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Abstract: The paper presents the DEA+ method as a tool for estimating the 
production function and the measure of technical efficiency in data points. A 
multi-product case is considered. Presentation of the underlying 
semiparametric frontier model is followed by demonstration of the very 
algorithm of DEA+ and a discussion of its validity. Finally, the method is 
illustrated with an empirical example with selected model distributions for 
each random variable constituting the composed error. 
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INTRODUCTION 

DEA+ is a two-stage procedure of point estimation of the production 
function (transformation) and the measure of technical efficiency of a production 
unit within the semiparametric frontier model. It was first presented by Gstach 
[Gstach 1998, 1999] but did not gain popularity. However, chronologically, it is the 
first method in which DEA (Data Envelopment Analysis) is connected with the 
composed error term. Construction of the model and the method is based on  SFA 
(Stochastic Frontier Analysis) – see, e.g., [Kumbhakar, Lovell 2000]. It is thus a 
way of linking DEA with the methods of production process analysis based on 
parametric models. Additionally, it can be considered a predecessor of now 
commonly used StoNED (Stochastic Non-smooth Envelopment of Data) – see 
[Kuosmanen, Kortelainen 2012] or a paper in Polish [Prędki 2012]. 

                                                 
1 The study conducted with financial support from the Faculty of Management, Cracow 
University of Economics. 
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The paper presents a multiproduct version of the method briefly described in  
the source paper [Gstach 1999]. Originality of this paper can be seen in, firstly, 
organizing and describing the assumptions of a corresponding semiparametric 
model, which make the considerations that follow clearer. Certain assumptions are 
not explicitly mentioned by Gstach, but their introduction results from the context 
and sparse hints, while others are slightly changed in comparison to their original 
form. Secondly, critical comments included in this paper can provide an 
explanation to the reasons behind the lack of popularity of this method. The 
empirical example in which the method is used is also original, as it assumes a 
different distribution of one of the components of composed error term than in the 
source paper.  

STATISTICAL MODEL WITH A DISCUSSION OF ASSUMPTIONS  

Let us begin with defining the semiparametric model mentioned above with 
a set of assumptions. The idea was, to a great extent, borrowed from the theory of 
parametric frontier models, introduced in the late 1970s – see [Aigner et al. 1977] 
and  [Meeusen, Van den Broeck 1977].  
Assumption 1. Economic units produce s sorts of outputs out of m sorts of inputs 
and use the same technology, represented by T – a compact and convex production 
possibility set, satisfying the inefficiency condition.  
Assumption 2. The quantity of inputs and outputs is given for n production units 
by sample Xn = ((xj, yj) ∈ T, j = 1, …, n). Vector xj is characterized by the density 
function hXj: 

∀x ∈ (0, x): hXj(x) > 0,    (1) 
where  
xj = [x1j, …, xmj] – the  vector of the quantity of inputs of jth production unit,   
yj = [y1j, …, ysj] – the vector of the quantity of outputs of  jth production unit. 
The vector notation of belongingness of vector x in formula (1) should be 
understood ”by coordinates”. Most probably, the identity of distribution of xj, j = 1, 
…, n is assumed here as well. The support of all densities is the same, although the 
density is indexed by j.  

The description of generating vector yj is performed separately. Using set T, 
we first define the so called Farrell output measure of technical efficiency for 
feasible production plan (xo, yo):  

θP(xo, yo) = max{θ ∈ R: (xo, θyo) ∈ T}.   (2) 
What is important here is the fact that its value is greater than or equal to unity and 
equal to unity for objects technically efficient. Because the form of T is unknown, 
we also do not know the value of the measure in point (xo, yo). So, it will be 
estimated in the model. 

Next, we define the set: 
F = {(x, y) ∈ T: θP(x, y) = 1},   (3) 
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called the production possibility frontier. The Farrell technical efficiency measure 
here plays the role of a transformation function in its implicit form2. Introducing F, 
leads to formulation of the next model assumption. 
Assumption 3. 

yj = yjF⋅ jj uv
e

−
= yjF⋅ jw

e , for (xj, yjF) ∈ F,   (4) 
where wj = vj - uj is so called the composed error term. 

