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Abstract: In the kernel method, it is necessary to determine the value of the 
smoothing parameter. Not without significance is the fact of using the 
objectivity in the selection of this parameter and a certain automation of the 
selection procedure, which is important especially for novice users of kernel 
methods in the process of statistical inference. In the paper some methods  
of choice of the smoothing parameter are presented with the results of the 
simulation study that indicate these methods of selecting the smoothing 
parameter as handy tool when kernel methods are used in economic analyses.  
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INTRODUCTION 

Kernel method is widely used in the estimation procedures of functional and 
numerical characteristics as well as in the hypothesis verification procedures 
concerning, for example, symmetry, goodness-of-fit or independence of random 
variables.  

 In all mentioned procedures it is necessary to determine the form of the 
weighting function known as the kernel function and the value of smoothing 
parameter which specifies the amount of smoothing in the kernel method. The 
parameters of kernel methods (kernel function and smoothing parameter) greatly 
influence the results of kernel methods.       

In the case of  kernel function basic attention is paid to the order of the 
kernel function which is closely connected with the number of vanishing moments 
and the number of  existing derivatives of unknown density function [cf. Horová et 
al. 2012].  
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Classical kernel function, that is second order function, is unimodal and 
symmetric around zero density function [Gajek, Kałuszka 1996], [Wand, Jones 
1995], [Silverman 1996]. It satisfies the following conditions [cf. Domański et al. 
2014]:  
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which is the kernel function with the conditions (1)-(3) is mostly used in practical 
applications.    

Kernel function of k -th order, where k  is even number, fulfils the 
following: 
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A large variety of kernel functions are presented in literature [e.g. Domański, 
Pruska 2000].  

For k  = 2 and 0)( ≥uK  kernel function is a density function. The kernel 
estimator of density function with such kernel function is also the density. For 

2>k  kernel function may be negative what can cause that the density estimator 
may be negative.  

Let nXXX ,...,, 21  be continuous random variables with density function f . 
In parametric approach we assume that observations belong to one of the known 
density and the procedure of estimation means only estimation of parameters. In 
nonparametric approach we can use e.g. histogram or kernel Rosenblatt-Parzen 
estimator:   
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where )(uK  denotes kernel function, h  is a smoothing parameter (bandwidth).  

Smoothing parameter, depending on the number of the sample n , )(nhh = : 

{ })(nh , is a sequence of a non-random positive numbers.  

CHOICE OF THE SMOOTHING PARAMETER  

Choice of the smoothing parameter is a crucial issue in the kernel inference 
procedures. The subjective method is the simplest but time consuming one. In the 
case of density estimation, various kernel density estimators with different values 
of smoothing parameters are constructed and that parameter is chosen as the proper 
one which is used to construct “the best” estimator. This method is simply the  
judging by user’s eye. Sometimes this method is treated as the pilot method of 
choosing the smoothing parameter in more complicated methods of selection of 
parameter. In the practical applications, not without significance is the fact of 
existing the objectivity in the selection of the smoothing parameter and a certain 
automation of the selection procedure, which is important especially for novice 
users of kernel methods in the process of statistical inference.  

Silverman’s rule of thumb is one of the mostly used objective method of 
smoothing parameter choice. When asymptotic mean integrated square error is 

used as the measure of closeness of the estimator f̂  to the true densityf  , 
smoothing parameter which minimize this measure with the assumption that the 

unknown density is normal ( )2,0 σN is the following: 
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for 1−Φ  standard normal quantile function.  
Terrell and Scott maximal smoothing method uses upper bound for the 

parameter  calculated  on the base of the asymptotic mean integrated square error. 
For specific value of scale, for example variance, this bound is attained by family 

of beta distributions  )4,4(B  with variance  2σ  and it minimizes ( )( )( )∫
+∞

∞−

dxxf
22 . 
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The unknown  ( )( )( )∫
+∞

∞−

dxxf
22  is estimated by its upper bound. The smoothing 

parameter is the following: 
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Smoothing parameter selected by least squares cross-validation is the following: 
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 Smoothing parameter in the biased cross-validation method of selection 
has the form: 
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In plug-in methods the pilot estimator with initial smoothing parameter is 

plugged in the formula of mean integrated square error. In this way the estimates of 
the unknown quantities are used.  Smoothing parameter has the form:  
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L and smoothing parameter g , where L  and g may be different from K  and h . 

