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Abstract: Article presents a ROC (receiver operating characteristic) curve 
and its application for classification models’ assessment. ROC curve, along 
with area under the receiver operating characteristic (AUC) is frequently used 
as a measure for the diagnostics in many industries including medicine, 
marketing, finance and technology. In this article, we discuss and compare 
estimation procedures, both parametric and non-parametric, since these are 
constantly being developed, adjusted and extended. 
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INTRODUCTION 

Plotting the ROC curve is a popular way for discriminatory accuracy 
visualization of the binary classification models and the area under this curve 
(AUC) is a common measure of its exact evaluation. ROC methodology is derived 
from signal detection theory developed during the II World War where it was used 
to determine if an electronic receiver is able to distinguish between the signal and 
the noise. Nowadays, it has been used for the diagnostics in medical imaging and 
radiology[Hanley and McNeil 1982], psychiatry, manufacturing inspection 
systems, finance and database marketing. 

The ROC analysis is useful for the following reasons: (1) evaluation of the 
discriminatory ability of a continuous predictor to correctly assign into a two-group 
classification; (2) an optimal cut-off point selection to least misclassify the two-
group class; (3) compare the efficacy of two (or more) predictors. 
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Many parametric and non-parametric estimation methods have been 
proposed for estimating the ROC curve and its associated summary measures. In 
this study, we focus on three methods which have been mostly employed in 
practical applications. In the following sections of the article we introduce notation 
and the basic concepts of the ROC curve and AUC measure. The further sections 
are devoted to one parametric and two non-parametric methods of ROC and AUC 
estimation. The paper ends with a simulation study and short discussion in the last 
section. 

MEASURES OF BINARY CLASSIFICATION PERFORMANCE 

Determination of the ROC curve and the area under the curve is related to 
the classification matrix construction (Table 1) and calculation of sensitivity and 
specificity measures. 

Table 1. Classification matrix 

 
Predicted value 

Positive (P) Negative (N) 

R
ea

l v
al

u
e 

Positive (P) True positive (TP) False negative (FN) 

Negative (N) False positive (FP) True negative (TN) 

Source: own preparation 

ROC curve is a set of points: ysensitivityyspecificitxyx =−= ,1:),(  
where for a particular decision threshold value u  sensitivity and specificity is 
determined. Sensitivity is a ratio of true positive cases to all real positive cases: 

FNTP
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+
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(1) 

whilst specificity determines the share of true negatives cases to all real negative 
cases: 

.
TNFP

TN
sp

+
=  (2) 

The interpretation of these measures is as follows. Sensitivity is the ability of 
the classifier to detect instances of a given class (the conditional probability of 
classification for the selected class, provided that the object actually belongs to it). 
In turn, specificity determines the extent to which the decision classifier of 
belonging to the selected class is characterized by the class (supplement 
conditional probability of classification for the selected class, provided that the 
object of this class should not be). 
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It should be noted that the output values generated by the model (e.g.  neural 
network, logistic functions) belong to a certain range, therefore, the threshold 
should be determined on the basis of which the assignment is made of the cases to 
particular classes. When determining the value of the decision threshold u  in the 
range [0, 1], and setting )(xf  such that: 
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a set of points can be obtained, which allows to plot the ROC curve. 
In order to present the mechanism of the ROC curve plotting the following 

example will be shown. Table 2 contains example with 10 observations sorted in 
descending order of a classifier probability (so-called scoring model) with the 
actual classification of the observations (1 or 0). The next columns in the table 
include the settings of the actual and predicted classifications (TP, TP + FN, TN, 
TN + FP). SE column shows the sensitivity in accordance with formula (1), and the 
SP column - specificity determined by the formula (2). 

Table 2. Mechanism of the ROC curve plotting 

No. 
obs. 

Classifier 
probability 

True class TP TP+FN SE TN TN+FP SP 1-SP 

1 0.90 1 1 5 0.2 5 5 1 0 

2 0.85 1 2 5 0.4 5 5 1 0 
3 0.75 0 2 5 0.4 4 5 0.8 0.2 

4 0.70 1 3 5 0.6 4 5 0.8 0.2 
5 0.55 1 4 5 0.8 4 5 0.8 0.2 

6 0.45 0 4 5 0.8 3 5 0.6 0.4 
7 0.40 0 4 5 0.8 2 5 0.4 0.6 

8 0.35 0 4 5 0.8 1 5 0.2 0.8 

9 0.25 1 5 5 1 1 5 0.2 0.8 
10 0.10 0 5 5 1 0 5 0.0 1 

Source: own preparation 

The ROC curve for the data presented in Table 2 has the following form 
(Figure 1). The ROC curve was determined based on 10 observations only, 
therefore this curve has a discrete character. In case of a larger number of 
observations, the curve would be more smooth. 