To obtain a full description of DGP for yj, it is necessary to provide a way in 
which quantities on the right side of equation (4) are generated. Let us start with 
the assumption regarding component vj 

Assumption 4a. Noise components vj, j = 1, …, n, have independent and identical 
parametric distributions set by density function fV which depends on parameters 
(θV, vmax). Additionally:  

E(v) = 0 oraz fV(v) = 0, dla v > vmax.   (5) 
Bounding the support of noise by parameter vmax was Gstach's idea. Its justification 
will be provided in the next section. In his earlier paper [Gstach 1998], he 
presented a slightly different version of this postulate. 
Assumption 4b. Noise components vj, j = 1, …, n,  have independent and identical 
parametric distributions set by symmetric density function fV with the support (-
vmax, vmax) dependent on parameters (θV, vmax).  

It should be noticed that a more general version of 4a can be derived from 
Assumption 4b. This change was probably caused by two reasons. Firstly, in order 
to prove properties of estimators obtained by using the DEA+ method, it is enough 
to bound the noise up. Secondly, a lower bound is problematic while introducing 
the joint density function of the composed error term, which is not mentioned by 
the author. The details can be found in the paper [Prędki 2014]. The author of this 
paper supports version 4b as the more practical one. There are numerous well-
known and widely-used distributions which satisfy Assumption 4b, yet it is 
difficult to construct a useful distribution satisfying more general Assumption 4a 
and, at the same time, not satisfying Assumption 4b. Besides, bounding random 
noise arbitrarily only up contradicts the idea of disturbances which are to be 
modelled by this component. That is why in practical applications it is not possible 
to avoid introducing lower bound of the support of  noise and difficulties involved 
in it. 

Both source papers mentioned above offer the same assumption regarding 
component uj. 
Assumption 5. Components uj connected with modelling inefficiency have 
independent and identical distributions set by density function fU with support R+ 
dependent on parameters θU. 

                                                 
2 It means that we have the equation linking inputs and maximal outputs, but it is usually 
not possible to use it for deriving an analytical formula for the maximal quantity of outputs 
depending on the quantity of inputs. 
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Theoretically, θV, θU can be the vectors of parameters, most often, however, they 
are just single parameters. 

In the DEA+ method, the maximum likelihood method (ML) is used for 
estimating parameters, and to do so, the likelihood function for composed errors is 
introduced. This poses a question regarding independence of these components as 
well as independence of components uj and vj. In order to estimate the production 
frontier, it is necessary to know whether factor yjF  is not dependent3 on a 

multiplicative version of the composed error j
w

e – see factors in equation (4). The 
source papers do not address this problem, and that is why it is necessary to 
introduce an additional assumption. 
Assumption 6. Components uj, vj are not dependent on each other nor on vector 
yjF. 

The last model assumption is connected with a way of generating yjF values. 
Assumption 7. yjF value is generated from conditional distribution YFX j  set by 
density 

jF XY
g with the support Int(Isoq(xj)). 

In the paper [Gstach 1999], the support of density was called the interior of an 
input-isoquant and was not precisely defined. Using the context, it can be deduced 
that it probably refers to the topological interior of set: 

Isoq(xj) = {yjF: (xj, yjF) ∈ F},   (6) 
where the quantity of inputs xj is fixed. 
However, the author of this paper has certain doubts regarding correctness of this 
definition. It is true that there might be numerous combinations of outputs, for 
which θP(xj, yjF) = 1, yet this equation suggests that this set can be a measure-zero 
set in the space of outputs, so its topological interior might be an empty set as well. 

We take the logarithms of both sides of equation (4), itemise it for 
components  according to sorts of output , and then we obtain: 

∀j = 1, …, n ∀r = 1, …, s: wj = ln(yrj) – ln(yrjF).  (7) 
Let us pay attention to the fact that the composed error term is not dependent on  
the sort of output. In [Gstach 1998, p. 163] it is called the equi-proportional impact 
of error terms on particular outputs. So, it is a stochastic equivalent of radial 
property of the Farrell technical efficiency measure, which means a proportional 
change of all outputs, thus not dependent on the sort of output. 

DEA+ METHOD 

Let us start with introducing certain auxiliary terms. The set:  

F
~

 = {(x, y) ∈ T: (x, y maxve− ) ∈ F}.   (8) 

                                                 
3 In parametric models it is usually assumed that components uj, vj are not dependent on  xj, 
which is caused by the analytical form of the production frontier dependent explicitly on 
the elements of vector xj. 
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is called a production pseudo-frontier. 
The error term: 

jw~  = vj – vmax – uj = wj – vmax ≤ 0,   (9) 

is called a pseudo-efficiency of jth object. 
Let us notice that :  

yj = yjF⋅ jwe  = yjF⋅ maxmaxj vvwe +− = jF
~y jw~

e ,   (10) 

where (xj, jF
~y ) ∈ F

~
. 

