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Abstract: The properties of the classical kernel estimator of density function 7 
deteriorate when the support of  density function is bounded. The use 8 
of classical form of kernel estimator causes the increase of the bias estimator, 9 
particularly in the so-called boundary region, close to end of support. It can 10 
also lead to undesirable situation where density function estimator has 11 
a different support than the density function. The paper presents selected bias 12 
reduction procedures, such as reflection method and its modification. An 13 
example is presented with an  attempt to compare considered procedures.  14 
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INTRODUCTION 17 

When the density function satisfies certain smoothness criteria (e.g. existing 18 
and being continuous of the density derivatives of appropriate orders over the 19 
entire real line), the kernel density estimator is characterized by some useful 20 
properties, such as: unnecessity of assuming that density belongs to a parametric 21 
family of distributions, its calculation is easy and it is asymptotically unbiased and 22 
is consistent estimator of unknown density function. The problems may arise for 23 
users when these smoothness conditions are not fulfilled, as in the case of  some 24 
commonly known densities. E.g. when the density function of exponential 25 
distribution is being estimated,  the kernel estimator  is trying to estimate relatively 26 
high density for positive values of random variable, whereas for negative values 27 
the estimator is aiming to estimate zero. The discontinuity in the function results in 28 
the bias increasing of the estimator [Wand, Jones 1995].  29 
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The next situation when the properties of the kernel density estimator 1 
deteriorates is the bounded domain of definition of a density being estimated. In 2 
practical problems such a situation occurs often as many random variables 3 
considered in the problems of economic, technical or natural sciences are 4 
characterized by bounded support on one or both sides. In most situations left 5 
boundary equals zero when the data under consideration are measurements 6 
of positive quantities. In different analyses random variables with non-negative 7 
values are considered (duration of unemployment, the stock price, time 8 
of performing specific technical operation, the amount of inventory in the 9 
warehouse, time of growing plants, amount of atmospheric fall). The use 10 
of classical form of kernel estimator causes the increase of the bias estimator, 11 
particularly in the so-called boundary region, close to end of support. It is possible 12 
both when the kernel function is unbounded, and when the kernel function is 13 
bounded but partially is ejected out of the density function support. It can also lead 14 
to undesirable situation where density function estimator has a different support 15 
than the density function [c.f. Jones 1993]. Moreover, in presentation of the data 16 
for which the estimation is giving, the situation when any weight is assigned to the 17 
negative numbers is treated as unacceptable [Silverman 1986]. 18 

Modification of classical kernel estimator is needed to improve the  19 
estimator properties. It should be used especially in the situation when the integral 20 
of the kernel estimator  is not 1 in appropriate support or estimator is not consistent 21 
for some observations.    22 

Let density function f  be continuous on interval  ,0  and be 0 for 0x . 23 

For smoothing parameter h : interval  h,0  is called boundary region and interval 24 

 ,h  is interior region.  25 

Note that for interior region it is possible to use the classical form of kernel density 26 

estimator. For boundary region information interval  hxhx  ,  may locate 27 

outside the support what may cause that some of the observations are not used in 28 
construction of the density estimator [Albers 2012]. Estimation is based on reduced 29 
information, the bias is large resulting in poor estimation.   30 

CLASSICAL KERNEL DENSITY ESTIMATOR  31 

Function kK ,  with support  1,1  is defined as kernel function of degree 32 

 k, , for 1 k ( Nk, ), if it fulfils the following property [c.f. Horová 33 

et al. 2012]:  34 
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where k  is kth moment of the kernel kK , . 2 

