique for revealing hidden factors that ulelsets of random signals (vari-
ables) [Comon 1994; Jutten, Herault 1991; Hyvarieeal. 2001]. These underly-
ing latent variables are called sources or indepeihdomponents (ICs) and they
are assumed to be statistically independent of eflcbr and nongaussian. The
technique of ICA is a relatively new invention.thre middle of 1990s, some highly
successful new algorithms for solving the ICA modelre introduced by several
research groups [Hyvarinen, Oja 2000; Hyvarinen919@ardoso, Souloumiac
1993;Choi et al 2001; Pham, Cardoso 2000; Pham, Garat 1997; Bedani et al.
1996; Jutten 2000; Jutten, Herault 1991]. The maathematical problem of ICA
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can be described as follows: we obsemveandom variables;, x,, :*- x,,,, which
are modeled as linear combinationsyadndom variables,, s, - s,,:

Xi = Qj1S1 T QS AjnSp (1)
foralli =1, 2, ..., m, whera;; are some real mixing coefficients. Thare statisti-
cally mutually independent. The matrix represeatatf equation1) can be ex-
pressed as:

X =As (2)
wherex is an observedmdimensional vectors is n-dimensional (latent) random
vector whose components are assumed mutually indepe andA is a constant
mxn matrix to be estimated. It is usually further asedrthat the dimensions &f
ands are equal, i.em=n. Basic ICA model describes how the observed data ar
generated by a process of mixing the independanpooentss;. The independent
components; are the latent variables which means that theyar®bservable di-
rectly. Also the mixing coefficients;; are unknown. ICA uses solely the observed
datax; to estimate both the IGs and the mixing coefficients;;. The task in ICA
is to find both the latent variables or sourggand the mixing process; in the line-
ar case, the latter task consists of finding theimgi matrixA. A popular approach
is to find a demixing matri}¥V so that variableg; in y=Wx are estimates of, up
to scaling and permutation. Hence W is an estirohthe (pseudo)inverse & up
to scaling and permutation of the rowsWf Often the latent variables are esti-
mated one by one, by finding a column veaigr(this will be stored as a row
of W) such that; = w! x is an estimate of;.

In order to calculate a demixing matii¥ (i.e. to estimate ICs), numerous
ICA algorithms have been developed with variousregghes. In this paper we try
to review the most important two algorithms to sadllie ICA model based on max-
imization of nongaussianity by using negentropyrapph, namely Gradient algo-
rithm and FastICA algorithm [Hyvarinen 1997; Hyvign 1999; Hyvarinen, Oja
1997]. In practice, before application of these talgorithms, suitable prepro-
cessings often compulsory i.e. centering and whiteninge Dbserved vectof is
first centered by removing its mean. A zero-meamloa vector z=4,2,...,2)" is
said to be white or spheifeits componentsz are uncorrelatednd have unit vari-
ances. This means that the covariance matrix (#sas¢he correlation matrix) of
z equals the identity matrix. Centering and whitgntan be accomplished by prin-
cipal component analysis (PCA).

Abu Dhabi Islamic Bank (ADIB) used as illustratiegample to evaluate
the performance of these two algorithms. Experialergsults show that FastiCA
is more robust and faster than Gradient algorithistock market analysis.
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RESEARCH METHODOLOGY

Estimation the independent components (ICs) isallartging task because
ICA uses solely the observed datdo estimate both the IGsand the mixing co-
efficientsaj. Several approaches for solving ICA model areqes] during last
decade. Maximization of nongaussianity based oremtegpy is one of these ap-
proaches. Maximization of nongoussianity basedementropy is a simple and in-
tuitive principle for estimating the model of indgmlent component analysis
(ICA). Nongaussian components are independent. &leswianity is actually of
high importance in ICA estimation. If the nongaasdy does not valid, then the
estimation is not possible at all. To use nongandyi in ICA estimation, we must
have a quantitative measure of hongaussianityrahdom variable, say To sim-
plify things, let us assume thais centered (zero-mean) and has variance equal to
one. Actually, one of the functions of preprocegsim ICA algorithms is to make
this simplification possible [Hyvéarinen, Oja 200@ne of the most important
gquantitative measures of nongaussianity is a heggnas we show below.

Negentropy

Negentropy is based on the information theoretiangjty of (differential)
entropy [Hyvarinen et al. 2001]. The entropy ohadom variable can be interpret-
ed as the information degrees of a given obsertiabla. The entropi of a ran-
dom vectorx with densityf(x) is defined as:

H(x) = —j f (x)log f (Xdx 3)

A fundamental result of theformation theory is that a gaussian variable has
the largest entropy among all random variables gqufaké variance[Hyvarinen
1999]. The entropy is small when variables areffan the gaussian, hence it can
be used in theneasure of nongaussianity. ThegentropyN of a nongaussian ran-
dom vectorX is defined as:

