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Abstract: In this paper the modification of a two-level multigrid method by 6 
allowing an overlap between adjacent subdomains and its application to 7 
a one-dimensional Black-Scholes equation is described. The method is based 8 
on the finite-difference schema known as implicit Euler. Numerical experi-9 
ments confirm the superiority of the proposed method in relation to the clas-10 
sic multigrid method in form of shortening computation time, memory sav-11 
ings and ease of parallelization. The comparison shows the advantages 12 
of overlapping grids vs method without them, mainly due to improved accu-13 
racy of the solution. 14 

Keywords: option pricing, Black-Scholes model, multigrid method, finite-15 
difference scheme 16 

INTRODUCTION 17 

One of the fast-evolving areas of financial mathematics is the modeling 18 
of dynamics of changes of the prices of financial instruments, in particular the 19 
problem of the option pricing. Many of proposed algorithms, which were devel-20 
oped over the years for the partial and stochastic differential equations [Sau-21 
er 2012] and are based on the finite-difference [Knabner and Angerman 2003] 22 
or the finite-element method [Zienkiewicz et al. 2005]. There exists also a class of 23 
methods that proved to be an effective alternative to those classic numerical algo-24 
rithms that is class of multigrid methods [Shapira 2003], [Wesseling 2004]. Their 25 
effectiveness has been also noticed in option pricing tasks. In this paper the modifi-26 
cation of a two-level multigrid method by allowing an overlap between subdo-27 
mains is described. This approach improve the convergence of the iteration process 28 
and the approximation of the solution at the expense of less susceptibility to paral-29 
lelization. Application of this idea to a one-dimensional Black-Scholes equation is 30 
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presented. To be more exact the European call option is considered (for details on 1 
option pricing theory see [Hull 2006] or [Haug 2007]): 2 
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where s is a stock price of the underlying asset, t is a time, r is a risk-free interest 4 
rate, σ is a volatility of the stock and K is a strike price. The solution 5 

    RTV  ,0,0:  is the price of the option as a function of s and t and the 6 

analytic solution is known as a Black-Scholes formula. 7 
Over the years many methods of solving the Black-Scholes model were de-8 

veloped, see [Fries 2007], in particular algorithms used to solve partial differential 9 
equations were successfully adapted to options pricing. The main dissimilarity 10 
between these two applications are the boundary conditions. For tasks from science 11 
subjects boundary conditions are exactly specified. In Black-Scholes model the 12 
domain is infinite and therefore only an approximation of boundary conditions is 13 
known. This issue influences the accuracy of the solution computed by the tested 14 
method and makes much harder to developed new, reliable algorithms. 15 

In finite-difference schema the infinite domain    T,0,0  is change to the 16 

finite    TSS ,0, maxmin   in such a way, that all probable values of s are within the 17 

domain. Let M be the number of parts, to which the space interval was divided and 18 
N the number of parts being the result of the partition of the time interval. Using 19 
the implicit Euler method, see [Hull 2006] or [Pascucci 2011], the continuous task 20 
(1) could be discretized as follows 21 
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for i = 0,1,2,…,M and j = 0,1,2,…,N, where by  jihSVV j

i ,min  , h is a step 23 

of a space interval and a step of a time interval. 24 
The approximate solution is calculated only in the nodes of the grid. The finer grid 25 
the better approximation you may expect. This however involves greater computa-26 
tional complexity. The implicit Euler schema on each time layer requires solving 27 
system of linear equations, which is usually done by some kind of iterative meth-28 
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ods for sparse linear systems [Saad 2003] or dedicated methods using more sophis-1 
ticated preconditioners [Bernardelli 2008], [Toselli & Widlund 2005], [Bhowmik 2 
& Stolk 2011]. In case of really big systems of linear equations, even when they 3 
are sparse, the memory and computational complexity of algorithms usually in-4 
creases drastically. As an alternative, efficient approach, the multigrid methods 5 
may be considered, see [Shapira 2003], [Wesseling 2004]. 6 