For 0  and 2k  kernel function  2,0K  is symmetric function 3 

around zero and    1

1

1

2,0 


dxxK . Any density function with support  1,1  with 4 

mean zero is kernel function of degree  2,0  and in most cases they are used in 5 

construction of classical kernel density estimators. 6 

Density kernel estimator based on sample nXXX ,...,, 21  with kernel 2,0K7 

symmetric around zero with support  1,1  can be written as [Wand, Jones 1995], 8 

[Silverman 1996], [Domański et al. 2014]: 9 
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where 
nh  is a smoothing parameter, such as 0nh , )(nhhn  :  )(nh , 0
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n

nnh . 12 

Classical kernel density estimator is consistent for continuous )(xf  and for 13 

0nh , 0



n

nh  and 
n

nnh . Moreover, it is a density function (is 14 

nonnegative and integrates to 1).  15 

Kernel estimator of the  -derivative of density function (assuming that  16 
derivatives exist and are continuous) is:   17 
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where 
kK ,

 is kernel function of degree  k, . For 0 , 2k  one can get (2). 19 

Kernel estimator of the  -derivative of density function for the appropriate 20 
kernel function is consistent in points of continuity of derivative.  21 
  22 
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BIAS REDUCTION OF KERNEL DENSITY ESTIMATOR  1 

Let: 2 

–  nXXX ,...,, 21  be a random sample drawn from a population with random 3 

variable  X  with density function  f  with support   ,0  (   0xf for 4 

0x  and   0xf for 0x ); 5 

–  
 2f  be a second derivative of density function which is continuous away from 6 

0x ; 7 

– function  2,0K  be symmetric and smooth kernel function of degree )2,0(  8 

with support  1,1 ; 9 

–  )(ˆ xfn  be the kernel density function (2) with the smoothing parameter nh .  10 

Boundary behavior of the kernel estimator can be observed taking into 11 
regard its asymptotic properties at a sequence of points which is within one 12 

bandwidth of the boundary. Taking nchx   for  1,0c , kernel density estimator 13 

for point x , is defined as: 
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kernel estimator of density function is asymptotically unbiased and consistent. Its 15 
expected value is the following: 16 
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where 2  is defined in  (1). For 10  c  when   
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duuK
1

2,0 1  in general, 18 

kernel estimator of density function is not consistent. Its expected value is: 19 

      1)()(ˆ

1

2,0 oduuKxfxfE

c

n  


. (5) 20 

It is possible to use an appropriate  modification of the kernel estimator in 21 
the vicinity of the known boundary. It results in a family of boundary kernels 22 

),(2,0 cuK L
 and the achieving   2hO  bias is possible. For different kernel 23 

functions and different values of c  kernel density estimators based on kernel 24 
function from a family of boundary kernels improve the performance of estimator 25 
in the boundary region [Wand, Jones 1995].  26 

Simple method used in bias reduction of kernel estimator is based on the 27 
estimator calculation only for positive values ignoring the boundary region and 28 
then setting kernel estimator to zero for negative values. It causes that the estimator 29 
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is zero  for negative values but on the other hand the integral of the estimator is not 1 
1 [Jones, Foster 1996].  2 

Another approach uses the reflections of all the points in the boundary that 3 

results in a set  ,...,,, 2211 XXXX  . Under the assumption  that kernel function 4 

is symmetric and differentiable, the resulting estimator has zero derivative at the 5 
boundary.  6 

This reflection method can be used directly in the kernel estimator by using 7 

appropriate modification of the kernel function outside the interval   ,0 , for 8 

example, symmetric reflection about zero, where parts of kernel function outside 9 

 ,0  are deleted and next placed in the neighbour of zero in interval   ,0 .  10 

Kernel estimator using reflection method is the following [Kulczycki 2005]:   11 
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Estimator (6) is consistent estimator of function f  but for x  close to zero the bias 13 

is )(hO .  14 

The Karunamuni and Alberts generalized reflection method improves the 15 
bias with low variance. The generalized reflection estimator is [Karunamuni, 16 
Alberts 2005]:    17 
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where 1g  and 2g  are some transformation functions (e.g. cubic polynomials with 19 

coefficients ensuring criteria for the order of estimators )( 2hO ). 20 

SIMULATION STUDY   21 

The simulation study was conducted to analyze the properties of chosen 22 
methods of the bias reduction of kernel density estimator.  23 

The populations with density functions of bounded support  ,0  were 24 

taken into consideration, particularly populations of two-parameters Weilbull 25 

distribution   ,,0W , where   is a scale parameter and   is a shape parameter. 26 

