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Abstract: In this paper we proved that a fast fixed point algorithm known as 
FastICA algorithm depending on maximization the nongaussianity by using 
the negentropy approach is one of the best algorithm for solving ICA model. 
We compare this algorithm with Gradient algorithm. The Abu Dhabi Islamic 
Bank (ADIB) used as illustrative example to evaluate the performance of 
these two algorithms. Experimental results show that the FastICA algorithm 
is more robust and faster than Gradient algorithm in stock market analysis. 
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INTRODUCTION 

Independent Component Analysis (ICA) is a mathematical and computation-
al technique for revealing hidden factors that underlie sets of random signals (vari-
ables) [Comon 1994; Jutten, Herault 1991; Hyvärinen et al. 2001]. These underly-
ing latent variables are called sources or independent components (ICs) and they 
are assumed to be statistically independent of each other and nongaussian. The 
technique of ICA is a relatively new invention. In the middle of 1990s, some highly 
successful new algorithms for solving the ICA model were introduced by several 
research groups [Hyvärinen, Oja 2000; Hyvärinen 1999; Cardoso, Souloumiac 
1993; Choi et al. 2001; Pham, Cardoso 2000; Pham, Garat 1997; Belouchrani et al. 
1996; Jutten 2000; Jutten, Herault 1991]. The main mathematical problem of ICA 
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can be described as follows: we observe m random variables ��, ��, ⋯��, which 
are modeled as linear combinations of n random variables ��, ��,⋯ ��:   
 �� = 
���� + 
����⋯
����   (1) 

for all i = 1, 2, ..., m, where ai,j are some real mixing coefficients. The si are statisti-
cally mutually independent. The matrix representation of equation (1) can be ex-
pressed as: 
 x = As   (2) 
where x is an observed  m-dimensional vector, s is n-dimensional (latent) random 
vector whose components are assumed mutually independent, and A is a constant  
m×n  matrix to be estimated. It is usually further assumed that the dimensions of x 
and s are equal, i.e. m=n. Basic ICA model describes how the observed data are 
generated by a process of mixing the independent components ��. The independent 
components ��	are the latent variables which means that they are not observable di-
rectly. Also the mixing coefficients 
�� are unknown. ICA uses solely the observed 
data �� to estimate both the ICs �� and the mixing coefficients 
��. The task in ICA 
is to find both the latent variables or sources �� and the mixing process; in the line-
ar case, the latter task consists of finding the mixing matrix A. A popular approach 
is to find a demixing matrix W so that variables �� in y=Wx are estimates of �� up 
to scaling and permutation. Hence W is an estimate of the (pseudo)inverse of A up 
to scaling and permutation of the rows of W. Often the latent variables si are esti-
mated one by one, by finding a column vector �� (this will be stored as a row  
of W) such that �� = ��

�� is an estimate of ��. 
 In order to calculate a demixing matrix W (i.e. to estimate ICs), numerous 

ICA algorithms have been developed with various approaches. In this paper we try 
to review the most important two algorithms to solve the ICA model based on max-
imization of nongaussianity by using negentropy approach, namely Gradient algo-
rithm and FastICA algorithm [Hyvarinen 1997; Hyvärinen 1999; Hyvarinen, Oja 
1997]. In practice, before application of these two algorithms, suitable prepro-
cessing is often compulsory i.e. centering and whitening. The observed vector X is 
first centered by removing its mean. A zero-mean random vector z=(z1,z2,…,zn)T is 
said to be white or sphere if its components  zi  are uncorrelated and have unit vari-
ances. This means that the covariance matrix (as well as the correlation matrix) of  
z equals the identity matrix. Centering and whitening can be accomplished by prin-
cipal component analysis (PCA).  