THE MULTIGRID ALGORITHM FOR NON-OVERLAPPING GRIDS 7 

The idea behind multigrid methods is to use a hierarchy of discretizations in-8 
stead of one grid. The acceleration of the convergence of the iteration process is 9 
achieved by solving the task only on a coarse grid, which is faster due to the size 10 
of the problem, than solving the whole task on the fine grid. The definition of an 11 
interchange of information between coarser and finer layers is, besides the number 12 
and shape of the grids, at the same time a definition of the multigrid method. Mul-13 
tigrid methods are consistent with any discretization technique, starting from finite-14 
difference [Strang 2007] and finite element [Zhu & Cangellaris 2006] methods. 15 
Also they are flexible if it comes to the regularity of the domain or boundary [Ber-16 
ridge & Schumacher 2002] and are known by their ease of parallelization, compare 17 
[Chiorean 2005]. In this paper the two-level multigrid method is described. For the 18 
comparison purpose two different splittings into grids are considered – the first 19 
with disjoint partitions and the second with overlaps.  20 

Consider the decomposition of the space domain on each time layer into two 21 
disjoint subsets Ω1 and Ω2. Let ΩH be the set of nodes on the coarse grid and by ΩH1 22 
and ΩH2 denote ΩH restricted to Ω1 and Ω2 respectively. We assume that these grids 23 
are uniform with the steps equal H1 and H2. Analogously let the fine grid Ωh be 24 
decomposed into two subsets Ωh1 and Ωh2 with the steps denoted by h1 and h2 re-25 
spectively. There is a simplifying assumption taken that the nodes of the coarse 26 
grid, are also nodes of the corresponding fine grid. The graphical representation of 27 
the two-level grid is presented on Figure 1. 28 

Figure 1.  Coarse grid and decomposition of the fine grid without overlap 29 

 30 
Source: own elaboration 31 

Let AH1, AH1, Ah1 and Ah2 be the matrices of the systems of linear equations related 32 

to the grids ΩH1, ΩH2, Ωh1 and Ωh2 respectively. Let 
j

HV 1 , 
j

HV 2 , j

hV 1
 and j

hV 2
be the 33 

solutions of these systems of linear equations on the time layer j = 0, 1, 2, …, N-1. 34 
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For the simplicity of notation let j

H

j

H

j

H VVV 21   and j

h

j

h

j

h VVV 21  . To describe the 1 

multigrid method let introduce two operators: 2 

 
HhR :  – a restriction operator from the fine to the coarse grid, 3 

 
hHI : – a prolongation operator from the coarse to the fine grid. 4 

The algorithm for the non-overlapping decomposition of the grids could be de-5 
scribe in the following three steps on each time layer1 j = N, N-1, N-2, …, 2, 1: 6 

STEP 1: Use the restriction operator R to calculate right side vectors of the matrix 7 
equations for the coarse grid 8 

 
j

h

j

H VRV  . (3) 9 

STEP 2: Use the newest calculated value at the common point of the two subdo-10 
mains as the boundary condition for two systems of linear equations (i = 1, 2): 11 

 
j

Hi

j

HiHi VVA 1
. (4) 12 

 Solve these matrix equations in parallel. 13 

STEP 3: Use the prolongation operator I to calculate the values of the solution in 14 
the nodes of the fine grid 15 

 
j

H

j

h VIV 1
. (5) 16 

It can be shown [Strang 2007] that for the appropriately chosen operators R and I 17 
solutions of the equation defined on the fine and on the coarse grid are equivalent. 18 
In this paper we assume, that  19 

 TI
p

R
1

 , (6) 20 

if the step of the coarse grid is p times greater than the step of the fine grid. Inter-21 
polation operator I is defined on the stencil presented on Figure 2. 22 

Figure 2.  Graphical representation of the stencil for the interpolation operator I 23 

 24 
Source: own elaboration 25 

The solution limited to each subdomain should be smooth, but unfortunately, 26 
such an approach can result in the lack of smoothness in the whole domain. 27 
Demonstration of such a situation is given on Figure 3. The remedy could be an 28 
algorithm, which uses decomposition with overlapping grids. 29 

                                                 
1 Black-Scholes equation is backward in time. 
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Figure 3.  Example of non-smooth solution obtained by the multigrid algorithm with dis-1 
joint decomposition of the grids 2 