The populations were regarded with the following parameters: 27 

W1: 1 , 1.0 , 28 

W2: 1 , 5.0 , 29 

W3: 1 , 1 , 30 

W4: 1 , 2  (Rayleigh distribution), 31 
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W5: 1 , 4.3 ,  1 

W6: 1 , 5 , 2 

W7: 4 , 1 , 3 

 W8: 4 , 2 . 4 

The parameters of Weilbull distributions were chosen in such a way that it is 5 
possible to analyze the broad range of distributions with bounded supports. The 6 
populations are heterogeneous looking from e.g. measure of location, spread or 7 
asymmetry.   8 

To extend the study and indicate the area of application of regarded methods, 9 
one more population was considered, the measure of agricultural productivity – 10 
agriculture value added per worker for countries in 2013. Data are in constant 2005 11 
U.S. dollars. Source of the data is: 12 
http://data.worldbank.org/indicator/EA.PRD.AGRI.KD [18.06.2015]. 13 

From each population the samples were chosen where 100,...,20,10n . For 14 

each sample, the classical kernel density estimator and kernel density estimator 15 
with reflection were calculated using Gaussian kernel function and the reference 16 
rule or biased cross validation (in the case of W1) as the most popular methods of 17 
choosing the smoothing parameter. The chosen descriptive statistics calculated for 18 
samples ( 50n ) from populations W1-W8 are presented in Table 1.   19 

Table 1. Chosen descriptive statistics for samples from populations W1-W8 (n=50) 20 

Sample from 

population 

  ,,0Wi  

Maximal 

value 
Mean Median 

Standard 

deviation 
Asymmetry Kurtosis 

1i  

1 , 1.0  
2.5772 0.0518 0.0000 0.3644 0.0000 0.000 

2i  

1 , 5.0  
18.6900 1.9088 0.4418 3.4493 3.0234 13.3488 

3i  

1 , 1  
3.3774 0.8321 0.6525 0.7073 1.4203 5.1301 

4i  

1 , 2  
1.9582 0.8640 0.8397 0.3911 0.7166 3.2806 

5i  

1 , 4.3  
1.5101 0.8271 0.8312 0.2858 0.0493 2.5580 

6i  

1 , 5  
1.2919 0.9249 0.9549 0.2336 -0.3033 2.0451 

7i  

4 , 1  
17.4815 3.9782 2.5848 3.7848 1.4699 4.9171 

8i  

4 , 2  
7.9888 3.3012 2.7184 2.0423 0.5840 2.2218 

Source: own calculations  21 

http://data.worldbank.org/indicator/EA.PRD.AGRI.KD
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Exemplary results for sample size 50n  are presented in Figures 1-2 with 1 
classical kernel density estimator  (on the left) and kernel density estimator with 2 
reflection (on the right).  3 

Figure 1.  Classical kernel density estimator and kernel density estimator with reflection for 4 
populations W1-W8  5 
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Source: own calculations 1 

Figure 2.  Classical kernel density estimator and kernel density estimator with reflection for 2 
agriculture value added per worker for countries in the world in 2013  3 
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SUMMARY 1 

For many random variables considered in practical applications their density 2 
functions, by definition,  are characterized by bounded support. Sometimes the 3 
estimator, e.g. kernel density estimator based on the samples from these 4 
populations, has different support than the density function. Such situation was 5 
observed for samples from Weilbull distribution, especially with small values 6 
of shape parameter.  Modification of kernel estimator using the method 7 
of reflection ensure the users that the estimator is constructed only for non-negative 8 
values. But applying the reflection kernel estimator without initial stage of analyse 9 
the classical estimator may cause unnecessary limitation of the support (as it was in 10 
the case of  W5). Further deeper analysis is needed for indicating such 11 
modifications of classical kernel estimator that the estimator will be with the same 12 
support as density function and there will be no lack of points of discontinuity. 13 
Such modification is necessary especially for practical implementations 14 
of regarded methods.  15 
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