 Abu Dhabi Islamic Bank (ADIB) used as illustrative example to evaluate 
the performance of these two algorithms. Experimental results show that FastICA 
is more robust and faster than Gradient algorithm in stock market analysis. 
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RESEARCH METHODOLOGY 

Estimation the independent components (ICs) is a challenging task because 
ICA uses solely the observed data xi to estimate both the ICs si and the mixing co-
efficients ai,j. Several approaches for solving ICA model are presented during last 
decade. Maximization of nongaussianity based on negentropy is one of these ap-
proaches. Maximization of nongoussianity based on negentropy is a simple and in-
tuitive principle for estimating the model of independent component analysis 
(ICA). Nongaussian components are independent. Nongaussianity is actually of 
high importance in ICA estimation. If the nongaussianity does not valid, then the 
estimation is not possible at all. To use nongaussianity in ICA estimation, we must 
have a quantitative measure of nongaussianity of a random variable, say x. To sim-
plify things, let us assume that x is centered (zero-mean) and has variance equal to 
one. Actually, one of the functions of preprocessing in ICA algorithms is to make 
this simplification possible [Hyvärinen, Oja 2000]. One of the most important 
quantitative measures of nongaussianity is a negentropy as we show below. 

Negentropy 

Negentropy is based on the information theoretic quantity of (differential) 
entropy [Hyvärinen et al. 2001]. The entropy of a random variable can be interpret-
ed as the information degrees of a given observe variable.  The entropy H of a ran-
dom vector x with density f(x) is defined as: 

 ∫−= dxxfxfH )(log)()(x  (3) 

A fundamental result of the information theory is that a gaussian variable has 
the largest entropy among all random variables of equal variance [Hyvarinen 
1999]. The entropy is small when variables are far from the gaussian, hence it can 
be used in the measure of nongaussianity. The negentropy N of a nongaussian ran-
dom vector X is defined as: 
 N(X ) = H (Xg) − H (X )  (4) 

where Xg is a gaussian random vector whose  covariance matrix is equal to that of  
X. Note that negentropy is non-negative and  zero if and only if the vector X has a 
gaussian distribution. The main problem in using negentropy is that it is computa-
tionally very difficult. Hence simpler approximations of negentropy are very use-
ful. A classical method to approximate negentropy is using higher-order cumulants, 
for example as follows [Jones, Sibson 1987]:  

 N(X ) ≈ 1

12
E{ X 3} 2 + 1

48
kurt{ X} 2 (5) 

where X is assumed to be a zero mean and a unit variance. If the random variable X 
has a symmetric distribution, then the first term in the right-hand side of Eq. (8) is 
equal to zero, and so this approximation often leads to the use of kurtosis as in the 



A Comparative Study of FastICA and Gradient … 145 

preceding section. To avoid this problem we can perform the approximation by us-
ing a non-quadratic function G as follows: 

 
  ���� ∝ [	������� − �������]�	 (6) 
where � is a gaussian variable with a zero mean and a unit variance (i.e. standard-
ized). Here, one must choose G wisely. In particular, choosing G that does not 
grow too fast one obtains more robust estimators. The following choices of G have 
proved very useful 

  								����� = �
� 
log $%�ℎ	
��	 (7) 

       ����� = −��' ()*
+

� ,		 (8) 

Where 1 ≤ 
� ≤ 2 is a constant often taken equal one.  
Negentropy, based on the information theoretic quantity of entropy is a best 

method of measuring nongaussianity, it can be conceptually simple, fast to com-
pute, more robust, enable the deflationary (i.e. one-by-one estimation of independ-
ent components), and force the estimations of the independent components to be 
uncorrelated.  

Gradient algorithm using negentropy 

The main task in the independent component analysis (ICA) problem is to 
estimate a demixing matrix W that will give us the independent components. In this 
subsection we derive a simple gradient algorithm for maximizing negentropy. Tak-
ing the gradient of the approximation of negentropy in (6) with respect to w, and 
taking the normalization �����0��� = ‖�‖� into account, one obtains the follow-
ing algorithm [Hyvärinen et al. 2001] 

 ∆� ∝ 3��04���0��  (9) 

  � ← 6
‖6‖ (10) 

where 3 = ������0�� − �������. The function 4 is the derivative of the function 
G used in equations (7) and (8). The parameter 3 can be estimated on-line as fol-
lows: 
 ∆3 ∝ [����0� − �������] − 3  (11)  
The final form of the gradient algorithm is summarized as follows: 
1. Center the data to make its mean zero. 
2. Whiten the data to give z. 
3. Choose an initial random vector w of unit norm, and an initial value for	γ. 
4. Update	∆� ∝ 304���0�. 
5. Normalize � ← 6

‖6‖   . 

