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Abstract: In the kernel method, it is necessary to deterrttieevalue of the
smoothing parameter. Not without significance i ttact of using the
objectivity in the selection of this parameter andertain automation of the
selection procedure, which is important especifdtynovice users of kernel
methods in the process of statistical inferencethin paper some methods
of choice of the smoothing parameter are presewitd the results of the
simulation study that indicate these methods o&dilg the smoothing
parameter as handy tool when kernel methods arkingEonomic analyses.

Keywords: kernel method, smoothing parameter, Silvermanétical rule,
SiZer map

INTRODUCTION

Kernel method is widely used in the estimation prhaes of functional and
numerical characteristics as well as in the hyptheverification procedures
concerning, for example, symmetry, goodness-obfiindependence of random
variables.

In all mentioned procedures it is necessary terdehe the form of the
weighting function known as the kernel function atidé value of smoothing
parameter which specifies the amount of smoothinghe kernel method. The
parameters of kernel methods (kernel function andaghing parameter) greatly
influence the results of kernel methods.

In the case of kernel function basic attentiorpasd to the order of the
kernel function which is closely connected with thenber of vanishing moments
and the number of existing derivatives of unknalensity function [cf. Horova et
al. 2012].
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Classical kernel function, that is second ordercfiam, is unimodal and
symmetric around zero density function [Gajek, Kaka 1996], [Wand, Jones
1995], [Silverman 1996]. It satisfies the followiegnditions [cf. Domaski et al.
2014]:

IK(u)du =1, (1)
IuK(u)du =0, (2)
J'uzK(u)du:uz(K)>0. (3)
Gaussian kernel function:
1 )
Klu)=— : 4
W)=7re (@)
which is the kernel function with the conditiong-(8) is mostly used in practical

applications.
Kernel function of k-th order, wherek is even number, fulfils the
following:

+fK(u)oluzl, (5)
Tu'K(u)du:,ul(K):O for | =1...k-1, (6)
TukK(u)duzyk(K)io. (7)

A large variety of kernel functions are presentetiterature [e.g. Domski,
Pruska 2000].
For k = 2 andK(u) =0 kernel function is a density function. The kernel

estimator of density function with such kernel flioe is also the density. For
k >2 kernel function may be negative what can causeth®eadensity estimator
may be negative.
Let X;, X,,...,X,, be continuous random variables with density fuarctf .

In parametric approach we assume that observalielmsg to one of the known
density and the procedure of estimation means esiynation of parameters. In
nonparametric approach we can use e.g. histograkemiel Rosenblatt-Parzen
estimator:
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- 1, (X=X

f(xX)=—)>» K L, 8

(0= 3K 250 ®
where K(u) denotes kernel functiony is a smoothing parameter (bandwidth).

Smoothing parameter, depending on the number ofsdmplen, h=h(n):
{h(n)}, is a sequence of a non-random positive numbers.

CHOICE OF THE SMOOTHING PARAMETER

Choice of the smoothing parameter is a crucialeisauhe kernel inference
procedures. The subjective method is the simplesstiime consuming one. In the
case of density estimation, various kernel dersstymators with different values
of smoothing parameters are constructed and tmateder is chosen as the proper
one which is used to construct “the best” estimaldris method is simply the
judging by user's eye. Sometimes this method iatéxek as the pilot method of
choosing the smoothing parameter in more complicatethods of selection of
parameter. In the practical applications, not withsignificance is the fact of
existing the objectivity in the selection of the®rthing parameter and a certain
automation of the selection procedure, which isdrtgnt especially for novice
users of kernel methods in the process of staistiference.

Silverman’s rule of thumb is one of the mostly usdsjective method of
smoothing parameter choice. When asymptotic metegliated square error is

used as the measure of closeness of the estimfatdo the true density |,
smoothing parameter which minimize this measurd whie assumption that the
unknown density is normaN(O, 0’2)iS the following:

~ A
5

her =1060n 3, 9)

where o can be estimated by =

for ®™ standard normal quantile function.

Terrell and Scott maximal smoothing method useseugdmund for the
parameter calculated on the base of the asyroptwan integrated square error.
For specific value of scale, for example varianbé bound is attained by family

of beta distributions B(44) with variance o2 and it minimizesJ.(f @) (x))zdx.

—00
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The unknown I(f(z)(x))zdx is estimated by its upper bound. The smoothing

—00

parameter is the following:

[y

A

R(K) an 5 (10)

where: R(K) = fK(u)Zdu, 1(K) = fuzK(u)du.