The sign of pseudo-efficiency and the sequence of equalities (10) follows directly 
from Assumptions 3-5. This means that an observed quantity of outputs yj can be 
looked at from two perspectives. In fact, we can observe optimal quantities of 
outputs connected with the production frontier disturbed by two types of shocks 
(exogenous and inefficiency). On the other hand, it can be assumed that it is the 
optimal quantity of outputs connected with the pseudo-frontier, disturbed by a 
shock called pseudo-efficiency. This second concept will be used during Stage I of 
the DEA+ method.  

As it directly follows from definition (8), the shape of a pseudo-frontier is 

identical with the shape of a real frontier, only shifted by the quantity of maxve . 
Similarly, the same happens to the distribution of deviations jw~ , j = 1, …, n. From 

Assumption 4 it follows that pseudo-efficiencies form  i.i.d. sequence, and their 
distribution is the distribution of the composed error term wj shifted downwards by 
the quantity of vmax. 

As far as the DEA+ procedure itself is concerned, during Stage I we 
calculate the estimate of the technical efficiency measure for all objects in the 
sample: 

Pθ̂ (xj, yj) = max{θ ∈ R: (xj, θyj) ∈ T̂ },   (11) 
where  

T̂  = {(x, y) ∈ R0+
m+s: ∃λj ≥ 0:∑

=

n
λ

1j
j = 1, x ≥∑

=

n
λ

1j
jj x , y ≤ ∑

=

n
λ

1j
jj y }. (12) 

A deterministic version of the DEA is used to estimate the value of the technical 
efficiency measure, precisely, the envelopment form of the BCC model – see 

[Banker et al. 1984]. Here a set T̂ is an approximation of an unknown production 
possibility set T.  

The estimate of the multidimensional equivalent of a production pseudo-
frontier in point xj is then: 

jF
~̂y = Pθ̂ (xj, yj)⋅yj.    (13) 

Consequently, the estimate of pseudo-efficiency is expressed by:  

∀r = 1, …, s: jŵ~ =   ln(yrj) – ln( jF
~̂y ) = -ln[ Pθ̂ (xj, yj)].  (14) 
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Equation (14) indicates that the estimates of pseudo-efficiency are also not 
dependent on the sort of output. Besides, they are closely connected with the 
estimate of the Farrell technical efficiency measure obtained by applying the DEA 

method. The minus in equation (14) indicates that the quantity jŵ~  should actually 

be called an estimate of pseudo-inefficiency, according to the convention adopted 
in parametric models. Let us stress once more that radiality of the Farrell technical 
efficiency measure is desirable here, because it corresponds with Assumption 3 
regarding equi-proportionality of the composed error term.  

Stage I of the DEA+ method is justified by the following theorem: 
Theorem 1. Under Assumptions 1-7, the asymptotic distribution of the estimator 

jŵ~  is identical to deviation jw~  in the interior of set F. 

Proof: According to the author of the method, the assumptions of Theorems 5 and 
6 from [Banker 1993], which implicate the above theorem, are satisfied. 
However, using set intF evokes the same doubts as using set Int[Isoq(xj)] 
previously. 

During Stage II the estimates of parameters θ = (θU, θV, vmax) are calculated 

by the ML method, on the basis of the estimates of pseudo-efficiency jŵ~  obtained 

during Stage I. This means that:  

 ( Uθ̂ , Vθ̂ , maxv̂ ) = ( )







∏
∈Jj

jW
~θ θŵ~flnargmax ,  (15) 

where 

( )ŵ~f w~ = ( ) ( )∫ −+
0

ŵ~
UmaxV dvŵ~vfvvf  oraz J = {j: jŵ~ < 0}. (16) 

Introducing set J means that in the estimation we do not take into account 

pseudo-efficient objects ( jŵ~ = 0). For such objects it may happen that xj ∉ intX, 

and then consistency of Stage I of the DEA+ method is not guaranteed. Secondly, 
the next stage of DEA+ is infeasible due to degeneration of limits of integration in 
formula (16) for joint density function. Gstach claims that, asymptotically, a 
fraction of objects outside set J is neglected, that is:  