6. If the sign of γ   is not known a priori, update   ∆3 ∝ [����0� − �������] − 3. 
7. If not converged, go back to step 4.   
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FastICA algorithm using negentropy 

In this subsection we derive the fixed-point algorithm (FastICA) using 
negentropy for maximizes the nongaussianity [Hyvärinen et al. 2001]. The result-
ing FastICA algorithm finds a direction, i.e., a unite vector	�, such that the projec-
tion ��0 maximizes the nongaussianity. Here nongaussianity measured by the ap-
proximation of negentropy ����0�	given in (6). Recall that ��0 must constrain-
ing to have a unit variance, this is equivalent to ‖�‖ = 1. 
Looking at the gradient method in (9) immediately suggests the following fixed-point itera-
tion: 

 0 ← ��04���0�� (12) 

 � ← 6
‖6‖ (13) 

The iteration in (12) has to be modified because it doesn’t have a good conver-
gence. This can easily do as follows: 
 �1 + 9� = ��04���0�� + 9�  (14) 
where 9 is a constant. One must choose 9	wisely to obtain an algorithm that con-
verges faster than gradient algorithm. 

 FastICA can be found using Newton’s method approximation. To derive the 
approximative Newton method, first note that the maxima of the approximation of 
the negentropy of ��0 are typically obtained at certain optima of			������0��. 
According to the Lagrange conditions, the optima of ������0�� under the con-
straint �����0��� = ‖�‖� = 1 are obtained at points where the gradient of the 
Lagrangian is zero [Hyvärinen et al. 2001]: 
 ��04���0�� + :� = 0   (15) 
To simply solve equation (15) by Newton’s method, let	< = ��04���0�� + :�, 
we obtain its gradient as: 

 	 ∂F
∂w

=E�zzT4́	���0�� + :> (16) 

Since the data is whitened, we can simplify the inversion of this matrix by 
approximate the first term in (16) as follows:  

E�zzT4́	���0�� ≈ ��zzT���4́	���0�� = ��4́	���0��>. 
Thus the gradient becomes diagonal, and can easily be inverted. Thus we obtain the 
following approximative Newton iteration: 

  � ← � − @ABCD6EBFGHI6
E�Ć	�6EB��HI   (17) 

After straightforward algebraic simplification we give the basic fixed-point 
iteration in FastICA: 
  � ← 	��04���0�� − E�4́	���0���  (18) 
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Then the basic form of the FastICA algorithm can be described as follows: 
1. Center the data to make its mean zero. 
2. Whiten the data to give z. 
3. Let  � ← 	��04���0�� − E�4́	���0���. 

4. Let		� ← 6
‖6‖. 

5. If not converged, go back to step 4. 
These two algorithms just give estimates only one independent component. 

In practice, we have many more dimensions, and therefore, we usually want to es-
timate more than one independent component. This can be done by several meth-
ods. 

EMPIRICAL RESEARCH 

Forecasting stock market has been one of the biggest challenges to the scien-
tific community. It requires the use of a possibly large set of input variables. Selec-
tion of a useful subset of input variables is a difficult task. ICA has been widely 
applied to financial time series analysis. It is use to extract the independent compo-
nents (ICs) from a very complex data set, these ICs are statistically independent 
from each other. The ICA procedure reduces the number of input variables to a 
much smaller set of ICs. These ICs are expected to capture most of the useful in-
formation of original data. 

Artificial Neural network (ANN) technique is regarded as more suitable for 
stock market forecasting than other techniques, they are able to learn and detect 
patterns or relationships from the data itself.  Since properly estimated ICs are sta-
tistically independent from each other, we can use them as an input of neural net-
work that can be used to forecasts of the stock market. In empirical study we use 
the Independent Component Analysis (ICA) as a preprocessing algorithm to fore-
cast the stock market. 