For the purpose of interpretation and comparison of multiple curves, two 
possible variants of the ROC curve are shown in Figure 2. 
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Figure 1. ROC curve for the data in Table 2 

 
Source: own preparation 

Figure 2. The ROC curve and its possible variants 

 
Source: own preparation 

Curve, which coincides with the diagonal curve, has no classification ability. 
The more the curve is convex and approaching the upper left corner, the better the 
discrimination has particular model. Highest (perfect) correctness puts classifier in 
(0,1). 

Comparing ROC curves on the graph may be subject to error, especially 
when comparing a large number of models. Therefore, several ROC curve 
summary measures of the discriminatory accuracy of a test have been proposed in 
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the literature, such as the area under the curve (AUC) or the Youden index 
{ }1)()(max −+= uSpuSe

c
[Youden 1950]. 

THE AUC ESTIMATION 

One of the main feature associated with the ROC curve, is that curve is 
increasing and invariant under any monotonic increasing transformation of the 
considered variables. In general AUC is given by 

∫=
1

0

)( duuROCAUC  (4) 

Moreover, let pX  and nX  denote the class marker for positive and negative 

cases, respectively. It could be shown that ( )np XXPAUC >= . This can be 

interpreted as the probability that in a randomly selected pair of positive and 
negative observations the classifier probability is higher for the positive case.  

Since the ROC curve measures the inequality between the good and the bad 
score distributions, it seems reasonable to show a relation between the ROC curve 
and the Lorenz curve. Twice the area between the Lorenz curve and the diagonal 
line at 45 degree corresponds to the Gini concentration index. This leads to an 
interesting interpretation of the AUC measure in terms of the Gini coefficient:

12 −= AUCGini . 
 

Parametric estimation 

A simple parametric approach is to assume the pX  and nX  are independent 

normal variable with ( )2,~ ppp NX σµ  and ( )2,~ nnn NX σµ . Then the ROC curve 

can be summarized as follow: 

( ) [ ]1,0)()( 1 ∈Φ+Φ= − uubauROC  (5) 

where ( ) pnpa σµµ −= , pnb σσ=  and Φ  indicates the standard normal 

distribution function ( )1,0~ NX . Furthermore, 
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and can be estimated by substituting sample means and standard deviations into all 
above mentioned formulas. 
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In practical applications the assumption of normality is untenable, therefore 
transformation such as the log or the Box–Cox is often suggested [Zou and Hall 
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2000], and the estimator (6) is then applied to the transformed data. Based on the 
observations on the positive and negative cases, an appropriate likelihood function 

can be constructed and maximized giving λ
)

, the maximum likelihood of 
estimate  λ . 

Non-parametric estimation 

a) 
The area under the empirical ROC curve is equal to the Mann–Whitney U 

statistic [Mann and Whitney 1947] which is usually computed to test whether the 
levels on some quantitative variable X  in one population P  tend to be greater 
than in second population N , without actually assuming how are they distributed 
in these two population. This measure provides an unbiased non-parametric 
estimator for the AUC [Faraggi and Reiser 2002]: 
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where pN , nN  are the number of positive and negative cases respectively. 

Unfortunately, this estimator in some situation is not recommended, because it 
conceptually requires all np NN  comparison and when we are dealing with large 

number of observations, computational time could be long. Sometimes in (8) 
sigmoid function is used instead of indicator function [Calders and Jaroszewicz 
2007]. 

b) 
When calculating the area under the curve it should be noted that the 

probabilistic classifiers give the values of the output vector other than the zero and 
one. Therefore, having m  cases classification moo ,...,1  belonging to a set classes 

},{ 21 CCC =  according to the decision threshold u , sorted so that 

1),(...),(0 111 =≤≤= moCseoCse  and 0),(...),(1 111 =≥≥= moCspoCsp  

the area under the curve could be calculated via trapezoidal integration: 
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where ),( 1 ii oCsese =  represents the sensitivity of the classification i -th case to 

the class 1C , ),( 1 ii oCspsp =  is the specificity of the classification i -th case to 

the class 1C . The trapezoidal approach systematically underestimates the AUC, 
because of the way all of the points on the ROC curve are connected with straight 
lines rather than smooth concave curves. 

To overcome the lack of smoothness of the empirical estimator, [Zou et al. 
1997] used kernel methods to estimate the ROC curve, which were later improved 
by [Lloyd 1998]. Kernel density estimators are known to be simple, versatile, with 
good theoretical and practical properties. 

TESTING DIFFERENCES BETWEEN TWO ROC CURVES 

To compare classification algorithms by comparing the area under the ROC 
curves, is used the following procedure described by [Bradley 1997][Hanley and 
McNeil 1983]. We consider the following set of hypotheses 
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to evaluate it, the following test statistic is used 
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which has the standardize normal distribution ( )1,0N , and where 
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where 1n  and 2n  are the number of negative and positive examples respectively 

and θ  is the true area under the ROC curve (but in practice only the estimator 

CUA ˆ  is used). 
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SIMULATION STUDY 

In order to check the performance of the selected AUC estimator, we 
conducted the simulations based on the data used for telecom customer churn 
modelling (the loss of customers moving to some other company). The data is a 
collection of "Cell2Cell: The Churn Game" [Neslin 2002] derived from the Center 
of Customer Relationship Management at Duke University, located in North 
Carolina in the United States. They constitute a representative slice of the entire 
database, belonging to an anonymous company operating in the sector of mobile 
telephony in the United States. 