—o00 —o00

Smoothing parameter selected by least squareseatidation is the following:

h ey =argminLSCV(h), (12)
hOH,,
where: LSV (h) = | f2(x)dx - 2 %Z (X)) and
S i=1

(%)= (n_ll)hiK(xi ;xj)

J#I

Smoothing parameter in the biased cross-validati@thod of selection
has the form:

Recy = argmin BCV (h), (12)
where BCV(h)= % ( gK)j ( ) and

R1E)== 23, (ke ok)x - x,).

In plug-in methods the pilot estimator with initisinoothing parameter is
plugged in the formula of mean integrated squarar ein this way the estimates of
the unknown quantities are used. Smoothing pa&mhets the form:

1

“ R(k) 5 _1
h,, = = ns, 13
(uS(K)R £ ] )
-X ). . . .
where R( )———ZL ( ‘j is the estimator with the kernel function
n gl =1

L and smoothing parameter, whereL and g may be different fronK andh.
In the iterative method the smoothing parameténesollowing:
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he = argmin AMISE(h), (14)

where AMISE(h) is the suitable estimator of asymptotic mean irgegt square
error.

SIZER MAP

SiZer map is another method of assessing the $iimgoparameter, quite
different from methods mentioned earlier. It présenot only one value of
smoothing parameter used in kernel density estimdiut the range of values. It is
a graphical device which shows different structwesurves with different levels
of smoothing. In this way it is possible to indEaignificant features of estimator
with respect to smoothing parameter used in thetcaction of density estimator.

SiZer map is used in the situation where we aerésted in assessing the
estimator of density function, especially whichdbmaximums are true and which
are false ones. It is a very good method to sepa@ise from the signal.

The family of kernel estimators for different vatuof smoothing parameter
[cf. Baszczyiska 2014]:

{fh (X) : h U [hﬂin ' hmax]} (15)
are constructed, whetie,,, = 2B, Bis the binwidth,h_., = X1« = Xiin -

All estimators in the family (15) are constructedthwGaussian kernel
function for which number of points where derivativis zero decreases
monotonically when the values of smoothing paramstbigger.

A density estimator has derivatives equal to 0 aings of minimum,
maximum and points of inflection. Before a pointnoihimum (maximum) the sign

o CAmEWR(X) . . . -
of the derivativ Pee is positive (or negative), and after it, the dative is
X

negative (or positive). It is possible to ident#tructure of the estimator by zero
crossings of the th order of the derivative.

The hypothesis, verified in SiZer map, are theofwlhg [Chaudhuri, Marron
1999]:

o E(f (x)
Hy™ =0
0 axm ' (16)
and
hx.0"E fh(x)
H"": #0. (17)

ox™
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The SiZer map is constructed in the following waw: the horizontal axis,
values ofx are presented and on the vertical there are vabfiesmoothing
parameters. Different coloured regions are presenttiere each colour has the

special meaning. The following colour code is uddde region means tha‘Ath(x)
is significantly increasing; red regions lfA-h(x) is decreasing; purple regions —
fh (x) is not significantly increasing or decreasing;ygregions mean that the data

are too sparse to make statements about the s@mit of increasing or decreasing
of density estimator.

SIMULATION STUDY

A simulation study was conducted to indicate sorthe properties of the
kernel density estimator, particularly the depemderof the density kernel
estimation results on the parameters of the kemmethod (kernel function and
smoothing parameter) and, additionally, on the siz¢he sample. Seven sets of
observations were regarded in the study:

1. random sample generated from population of nbrdistribution N(O,l);
n=10.

2. random sample generated from population of nbrdastribution N(O,l);
n=30.

3. random sample generated from population of nbrdastribution N(O,l);
n=100.

4. random sample generated from population withsigrof a mixture of two
normal distributionsN(O,l) and N(lO,l) with equal weights;n=10.

5. random sample generated from population withsitherof a mixture of two
normal distributionsN(01) and N(101) with equal weights;n=30.

6. random sample generated from population withsitherof a mixture of two
normal distributionsN(O,l) and N(lO,l) with equal weights;n=100.

7. 107 observations of the futures contract of gpffier units of carbon dioxide
(CO2) in USD per tonne (current price from 2.012@4 30.05.2014). Source of
the data is the following: http://finanse.wp.pl/oagnia-surowce-online.html.

In this way, different (small, medium and large)nher of observations and
in addition unimodal populations (sets (1)-(3)) dichodal populations (sets (4)-
(6)) were taken into account.

For all sets of observations the kernel densitymegbrs were calculated
with various kernel functions (e.g. classical késneGaussian, Epanechnikov,
uniform, quartic, triangular and kernel functionfshigher order) and smoothing
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parameter chosen in various way. The methods ofosthg the smoothing
parameter were the following: Silverman'’s rule bfimmb SRT, Terrell and Scott
maximal smoothing method MSTS, least squares cralidation method LSCV,
biased cross-validation BCV, direct plug-in mettifell, iterated method ITE.