In our empirical, ICA is firstly applied to analyze the financial time series 
data to get statistically mutually independent components. The analyzed ICs are 
conducted as the input of NN for constructing a forecasting model. We will try to 
apply the historical data of the last trading day, including daily open, highest, low-
est, closing price, daily volume and daily turnover as the input of NN, the output of 
the NN include the closing price of the next trading day. 

For compering the performance of Gradient algorithm and FastICA algo-
rithm, we select the data of ADIB trading day from October 05, 2010 to December 
31, 2013. We will use three different types of data as input variables of NN. These 
types are: 
• Type 1: the original six time series include daily open price, daily highest price, 

daily lowest price, daily closing price, daily volume and daily turnover of the 
previous period (Figure 1). 
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• Type 2: the six ICs obtained by applying Gradient algorithm to original time se-
ries (Figure 2). 

• Type 3: the six ICs obtained by applying FastICA algorithm to original time se-
ries (Figure 3). 

Figure 1: original data of ADIB from October 05, 2010 to December 31

 

Source: own elaboration 

 

Figure 2.  Analyzed data of ADIB from October 05, 2010 to December 31, 2013 using the 
Gradient algorithm 

 
Source: own elaboration 
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Figure 3. Analyzed data of ADIB from October 05, 2010 to December 31, 2013 using the 
FastICA algorithm 

 
Source: own elaboration 

Using the previous different types of input data, we obtain three different 
prediction models (Original-NN, Gradient-NN and FastICA-NN) respectively.  
A three-layer Back Propagation neural network which contains input layer, one 
hidden layer, and output layer is chosen in this study. 

The performance is evaluated by using the following performance measures: 
the root mean square error (RMSE), the normalized mean square error (NMSE), 
the prediction error (PE) and the correlation coefficient (R). The smaller RMSE, 
NMSE and PE values and the larger R value represent the less deviation, that is, 
the best performance. Table 1 illustrates the empirical results of those three differ-
ent models. 

Table 1. The ADIB closing price forecasting results 

Algorithm RMSE NMSE PE R 

Original-NN 0.98902 0.25287 0.13325 0.59253 

Gradient-NN 0.23536 0.09855 0.09899 0.75547 

FastICA-NN 0.09271 0.01448 0.07375 0.96036 

Source: own elaboration 

From table 1we can observe that the FastICA-NN model have smallest val-
ues of RMSE, NMSE, PE and have a largest R from other models. Thus, the FastI-
CA-NN model can produce lower prediction error and higher prediction accuracy 
of the closing price forecasting. Thus, we can summarize that the FastICA algo-
rithm outperforms the Gradient algorithm in analyzing time series data. 
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Figures 4 - 6 represent the actual daily ADIB closing price and the predicted 
values of the Original-NN, Gradient-NN and FastICA-NN Models respectively. 

Figure 4. The actual daily ADIB closing price and the predicted values of the Original-NN 
model  

 
Source: own elaboration 

 

Figure 5. The actual daily ADIB closing price and the predicted values of the Gradient-NN 
model  

 

Source: own elaboration 
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Figure 6: The actual daily ADIB closing price and the predicted values of the FastICA-NN 
model 

 

Source: own elaboration 

CONCLUSION  

Recently, ICA has been widely applied to financial time series analysis. Es-
timation the independent components (ICs) is a difficult task. Some highly success-
ful new algorithms with various approaches for solving the ICA model were intro-
duced by several research groups. Stock market forecasting has been one of the 
biggest challenges to the scientific community. Artificial Neural network (ANN) 
technique is regarded as more suitable for stock market forecasting than other tech-
niques. Since ICs are statistically independent from each other, we can use them as 
an input of neural network that can be used to forecasts of the stock market.  

In this paper we proved that a fast fixed point algorithm known as FastICA 
algorithm depending on maximization the nongaussianity using the negentropy ap-
proach is better than Gradient algorithm for solving ICA model. The Abu Dhabi Is-
lamic Bank (ADIB) used as illustrative example to evaluate the performance of 
these two algorithms. In empirical study we use the Independent Component Anal-
ysis (ICA) as a preprocessing to forecast the stock market. Experimental results 
show that FastICA is more robust and faster than Gradient algorithm in stock mar-
ket analysis.  
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