N(X)=H(Xg)-H(X) (4)

whereXg is a gaussian random vector whose covariancexnstequal to that of
X. Note that negentropy is non-negative and zeemdf only if the vectoK has a
gaussian distribution. The main problem in usingamropy is that it is computa-
tionally very difficult. Hence simpler approximatie of negentropy are very use-
ful. A classical method to approximate negentrapysing higher-order cumulants,
for example as follows [Jones, Sibson 1987]:

N(X):éE{X3}2+4—18kurt{ X}2 (5)

whereX is assumed to be a zero mean and a unit varidribe.random variabl&
has a symmetric distribution, then the first temihie right-hand side of Eq. (8) is
equal to zero, and so this approximation oftenddgadhe use of kurtosis as in the
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preceding section. To avoid this problem we caifioper the approximation bys-
ing a non-quadratic functio® as follows:

N(X) « [E{G(X)} — E{G(»)}]? (6)
wherev is a gaussian variable with a zero mean and avaniénce (i.e. standard-
ized). Here, one must choose G wisely. In partigcuthoosingG that does not
grow too fast one obtains more robust estimatdns. fbllowing choices o6 have
proved very useful

G(X) = aillog cosh a, X (7

2
G, (X) = —Exp (5-) (8)
Wherel < a; < 2 is a constant often taken equal one.

Negentropy, based on the information theoretic tityaof entropy is a best
method of measuring nongaussianity, it can be qune#ly simple, fast to com-
pute, more robust, enable the deflationary (i.e-loyrone estimation of independ-
ent components), and force the estimations of ndependent components to be
uncorrelated.

Gradient algorithm using negentr opy

The main task in the independent component anafiSis) problem is to
estimate a demixing matri#%/ that will give us the independent componentshis t
subsection we derive a simple gradient algorithnmiaeximizing negentropyl ak-
ing the gradient of the approximation of negentrapy6) with respect tav, and
taking the normalizatiod {(w”z)?} = ||w||? into account, one obtains the follow-
ing algorithm [Hyvarinen et al. 2001]

Aw < yE{zg(w" z)} (9)
- ”:—” (10)

wherey = E{G(wTz)} — E{G(v)}. The functiong is the derivative of the function
G used in equations (7) and (8). The paramgtean be estimated on-line as fol-
lows:

Ay < [G(w"z) — E{G)}] — ¥ (11)
The final form of the gradient algorithm is sumrzad as follows:
Center the data to make its mean zero.
Whiten the data to give z.
Choose an initial random vectarof unit norm, and an initial value fer
UpdateAw « yzg(w™z).

Normalizew « ——
[lwl]

If the sign ofy is not known a priori, updaté\y o [G(wTz) — E{G(v)}] — .
If not converged, go back to step 4.

No g kNP
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Fastl CA algorithm using negentr opy

In this subsection we derive the fixed-point altori (FastlCA) using
negentropy for maximizes the nongaussianity [Hyemiet al. 2001]. The result-
ing FastICA algorithm finds a direction, i.e., atanvectorw, such that the projec-
tion wTz maximizes the nongaussianity. Here nongaussiamigsured by the ap-
proximation of negentropy (w”z) given in (6). Recall thaw”z must constrain-
ing to have a unit variance, this is equivalentud| = 1.

Looking at the gradient method in (9) immediatalggests the following fixed-point itera-
tion:

z <« E{zg(w"2)} (12)
- ﬁ (13)

The iteration in (12) has to be modified becausdoigsn’'t have a good conver-
gence. This can easily do as follows:

(1+ a) = E{zgwT2)} + aw (14)
whereqa is a constant. One must choaswisely to obtain an algorithm that con-
verges faster than gradient algorithm.

FastICA can be found using Newton’s method appnakion. To derive the
approximative Newton method, first note that thexima of the approximation of
the negentropy ofv”z are typically obtained at certain optima 6{G(wTz)}.
According to the Lagrange conditions, the optimaE¢&(wTz)} under the con-
straint E{(w”2)?} = ||w||?> = 1 are obtained at points where the gradient of the
Lagrangian is zero [Hyvarinen et al. 2001]:

E{zgwT2)}+pw =10 (15)
To simply solve equation (15) by Newton's methaatFl= E{zg(wTz)} + Bw,
we obtain its gradient as:

Z=E(z7'g (WT2)} + pI (16)
Since the data is whitened, we can simplify thesigion of this matrix by

approximate the first term in (16) as follows:
E(zz' g W'2)} ~ E{zZ'}E{g W 2)} = E{g W 2)}1.

Thus the gradient becomes diagonal, and can dasilyverted. Thus we obtain the
following approximative Newton iteration:
E{zg(wTz)}+Bw
‘g (47

After straightforward algebraic simplification wévg the basic fixed-point
iteration in FastICA:

w e« Efzgw'2)} - E{g W 2)}w (18)

wew—



A Comparative Study of FastICA and Gradient ... 147

Then the basic form of the FastICA algorithm cardescribed as follows:
1. Center the data to make its mean zero.

2. Whiten the data to give z.
3. Let we« E{zgwT2)}—E{g W 2)}w.
4. Letw « —.
llwll
5.

If not converged, go back to step 4.