 3 
Source: own elaboration 4 

THE MULTIGRID ALGORITHM FOR OVERLAPPING GRIDS 5 

A modification of the algorithm described in the previous subsection is 6 
made, by letting grids to overlap. Visualization of this idea is given on Figure 4. 7 
The concept of splitting the domain into smaller non-disjoint pieces is not new, 8 
[Toselli & Widlund 2005] or [Henshaw 2005], but explored rather only for partial 9 
differential equations, which have strict boundary conditions specified. Contrary, in 10 
the Black-Scholes equation only asymptotic character of the boundary conditions 11 
can be established. Therefore construction of algorithms for option pricing is much 12 
harder than it is for example for elliptic partial differential equations. 13 

Figure 4.  Coarse grid and decomposition of the fine grid with overlap 14 

 15 
Source: own elaboration 16 

To describe the algorithm presented already notation with minor changes can 17 
be used. For the clarity of the description we decompose the prolongation I and the 18 
restriction R operators into separate operators related to each subdomain, that is I1, 19 
R1 for Ω1 and I2, R2 for Ω2. 20 

The algorithm for the overlapping decomposition of the grids could be sum-21 
marized in the following steps on each time layer j = N, N-1, N-2, …, 2, 1: 22 

STEP 1: Use the restriction operator R1 to calculate right side vector of the matrix 23 
equations for the coarse grid of the Ω1: 24 

 
j

h

j

H VRV 111  . (7) 25 
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STEP 2: Based on values from the previous time layer use linear interpolation to 1 
calculate the value at the right end of the subdomain Ω1 and use it as the boundary 2 
condition for the system of linear equations: 3 

 j

H

j

HH VVA 1

1

11  . (8) 4 

STEP 3: Use the prolongation operator I1 to calculate the values of the solution in 5 
the nodes of the fine grid of the Ω1: 6 

 
j

H

j

h VIV 11

1

1 
. (9) 7 

STEP 4: Use the restriction operator R2 to calculate right side vector of the matrix 8 
equations for the coarse grid of the Ω2: 9 

 
j

h

j

H VRV 222  . (10) 10 

STEP 5: Based on values from step 3 use linear interpolation to calculate the value 11 
at the left end of the subdomain Ω2 and use it as the boundary condition for the 12 
system of linear equations: 13 

 
j

H

j

HH VVA 2

1

22 
. (11) 14 

STEP 6: Use the prolongation operator I2 to calculate the values of the solution in 15 
the nodes of the fine grid of the Ω2: 16 

 
j

H

j

h VIV 22

1

2 
. (12) 17 

The exemplary difference between results of two algorithms on the given 18 
time layer is visualized on Figure 3 (non-overlapping grids) and Figure 5 (overlap-19 
ping grids). Introducing overlaps firstly gives a fresh information about the bound-20 
ary conditions for computations on each subdomain, and secondly makes the final 21 
solution smoother. Of course there are some disadvantages of this approach. Most 22 
of all computations for Ω1 and Ω2 can’t be performed in parallel, steps 4-6 may be 23 
executed only after steps 1-3 are finished. The difference in performance however 24 
could be observed probably only on a computer cluster with many machines, not 25 
on the standard, even multi-processor computer. 26 

NUMERICAL EXPERIMENTS 27 

To verify the effectiveness of the proposed method with overlapping grids 28 
numerical experiments were conducted. As the test case the European call option 29 
problem (1) with the following parameters was chosen 30 

 T = 2, K = 10, r = 0.2, σ = 0.25, Smin = 0, Smax = 20. (13) 31 

 32 

 33 

 34 

 35 
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Figure 5.  The example of smoothed solution obtained by the multigrid algorithm with de-1 
composition of the grids with overlaps 2 

 3 
Source: own elaboration 4 

Other parameters were changed during the experiments. The complete list of the 5 
parameters is as follows: 6 
M – number of parts of the space interval (number of grid nodes on each time layer 7 
is equal M+1), 8 
N – number of time layers used in the calculation, in experiments assumed as 9 