In the iterative  method the smoothing parameter is the following: 
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where ( )hMISEÂ is the suitable estimator of asymptotic mean integrated square 
error. 
 

SIZER MAP   

SiZer map is another  method of assessing the smoothing parameter, quite 
different from methods mentioned earlier. It presents not only one value of 
smoothing parameter used in kernel density estimation but the range of values. It is 
a graphical device which shows different structures of curves with different levels 
of smoothing.  In this way it is possible to indicate significant features of estimator 
with respect to smoothing parameter used in the construction of density estimator. 

 SiZer map is used in the situation where we are interested in assessing the 
estimator of density function, especially which local maximums are true and which 
are false ones. It is a very good method to separate noise from the signal.  

The family of  kernel estimators for different values of smoothing parameter 
[cf. Baszczyńska 2014]:   
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are constructed, where Bh 2min = , B is the binwidth, minmaxmax xxh −= . 
All estimators in the family (15) are constructed with Gaussian kernel 

function for which number of points where derivative is zero decreases 
monotonically when the values of smoothing parameter is bigger.  

A density estimator has derivatives equal to 0 at points of minimum, 
maximum and points of inflection. Before a point of minimum (maximum) the sign 

of the derivative 
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 is positive (or negative), and after it, the derivative is 

negative (or positive). It is possible to identify structure of the estimator by zero 
crossings of the mth order of the derivative. 

The hypothesis, verified in SiZer map, are the following [Chaudhuri, Marron 
1999]: 
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The SiZer map is constructed in the following way: on the horizontal axis, 
values of x are presented and on the vertical there are values of smoothing 
parameters. Different coloured regions are presented, where each colour has the 

special meaning. The following colour code is used: blue region means that ( )xf ĥ  

is significantly increasing; red regions – ( )xf ĥ  is decreasing; purple regions –

( )xf ĥ  is not significantly increasing or decreasing; grey regions mean that the data 
are too sparse to make statements about the significance of increasing or decreasing 
of density estimator.   
 

SIMULATION STUDY   

A simulation study was conducted to indicate some of the properties of the 
kernel density estimator, particularly the dependence of the density kernel 
estimation results on the parameters of the kernel method (kernel function and 
smoothing parameter) and, additionally, on the size of the sample. Seven sets of 
observations were regarded in the study: 
1. random sample generated from population of normal distribution ( )1,0N ;  
n =10. 
2. random sample generated from population of normal distribution ( )1,0N ;  
n =30. 
3. random sample generated from population of normal distribution ( )1,0N ;  
n =100. 
4. random sample generated from population with density of a mixture of two 
normal distributions ( )1,0N  and ( )1,10N  with equal weights;  n =10.  
5. random sample generated from population with density of a mixture of two 
normal distributions ( )1,0N  and ( )1,10N  with equal weights;  n =30.  
6. random sample generated from population with density of a mixture of two 
normal distributions ( )1,0N  and ( )1,10N  with equal weights;  n =100.  
7. 107 observations of the futures contract of price for units of carbon dioxide 
(CO2) in USD per tonne (current price from 2.01.2014 to 30.05.2014). Source of 
the data is the following: http://finanse.wp.pl/notowania-surowce-online.html. 
 

In this way, different (small, medium and large) number of observations and 
in addition unimodal populations (sets (1)-(3)) and bimodal populations (sets (4)-
(6)) were taken into account.  

For all sets of observations the kernel density estimators were calculated 
with various kernel functions (e.g. classical kernels: Gaussian, Epanechnikov, 
uniform, quartic, triangular and kernel functions of higher order)  and smoothing 
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parameter chosen in various way. The methods of choosing the smoothing 
parameter were the following: Silverman’s rule of thumb SRT, Terrell and Scott 
maximal smoothing method MSTS, least squares cross-validation method LSCV, 
biased cross-validation BCV, direct plug-in method DPI, iterated method ITE.  

The implementation of regarded methods was done using software with  
functions and toolboxes in Matlab (e.g. http://math.muni.cz/english/science-and-
research/developed-software/232-matlab-toolbox.html; 
http://www.unc.edu/~marron/marron_software.html). 

Values of smoothing parameters in kernel density estimation, calculated  
for all regarded sets of observations with Gaussian kernel function are presented  
in Table 1.  