These two algorithms just give estimates only omependent component.
In practice, we have many more dimensions, andtbes, we usually want to es-
timate more than one independent component. Tmsbeadone by several meth-
ods.

EMPIRICAL RESEARCH

Forecasting stock market has been one of the Highaienges to the scien-
tific community. It requires the use of a possilalsge set of input variables. Selec-
tion of a useful subset of input variables is didift task. ICA has been widely
applied to financial time series analysis. It is s extract the independent compo-
nents (ICs) from a very complex data set, theseaf@sstatistically independent
from each other. The ICA procedure reduces the eurob input variables to a
much smaller set of ICs. These ICs are expectadpture most of the useful in-
formation of original data.

Artificial Neural network (ANN) technique is regad as more suitable for
stock market forecasting than other techniques; #re able to learn and detect
patterns or relationships from the data itselinc8iproperly estimated ICs are sta-
tistically independent from each other, we canthsen as an input of neural net-
work that can be used to forecasts of the stockabam empirical study we use
the Independent Component Analysis (ICA) as a pagssing algorithm to fore-
cast the stock market.

In our empirical, ICA is firstly applied to analyzhe financial time series
data to get statistically mutually independent comgnts. The analyzed ICs are
conducted as the input of NN for constructing a&dasting model. We will try to
apply the historical data of the last trading dagjuding daily open, highest, low-
est, closing price, daily volume and daily turnoasrthe input of NN, the output of
the NN include the closing price of the next tragifay.

For compering the performance of Gradient algoritand FastlCA algo-
rithm, we select the data of ADIB trading day fr@utober 05, 2010 to December
31, 2013. We will use three different types of datanput variables of NN. These
types are:

» Type 1: the original six time series include dajfyen price, daily highest price,
daily lowest price, daily closing price, daily vahe and daily turnover of the
previous period (Figure 1).
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« Type 2: the six ICs obtained by applying Gradidgbdathm to original time se-
ries (Figure 2).

« Type 3: the six ICs obtained by applying FastlCéoaithm to original time se-
ries (Figure 3).

Figure 1: original data of ADIB from October 05,120to December 31
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Figure 2. Analyzed data of ADIB from October 0812 to December 31, 2013 using the
Gradient algorithm
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Figure 3. Analyzed data of ADIB from October 051200 December 31, 2013 using the

FastICA algorithm
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Using the previous different types of input data @btain three different
prediction models (Original-NN, Gradient-NN and #@#&-NN) respectively.
A three-layer Back Propagation neural network whicmtains input layer, one
hidden layer, and output layer is chosen in thislyt

The performance is evaluated by using the followiegformance measures:
the root mean square error (RMSE), the normalizednrsquare error (NMSE),
the prediction error (PE) and the correlation doedht (R). The smaller RMSE,
NMSE and PE values and the larger R value reprdabentess deviation, that is,
the best performance. Table 1 illustrates the eogbiresults of those three differ-
ent models.

Table 1. The ADIB closing price forecasting results

Algorithm RMSE NMSE PE R
Original-NN 0.98902 0.25287 0.13325 0.59253
Gradient-NN 0.23536 0.09855 0.09899 0.75547
FastICA-NN 0.09271 0.01448 0.07375 0.96036

Source: own elaboration

From table 1we can observe that the FastiCA-NN rhbdee smallest val-
ues of RMSE, NMSE, PE and have a largest R froraratiodels. Thus, the Fastl-
CA-NN model can produce lower prediction error digher prediction accuracy
of the closing price forecasting. Thus, we can sanue that the FastlICA algo-
rithm outperforms the Gradient algorithm in anatggtime series data.
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Figures 4 - 6 represetite actual daily ADIB closing price and the preéitt
values of the Original-NN, Gradient-NN and FastIGIAF Models respectively.

Figure 4. The actual daily ADIB closing price ahe predicted values of the Original-NN
model
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Figure 5. The actual daily ADIB closing price ahe predicted values of the Gradient-NN
model
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Figure 6: The actual daily ADIB closing price aie fpredicted values of the FastiCA-NN
model
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CONCLUSION

Recently, ICA has been widely applied to finantiae series analysis. Es-
timation the independent components (ICs) is acdiffftask. Some highly success-
ful new algorithms with various approaches for sa\the ICA model were intro-
duced by several research grouptock market forecasting has been one of the
biggest challenges to the scientific community.iffsial Neural network (ANN)
technique is regarded as more suitable for stoakehforecasting than other tech-
niques. Since ICs are statistically independemhfeach other, we can use them as
an input of neural network that can be used toctsts of the stock market.

In this paper we proved that a fast fixed poinbéathm known as FastiICA
algorithm depending on maximization the nongausgsiarsing the negentropy ap-
proach is better than Gradient algorithm for s@i@A model. The Abu Dhabi Is-
lamic Bank (ADIB) used as illustrative example teakiate the performance of
these two algorithms. In empirical study we useltidependent Component Anal-
ysis (ICA) as a preprocessing to forecast the stoekket. Experimental results
show that FastICA is more robust and faster thaad@nt algorithm in stock mar-
ket analysis.
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