   1

21,max2


 ppMroundN  10 

overlap1, overlap2 – size of the overlap measured as a number of fine grid points 11 
outside the corresponding subdomain, 12 
p1, p2 – ratio of the step sizes between the coarse and fine grids on the subdomains, 13 

that is 
1

 iii hHp  for i = 1, 2. 14 
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For every result there were measured the time of the computation and two types 1 
of errors: 2 

 maximum residual error (NORM∞):                        , 3 

 absolute error at K (ABSK): )(
~

)( KVKV  , 4 

where V is the computed solution and V
~

is the analytic solution from the Black-5 
Scholes formula. The series of numerical experiments were divided into parts de-6 
signed to verify dependence of errors on the ratio of number of grid nodes between 7 
subdomains, size of overlaps and ratio of the step sizes between the coarse and fine 8 
grids on the subdomains. Results of each part of the experiments and their brief 9 
descriptions are given in the remaining part of this section. 10 

Selected results of the numerical experiments that verified the dependence 11 
between solution’s accuracy and the number of grid nodes of the two subdomains 12 
are presented in Table 1. 13 

Table 1.  Dependence between errors and the ratio of number of grid nodes of two subdo-14 
mains 15 

Ratio M 
NORM∞ ABSK 

NO YES NO YES 

10% : 90% 

12 000 

0.030552 0.102905 0.009131 0.000673 

30% : 70% 0.018038 0.011974 0.012346 0.000560 

50% : 50% 0.015608 0.011030 0.011778 0.000081 

70% : 30% 0.014711 0.017558 0.010776 0.002198 

90% : 10% 0.033411 0.048296 0.004385 0.038145 

10% : 90% 

60 000 

0.014191 0.021621 0.010784 0.000143 

30% : 70% 0.014462 0.002535 0.011386 0.000120 

50% : 50% 0.014556 0.003103 0.011268 0.000024 

70% : 30% 0.014474 0.004428 0.011065 0.000431 

90% : 10% 0.013784 0.010971 0.009760 0.007581 

NO – algorithm without overlaps, YES – algorithm with overlapping grids. Used parameters:  16 
p1 = p2 = 6, overlap1 = overlap2 = 5. In bold are the smallest values of errors for each M. 17 

Source: own calculations 18 

Maximum residual error (NORM∞) for the algorithm with overlaps seems to 19 
be worse or at most comparable to corresponding errors of the algorithm with dis-20 
joint decomposition of grids. In contrast, absolute error at K (ABSK) is (except the 21 
extreme case of ratio 90% : 10%) much smaller for the algorithm with the overlap 22 
modification. In practice we are rather interested in the best possible value at the 23 
given point (or interval containing that point) not in the solution in the whole do-24 
main. This is why minimization of ABSK error is desirable. Due to the computation 25 
complexity and given in Table 1 results in other two parts of the numerical experi-26 
ment the ratio 50% : 50% was used. 27 
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The second part of the series of numerical experiments is related to the clue 1 
of the idea behind the described algorithm. It is intended to check how the size of 2 
an overlap influence the value of the errors. Selected results of these part of exper-3 
iments are presented in Table 2. 4 

Table 2. Dependence between errors and the size of overlaps, assuming overlap1=overlap2 5 

Overlap M 
NORM∞ ABSK 

NO YES NO YES 

1 

12 000 0.015608 

0.008397 

0.011778 

0.002106 

2 0.009056 0.000317 

3 0.009714 0.002023 

5 0.011030 0.000081 

6 0.011686 0.000073 

7 0.012342 0.001103 

1 

60 000 0.014556 

0.002573 

0.011268 

0.0004316 

2 0.002705 0.0000719 

3 0.002838 0.0004144 

5 0.003103 0.0000244 

6 0.003236 0.0000065 

7 0.003368 0.0002299 

NO – algorithm without overlaps, YES – algorithm with overlapping grids. Used parameters:  6 
p1 = p2 = 6, ratio between number of fine grid nodes of two subdomains 50% : 50%. In bold are the 7 
smallest values of errors for each M. 8 