( )
0

jI

lim
1j

Jj

=








∑
=

∉

∞→ n

n

n
,    (17) 

takes place, where I(⋅) – is the indicator function. So, in an asymptotic sense, it will 
not matter whether the procedure is performed on all observations or only on the 
pseudo-inefficient ones from set J. 
 Once we have the estimates of all parameters characterizing distributions 
of both components of the composed error, we can, firstly, estimate the actual 
production frontier in data points: 
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jFŷ = Pθ̂ (xj, yj)⋅yj⋅ maxv̂e− .   (18) 

Secondly, using the same methods as the ones used in the SFA approach, we can 
also obtain the estimate of the efficiency measure of jth object - see, e.g., 
[Kumbhakar, Lovell 2000, p. 78]. The author of the method only mentions such a 
possibility in the paper [Gstach 1999, p. 102], not performing it4. It should be 
remembered that, if we obtain the estimates of variances of both components of the 
composed error, it is not necessary to apply the method of moments nor the 
pseudo-likelihood method. The first one, although simple, is not free from 
drawbacks and limitations - see [Kumbhakar, Lovell 2000, p. 92]. The second one, 
however, requires laborious computations – see, e.g., [Kuosmanen, Kortelainen 
2012, p. 18]. 

According to Gstach, consistency of the estimator used during Stage I is 
conditioned by introducing the bounded support of noise. Parameter vmax assures 
one-sidedness of the error term jw~ , which is consistent with the nature of the DEA 

estimator, which is also one-sided. The author of this paper would like to highlight 
another role of parameter vmax. It is a necessary component of the correction of the 
initial production pseudo-frontier. It is thus a similar procedure as in case of the 
COLS method or the MOLS, where the initial estimator of the production frontier 
is also corrected, by the largest residual or by E(uj) characteristic, respectively. 

In his source paper [Gstach 1998, pp. 165-167], he attempts to prove 
consistency of the whole DEA+ procedure, although only its single-product 
version. Particularly, on the basis of Theorem 1 (consistency of Stage I) and the 
theorem from paper [Bierens 1994], Gstach proves the theorem regarding 
consistency of the estimator of the production frontier in data points, obtained as a 
result of using the DEA+. In paper [Gstach 1999, p. 102], the author of the method 
claims that this result can be transferred to a multi-product case. Let us write down 
a corresponding theorem. 
Theorem 2. Under Assumptions 1-7, the DEA+ method provides a consistent 
estimator (xj, jFŷ ) of point (xj, yjF) in the interior of set F. 

It should be noted, however, that consistency of the DEA+ procedure is 
questionable, because of the reason mentioned by its author – see [Gstach 1998, p. 
165]. In the ML procedure, in the notation of the likelihood function (15), we 

obtain the product of densities of random variables j
~̂w , even though they do not 

have to be independent. Further elaborations on this issue can be found in paper 
[Prędki 2014].   

                                                 
4 Only the characteristic of E(U| Uθ̂ ), called average inefficiency, is computed, while the 

main objective of the paper is a comparison of the SFA and the DEA+ methods. 
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EMPIRICAL STUDY 

The study is based on the data from 2000 gathered by the paper's authors  
[Osiewalski, Osiewalska 2006], describing 240 county, urban and municipal public 
libraries in Poland5. These libraries are non-profit institutions, which can be treated 
as production (service) units using certain production factors to manufacture 
specific products (library services). Suggestions included in the source paper were 
used to select a set of inputs and outputs. 

The following factors are taken as inputs: 
x1 – the number of job positions, 
x2 – the number of books, 
x3 -  the number of magazine titles, 
x4 – the usable area of a library, 
x5 – the number of seats in reading rooms 

Outputs of libraries include the following quantities, that is the ones which 
could generate profits if a library were a private firm – following the suggestions 
from paper [DeBoer 1992]. 
y1 – the number of library members registered in a library, 
y2 – the number of books borrowed, 
y3 – the number of visits in reading rooms and reading corners. 

Due to the numerousness of data, they are presented as selected empirical 
characteristics – see Table 1.  