The implementation of regarded methods was donegusoftware with
functions and toolboxes in Matlab (e.g. http://meiini.cz/english/science-and-
research/developed-software/232-matlab-toolbox;html
http://www.unc.edu/~marron/marron_software.html).

Values of smoothing parameters in kernel densitymasion, calculated
for all regarded sets of observations with Gausg&imel function are presented
in Table 1.

Table 1. Values of smoothing parameter in kernakdg estimation with Gaussian kernel

function

Observations Method of smoothing parameter selection
SRT MSTS | LSCV BCV DPI ITE

r|\11=((:)LC?L) 0.72008 0.777641.0504 1.5487 | 0.78788 1.176¢4
r,\]]:(g%) 0.60328 | 0.651510.7187 | 0.90829 0.72125 0.74501
r;r(éolc)) 0.35267 | 0.380860.44758 | 0.4378 | 0.47666 0.41665
n=10
N(0,1) and (10,1) 3.6576 3.9500| 1.4854| 7.8638 2.8882 6.3832
n=30 i
N(0,1) and (10,1) 2.6542 2.8664| 0.6933 5.7036 2.0929 0.87573
n=100 |
N(0,1) and (10,1) 2.0755 2.2414| 0.5058% 4.459 1.6562 0.54419
2.01.14-30.05.14 Ctprice |0.21279 | 0.2298| 0.02650R.21587| 0.26041 0.18841

Source: own calculations

Comparing results of the kernel density estimatidos samples from
unimodal and bimodal populations gave the conciu#iiat in this second case the
smoothing parameters are bigger. While the paramaetrols the amount of
smoothing, the issue of global or local smoothisgameter should be regarded.
When a bandwidth is local, the amount of smoothiagies at each location.
Around the modes the smoothing parameter shoulsiraler while in the tail of
a distribution one can use much smoothing.

When biased cross-validation is used, the smoothargmeters for all sets
of observations are bigger than in other methodsrafothing parameter selection.
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It can be noticed that in most cases, the biggerstmple is, the bigger
parameter is used in density estimation.

For the data of COprice, the values are rather similar with exceptis
LSCV method (assuming independence of the obsensti Similar results were
obtained for other kernel functions.

To deepen the analysis of kernel density estimatimmiuding the
significance of the sample size in the proceduresstimation, for all sets of
observations kernel density estimators were caledlaigures 1-3 present kernel
density estimator where Gaussian kernel functioth @itverman’s rule of thumb
were used for small and big sample sizes and feemfations of the futures
contract of price for units of carbon dioxide.

Figure 1. Kernel density estimator (Gaussian Keumection, Silverman'’s rule of thumb),
data from unimodal populations a) n=10; b) n=100
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Figure 2. Kernel density estimator (Gaussian Keumection, Silverman'’s rule of thumb),
data from bimodal populations c¢) n=10; d) n=100
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Figure 3. Kernel density estimator (Gaussian Keftnection, Silverman’s rule of thumb),
data of the futures contract of price for unitcafbon dioxide
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In the case of unimodal distribution, kernel denséstimator is also
unimodal, even for small sample. But bigger vasismoothing parameter should
be used in this process of density estimation. gthaller size of the sample, the
bigger smoothing parameter is used (cf. Table 1hekvVsample is chosen from
bimodal distribution, only big sample ensures diedimodal density estimator,
with smaller value of smoothing parameter.

Kernel density estimator for data of the futurestcact of price for units of
carbon dioxide indicates asymmetry and unimodaldly the distribution.
Additionally, for this set of observation the Sizaap was used. Figure 4 presents
this SiZer map.

Figure 4. SiZer map, data of the futures contragrrice for units of carbon dioxide
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In Sizer map wide range of values of smoothingapaater is considered.
For small values of smoothing parameter it is ingiue to determine which
maximums are true and which are false (for valyggcuapproximately 0.0316,

log,o(h) =—-15, grey region is observed). It means that the Kedensity

estimator is undersmoothed. For values of smootpargmeter bigger than 0.1 it
is easy to inference that kernel estimator is p@sior negative (blue regions and
red regions). This result is consistent with poergi result about values of
smoothing parameter (cf. Table 1). The bigger valilemoothing parameter, the
more smooth the estimator is.

SUMMARY

Value of smoothing parameter in kernel densitynesior is an issue of
great importance. For users of kernel methods,very important that they can use
some objective and automatic way of finding “thetbealue of this parameter in
practical applications. This condition is fulfilldy methods mentioned above with
the help of specialised software. The presentedltees encourage not only
scientists but also unexperienced users to apmynthBut deeper analysis of
“optimal” choice of smoothing parameter and keffaekction is necessary in future
research.
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