Table 1. Values of smoothing parameter in kernel density estimation with Gaussian kernel 
function 

Observations 
Method of  smoothing parameter selection  
SRT MSTS LSCV BCV DPI ITE 

n=10 
0.72008 0.77764 1.0504 1.5487 0.78788 1.1764 

N(0,1) 
n=30 

0.60328 0.65151 0.7187 0.90829 0.72125 0.74501 
N(0,1) 
n=100 

0.35267 0.38086 0.44758 0.4378 0.47666 0.41665 
N(0,1) 
n=10 

3.6576 3.9500 1.4854 7.8638 2.8882 6.3832 
N(0,1) and (10,1) 
n=30 

2.6542 2.8664 0.69337 5.7036 2.0929 0.87573 
N(0,1) and (10,1) 
n=100 

2.0755 2.2414 0.50585 4.459 1.6562 0.54419 
N(0,1) and (10,1) 

2.01.14-30.05.14   CO2 price  0.21279 0.2298 0.026502 0.21587 0.26041 0.18841 

Source: own calculations  

   
Comparing results of the kernel density estimations for samples from 

unimodal and bimodal populations gave the conclusion that in this second case the 
smoothing parameters are bigger. While the parameter controls the amount of 
smoothing, the issue of global or local smoothing parameter should be regarded. 
When a bandwidth is local, the amount of smoothing varies at each location. 
Around the modes the smoothing parameter should be smaller while in the tail of  
a distribution one can use much smoothing. 

When biased cross-validation is used, the smoothing parameters for all sets 
of observations are bigger than in other methods of smoothing parameter selection.  
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It can be noticed that in most cases, the bigger the sample is, the bigger 
parameter is used in density estimation.  

For the data of CO2 price, the values are rather similar with exception of 
LSCV method (assuming independence of the observations). Similar results were 
obtained for other kernel functions. 

To deepen the analysis of kernel density estimation, including the 
significance of the sample size in the procedure of estimation, for all sets of 
observations kernel density estimators were calculated. Figures 1-3 present kernel 
density estimator where Gaussian kernel function and Silverman’s rule of thumb 
were used for small and big sample sizes and for observations of the futures 
contract of price for units of carbon dioxide. 

Figure 1.  Kernel density estimator (Gaussian kernel function,  Silverman’s rule of thumb), 
data from unimodal populations  a) n=10; b) n=100  

a) b) 

  
Source: own calculations 

Figure 2.  Kernel density estimator (Gaussian kernel function,  Silverman’s rule of thumb), 
data from bimodal populations  c) n=10; d) n=100  

c) d) 

  

Source: own calculations 
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Figure 3.  Kernel density estimator (Gaussian kernel function,  Silverman’s rule of thumb), 
data of the futures contract of price for units of carbon dioxide   

 

Source: own calculations 

In the case of unimodal distribution, kernel density estimator is also 
unimodal,  even for small sample. But bigger value of smoothing parameter should 
be used in this process of density estimation. The smaller size of the sample, the 
bigger smoothing parameter is used (cf. Table 1). When sample is chosen from 
bimodal distribution, only big sample ensures clearly bimodal density estimator, 
with smaller value of smoothing parameter.    

Kernel density estimator for data of the futures contract of price for units of 
carbon dioxide indicates asymmetry and unimodality of the distribution. 
Additionally, for this set of observation the Sizer map was used. Figure 4 presents 
this SiZer map.    

Figure 4. SiZer map, data of the futures contract of price for units of carbon dioxide   

 

Source: own calculations 
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 In SiZer map wide range of values of smoothing parameter is considered. 

For small values of smoothing parameter it is impossible to determine which 
maximums are true and which are false (for values up to approximately 0.0316, 

5.1)(log10 −=h , grey region is observed). It means that the kernel density 
estimator is undersmoothed. For values of smoothing parameter bigger than 0.1  it 
is easy to inference that kernel estimator is positive or negative (blue regions and 
red regions).  This result is consistent with previous result about values of  
smoothing parameter (cf. Table 1). The bigger value of smoothing parameter, the 
more smooth the estimator is.    
 

SUMMARY   

 Value of smoothing parameter in kernel density estimator is an issue of 
great importance. For users of kernel methods, it is very important that they can use 
some objective and automatic way of finding “the best” value of this parameter in 
practical applications. This condition is fulfilled by methods mentioned above with 
the help of specialised software. The presented results  encourage  not only 
scientists but also unexperienced users to apply them. But deeper analysis of 
“optimal” choice of smoothing parameter and kernel function is necessary in future 
research. 
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