Table 1. Selected empirical statistics of data  

 
median mean deviation min.value max.value 

x1 3,49 8,39 13,27 0,88 93 

x2 35779 66886,81 88461,84 345 525441 

x3 22 49,64 77,82 1 559 

x4 211 524,84 949,04 40 10545 

x5 30 53,23 61,94 2 441 

y1 1364 4395,34 8135,12 263 74003 

y2 29797 85932,70 162064,67 698 1643662 

y3 2836 10567,74 20841,96 47 232300 

Source: own elaboration 

The first stage of the DEA+ method was performed by computing the 

technical efficiency measures Pθ̂ (xj, yj), j = 1,…,n using formula (11) and formula 

                                                 
5 Due to the multidimensionality of the model and asymptotic properties, numerous 
multiproduct data were selected. The author of the paper would like to thank here Prof. 
Jacek Osiewalski and Dr. Anna Osiewalska for granting him access to their data.  
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(12). Then their logarithms were taken and pseudo-efficiencies jŵ~ , j = 1,…,n were 

obtained, which allowed us to move to Stage II. Following the source paper, 
[Gstach 1998], half-normal distribution N+(0, σu

2) was assumed for component u 
modelling inefficiency. Normal distribution N(0, σv

2) was assumed for noise v, 
truncated to interval (-vmax, vmax), unlike in the source paper, where truncated 
symmetric beta distribution was used.  

As it was mentioned above, the lower bound of the support of noise causes 

certain problems while introducing joint density of the random variableW
~

. That is 
why it was necessary to modify the formula suggested by Gstach to the following 
form: 

( )w~f w~  = 
( ) ( )

( ) ( )
.

2vw~,dvw~vfvvf

2vw~,dvw~vfvvf

max

0

2v
UmaxV

max

0

w~
UmaxV

max








−<∫ −+

−>∫ −+

−

  (19) 

After a number of arduous but simple transformations, the following form of 
density was obtained: 

( )w~f w~  = 
( )

( )

1
σ

v
2Φ

σ

µ-a
Φ

σ

µ-
Φ

σσ

w~v

2

1
exp

σσπ

2

v

max

2
v

2
u

2
max

2
v

2
u

−























−
































+
+−

+
, (20) 

where Φ(⋅) is cumulative distribution function of standard normal, and: 

µ = 
2
v

2
u

2
v

2
umax

σσ

σw~σv

+
+−

, σ = 
2
v

2
u

vu

σσ

σσ

+
, a = 





−<−
−>

maxmax

max

2vw~,v2

2vw~,w~
. (21) 

Next, reparametrization was performed: 

v

u

σ

σ
λ
~ = , 2

v
2
u σσσ~ += ,   (22) 

and, using the residuals jŵ~ of pseudo-inefficient units, the formula for the log-

likelihood function was derived: 

( ) =







∏
∈Jj

jW
~ θŵ~fln     (23) 

( ) ,1
σ~

1λ
~

v
2ΦlnbΦ

λ
~
σ~

ŵ~-λ
~

v
Φln

2

1
σ~ln

π

2
ln

Jj

2
max

j
j

2
max

2

σ~
ŵ~v jmax

∑
∈

+




























−












 +
−













−













+






−−

where 
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bj = 
( )








−<

−>
−−

+

maxjσ~λ
~

ŵ~-2vvλ
~

maxjσ~
λ
~

vŵ~

2vŵ~,

2vŵ~,

jmaxmax
2

maxj

.  (24) 

In order to obtain convergence of the ML procedure, the following 
restrictions on parameters in the log-likelihood function were imposed: 
1. The arguments of cumulative distribution functions of standard normal from 
formula (23) were bounded to interval [-5;5]. 

2. The arguments of natural logarithms from formula (23) and parameters σ~ , λ
~

, 
vmax are not lower than 10-4. 
3. Additionally, more substantial restrictions6  were assumed: 

1
σ~

1λ
~

v
2Φ

2
max −













 +
 ≥ 0,955, vmax ≥ 2σv.  (25) 

After numerous tests, the following starting points were selected: 

 [ oσ
~ , oλ

~
, vmax,o] = [0,83; 1,65889674; 0,85956661], (26) 

whose choice was not purely accidental. The starting value oλ
~

 results from 
assuming equal dispersion of two distributions at the start: the normal distribution 
of nontruncated noise v and half normal distribution of component u. The starting 
value vmax,o is linked with residuals by: 

j
Jj

ŵ~min
∈

 = -2vmax,o,    (27) 

and this relation is strongly connected with the author's correction of joint density 

of the random variable W
~

given by formula (19). The starting value oσ
~  is close to 

the local maximum of the log-likelihood function, with starting values of other 
parameters obtained earlier. 