The data contains 71047 observations, wherein each observation corresponds 
to the individual customer. For each observation 78 variables are assigned, of 
which 75 potential explanatory variables are used for models construction. All 
explanatory variables are derived from the same time period, except the binary 
dependent variable (the values 0 and 1) labeled as "churn", which has been 
observed in the period from 31 to 60 days later than the other variables. In the 
collection there is an additional variable "calibrat" to identify the learning sample 
and test sample, comprising 40000 and 31047 observations. Learning sample 
contains 20000 cases classified as churners (leavers) and 20000 cases classified as 
non-churners. In the test sample, which is used to check the quality of the 
constructed model, there is only 1.96% of people who quit. Such a small 
percentage of the class highlighted can be often found in the business practice.  

In this study similar set of modelling techniques has been used as in 
[Gajowniczek and Ząbkowski 2012]. These were artificial neural networks, 
classification trees, boosting classification trees, logistic regression and 
discriminant analysis. 

After estimation the λ
)

 parameter by power transformation, we observed 
that most of the distributions (Table 3) have not the normal distribution based on 
Shapiro-Wilk normality test at 01.0=α . As stated in [Krzyśko et al. 2008], pX ,

nX  may not have a normal distribution, but the reasoning based on the ROC curve 

built for a normal distribution may give good results, because the ROC curves do 
not count individual distribution, but the relationship between the distributions. 

Table 3. Tests for normality 

 
Negative cases (churn=1) Positive cases (churn=0) 

p-value λ
)

 
p-value λ

)

 
Artificial neural network (SANN) 2.88E-18 1.18 0.6694 1.37 
Boosting classification trees (Boosting) 1.02E-22 1.16 0.2164 1.41 
Logistic regression (Logit) 1.01E-08 0.77 0.0380 0.71 
Classification trees (C&RT) 7.93E-51 1.13 1.20E-16 1.55 
Discriminant analysis (GDA) 2.27E-08 0.79 0.0181 0.80 

Source: own preparation 
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Very small differences can be seen in Table 4 among non-parametric AUC 
estimates. The biggest difference in AUC can be observed in case of classification 
trees. This is due to the fact that C&RT assigns observations to the leafs. Within 
each leaf there is the same probability of belonging to the positive class. Therefore, 
when there are only few leafs in the tree then we don’t expect the distribution of 
probabilities to meet the assumption of normality.  

Table 4. AUC estimation using different techniques 

 

Mann-
Whitney 

(non-
parametric) 

Trapezoidal 
integration 

(non-
parametric) 

Normal 
assumption 
(parametric) 

Artificial neural network (SANN) 0.6242784 0.6242784 0.6864752 
Boosting classification trees (Boosting) 0.6632097 0.6632097 0.7045478 
Logistic regression (Logit) 0.6189685 0.6189685 0.6072612 
Classification trees (C&RT) 0.6215373 0.6227865 0.752052 
Discriminant analysis (GDA) 0.6190384 0.6190384 0.6288627 

Source: own preparation 

Table 5 show the critical levels (p-values) for testing differences between 
two ROC curves based on Mann-Whitney estimation. The hypothesis of equality of 
the areas under the ROC curve could be reject when p-value are smaller than 
accepted level of significance. It can be observed that, at the significance level 

05.0=α , the areas under the curves for the SANN, Logit, C&RT, GDA are not 
significantly different. Only the AUC measures for Boosting significantly differs 
from the other methods. 

Table 5. P-values for the differences between two AUC measure  

 SANN Boosting Logit C&RT GDA 
SANN 1.00000000 0.02417606 0.75930305 0.93139089 0.76237611 
Boosting  1.00000000 0.01042189 0.01925184 0.01054391 
Logit   1.00000000 0.82563864 0.99678138 
C&RT    1.00000000 0.82878156 
GDA     1.00000000 

Source: own preparation 

CONCLUSIONS 

The aim of this study was to compare the accuracy of commonly used ROC 
curve estimation methods taking into account different classification techniques. 
We show that non-parametric methods give convergent results in terms of the AUC 
measure while parametric approach tends to give the higher values of AUC, except 
the Logit. In practical applications, for parametric methods of ROC estimation the 
assumption of normality is untenable, therefore, non-parametric methods should be 
utilized. 
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The simulation experiment suggest that the non-parametric ROC estimation 
using trapezoidal rule is a reliable method when the distributions of the predictive 
outcome are skewed and that it provides a smooth ROC. Finally, this approach of 
estimation is not difficult nor computationally time consuming.    
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