Source: own calculations  9 

In any considered case adding an overlap improved the accuracy of the solu-10 
tion. An observable fact resulting from comparison between different sizes of an 11 
overlap, is that increasing an overlap increases the NORM∞ error. Because of the 12 
approximation of the derivatives that was used in the discretization, the size of an 13 
overlap should be equal one step of the fine grid. Nevertheless concerning the sec-14 
ond measured error (ABSK) we can noticed, that it is rather effective to increase an 15 
overlap (taking into account the size M of the grid on the space interval). It seems 16 
to improve the accuracy (measured as a point error) of the solution for any reason-17 
able set of parameters. In almost all numerical experiments parts of the experi-18 
ments the size of an overlap was set to 5. 19 

The last, third part of numerical experiments is directly related to the key 20 
concept of the multigrid method. There were measured errors while changing the 21 
parameters p1 and p2. Results are gathered in Table 3. As was expected, decreasing 22 
the size of the coarse grid makes errors greater. However ABSK error of the solu-23 
tions of the algorithm with overlapping grids may be and, depending on the size of 24 
the problem, usually is smaller for  6,321  pp . Of course for greater values of 25 

considered in this part of numerical experiments parameters computations are no-26 
ticeably faster. 27 
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Table 3.  Dependence between errors and the ratio of the step sizes between the coarse and 1 
fine grids on the subdomains 2 

p1 = p2 M 
NORM∞ ABSK 

NO YES NO YES 

2 

10 000 

0.014518 0.003498 0.011335 0.000352 

3 0.014729 0.005880 0.011468 0.000026 

4 0.015056 0.008259 0.011611 0.001133 

6 0.016121 0.013006 0.011901 0.000091 

10 0.019881 0.022429 0.012500 0.003678 

2 

60 000 

0.014462 0.001510 0.011173 3.91531e-06 

3 0.014478 0.001908 0.011195 3.85165e-06 

4 0.014501 0.002307 0.011219 9.00507e-06 

6 0.014556 0.003103 0.011268 2.44427e-05 

10 0.014694 0.004694 0.011368 6.16543e-05 

Source: own calculations  3 

NO – algorithm without overlaps, YES – algorithm with overlapping grids. Used parame-4 
ters: overlap1 = overlap2 = 5, ratio between number of fine grid nodes of two subdomains 5 
50% : 50%. In bold are the smallest values of errors for each M. 6 

In case of both measured errors algorithm with overlaps is performing con-7 
siderably better than the algorithm with disjoint subdomains. The dependence of 8 
the NORM∞ and the ABSK error on the value of M is given on Figure 6. 9 

Figure 6. The value of the (a) NORM∞ error and (b) ABSK error with increasing value of M. 10 
Used parameters: overlap1 = overlap2 = 5, p1 = p2 = 6, ratio between number of 11 
fine grid nodes of two subdomains 50% : 50%. Dotted line – no overlaps, contin-12 
uous line – with overlaps 13 

 14 
 (a) (b) 15 

Source: own elaboration 16 
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SUMMARY 1 

In this paper the proposition of the multigrid method with overlapping grids 2 
is presented. The description includes the specification of the algorithm steps, its 3 
pros and cons as well as results of the numerical experiments. The method is de-4 
signed to solve one-dimensional Black-Scholes problem for the European call op-5 
tion and was compared to the analogous method without overlaps. Based on the 6 
theory and numerical experiments one can formulate the following conclusions. 7 
Comparing to the method without overlapping grids presented method has 8 

 improve convergence rate, 9 

 better accuracy of the solution, 10 

 comparable memory and computer power requirements, 11 

 comparable time of computations, 12 

 less parallelization possibilities. 13 
Comparing to the multigrid method without decomposition of the domain proposed 14 
method has 15 

 slightly worse accuracy of the solution, 16 

 much faster time of computations, 17 

 more parallelization possibilities, 18 

 much less memory and computer power requirements. 19 

Nevertheless the one-dimensional task is considered as reasonably easy to solve. 20 
The true advantage of the described method should become visible in more than 21 
one dimension. Such a generalization is one of the main goals of the further re-22 
search. Also worth considering would be implementation for more than two sub-23 
domains and most of all checking the effectiveness of the method for other option 24 
pricing problems, especially those, for which the analytic solution is unknown. 25 
Generalization of the classic Black-Scholes model could include for example 26 
American options, model with variable coefficients or adding a dividend term to 27 
the model. 28 
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