As a result of ML procedure in selected starting points, convergence was 
obtained reaching the values: 

 [ σ̂~ , λ
~̂

, maxv̂ ] ≈ [0,37889; 1,46353; 0,42850],  (28) 
which were assumed as the final estimates of unknown parameters of 

corresponding distributions. Only the restriction 1
σ~

1λ
~

v
2Φ

2
max −













 +
 ≥ 0,955 

turned out to be valid. 
Using maxv̂ , the production frontier in data points was estimated from 

formula (18). Next, the estimates of parameters were used to compute the value of 

                                                 
6 Unfortunately, they turned out necessary to obtain convergency of the procedure. It should 
be noticed that truncating the support of the noise by vmax  occurs  deeply in tails of 
corresponding distribution, and does not seem particularly limiting. 
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the efficiency measure for particular objects following the scheme described in the 
paper [Kumbhakar, Lovell 2000, pp. 78-82]. This measure is given by7: 

TEj = exp(-Ê (uj| j
~w )), j = 1,…,n.  (29) 

To use  the above formula, first of all, conditional distribution U| w~  is needed. 
Using known forms of the densities of random variables U and V, after simple 
transformations, we obtain: 

U| w~ ∼ D( w~ )⋅N+(µ- w~ ,σ2),   (30) 
where    

D( w~ ) = 








 −−






−








 −−−

σ

µa
Φ

σ

µ
Φ

σ

w~µ
Φ1

.   (31) 

To compute the expected value E(u| w~ ), formulae from the paper 
[Kumbhakar, Lovell 2000, p. 78] were used, and a missing D(w~ ) was added: 

E (u| w~ ) = D(w~ )[µ* + σ ( )
( )/σµΦ

/σµφ

*

*−
],  (32) 

where µ* = µ - w~  and ϕ(⋅) is the density function of standardized normal 

distribution. Formula (32) was realized for particular observations on residuals jŵ~

and on the estimates of parameters obtained from the DEA+ method, which yielded 
the estimate of the appropriate expected value, and, consequently, the value of the 
efficiency measure TEj. 

The results obtained are presented in Table 2, and, again, selected empirical 
characteristics are provided. Pseudo-efficient objects, for which the DEA+ method 
degenerates, (as it was mentioned above ) were omitted . 

Table 2.  Selected empirical statistics of the maximal products and the technical efficiency 
measure  

 
median mean deviation min.value max.value 

y1F 2072,01 3846,242 5255,20266 293,6984 33269,87 

y2F 38936,2 73289,39 91931,9138 1227,143 504389,4 

y3F 3724,3 8739,437 11864,0055 68,62053 71196,99 

TE 0,82382 0,781215 0,13075852 0,085188 0,896236 

Source: own elaboration   

Lines 2-4 in Table 2 refer to estimated maximal values of respective outputs – 
formula (18). Line 5 refers to the value of the technical efficiency measure 
calculated using formula (29). Due to a methodological nature of the paper and 
                                                 
7 It is one of the ways of measuring efficiency presented in the source paper. 
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limited space available, the author did not include a broader economic 
interpretation of the results. 

CONCLUSIONS 

The results of the author’s methodological research (see also [Prędki 2014]) 
indicate two major reasons behind only scarce popularity of DEA+. Firstly, 
ordinary, deterministic DEA also yields technical efficiency measure as well as the 
value of production frontier at the data points. Hence, according to Ockham’s 
razor, there appears to be no point in turning to a more complex approach to obtain 
(however different) estimates of the above quantities. Presumably, what Gstach 
intended was to render DEA a method of estimation of these quantities within  
a semiparametric statistical model comparable to a more common approach based 
on stochastic frontier analysis. However, it still appears to lack validity, for such  
a model does not allow one to obtain dispersion measures of the new estimator  
of efficiency measure. What is more, it is not possible to make statistical inference 
about either the model assumptions or the production process. 

Secondly, as pointed by the author of the current paper, the efficiency 
measure estimator resulting from the DEA+ method has not been proven to be 
consistent so far. Moreover, the algorithm itself is rather cumbersome, entailing 
numerous methodological and numerical obstacles. In addition, the statistical 
model itself, as formulated by its original author, seems to be lacking in its 
underlying assumptions – one of the relevant assumptions is clearly missing, 
whereas the formulation of the other is disputable. Therefore, the author of the 
current article would not recommend employing DEA+ in practice. 
Simultaneously, it should be noted that such apparently negative conclusions are  
of genuine scientific merit, and the methodological objectives of the study 
(presented in the Introduction), constituting major contribution of the article, have 
been successfully achieved. 
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