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INTRODUCTION 11 

Continuous development of science has brought certain possibility of use 12 
of the newest and more efficient methods and research tools. Among them, 13 
mathematical and statistical tools occupy an important position. They play a key 14 
role in the construction of models of quantitative description of economic 15 
phenomena and processes. These models can take different forms, but it is 16 
necessary to remember that properly constructed model of these phenomena or 17 
economic process should ensure the preservation of relationships and logical 18 
correctness of the structure between the original and the image generated by this 19 
model.1 In practice, making research in various scientific fields, one usually uses 20 
mathematical models, essentially simplifying the reality, in question. From one 21 
side it leads to possibilities of applying tools of the well known theory of linear 22 
mathematics but, on the another side, there are necessity to simplify the obtained 23 
numerical data, substituting them by a regressed ones, in any sense. 24 

In both the operations some necessary invariants shall be preserved. Hence, 25 
our research, gained on this way, is still sensible. If these simplifications are to far 26 

                                                 
1  Fałda B. (2010) Modelowanie dynamiczne procesów ekonomicznych, Wydawnictwo 

KUL, Lublin, p. 25.  
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reaching then the usual linear techniques becomes misleading, if not entirely 1 
meaningless. 2 

Simplifying, for instance, one of the basic principles known in physics, 3 
which is giving rise to the wave equation, we substitute the general dependencies 4 
by a linear equation. As a result we are losing the most interesting physical 5 
phenomena like non-linear waves known, in the case of the water waves, 6 
as solitons or tsunami. Therefore, the linearization procedure, obtained by using the 7 
linear regression method, often leads to an information set, that we shall decide if it 8 
is satisfactory. 9 

Generally, in the authors opinion, the mentioned linearization procedure has 10 
feature of the well working local method which is not giving rise to results 11 
of global character, if linearity are not assured. Another generalization approach is 12 
to describe the situation in a case when there is not possible to use probability 13 
methods. In such a case we propose to use the general regression idea, by the use 14 
of which one may introduce the probability structure. This is concerning the case 15 
when the observed phenomena occurs in the surface of the unit sphere, what will 16 
be under discussion hereafter. 17 

INTRODUCTION TO GENERAL REGRESSION THEORY 18 

The theory of regression gone a long way of its development, from a simple 19 
considerations about linear forms to technically advanced, multidimensional 20 
nonlinear models. 21 

The analysis of the relationship between two or more variables, given in 22 
such a manner that one variable can be predicted or explained by using information 23 
on the others is called regression analysis.2 In standard linear statistical model we 24 
consider the following situation: 25 

Let 𝑋: = {𝑥0, 𝑥1, . . . , 𝑥𝑛} and 𝑌: = {𝑦0, 𝑦1, . . . , 𝑦𝑛} be arbitrary given 26 
sequences of numbers. Then there exists a unique 𝑓0 ∈ ℱ (the space of linear 27 
functions) satisfying the following condition 28 

 ∑ [𝑓(𝑥𝑘) − 𝑦𝑘]
2𝑛

𝑘=0 ≥ ∑ [𝑓0
(𝑥𝑘) − 𝑦𝑘]

2𝑛
𝑘=0   for any   𝑓 ∈ ℱ. (1) 29 

The function 𝑓0 is of the form 30 

 𝑓0(𝑡) = 𝑎0𝑡 + 𝑏0   as   𝑡 ∈ ℝ, (2) 31 

where 32 

 𝑎0 ≔
(𝑛+1) ∑ 𝑥𝑘𝑦𝑘−∑ 𝑥𝑘 ∑ 𝑦𝑘

𝑛
𝑘=0

𝑛
𝑘=0

𝑛
𝑘=0

(𝑛+1) ∑ 𝑥𝑛
2−(∑ 𝑥𝑘

𝑛
𝑘=0 )

2𝑛
𝑘=0

 (3) 33 

and  34 

                                                 
2  Freund R. J., Wilson W. W., Mohr D. L. (2010) Statistical methods, 3rd edition, Elsevier, 

p. 323. 
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 𝑏0 ≔
∑ 𝑦𝑘−𝑎0 ∑ 𝑥𝑘

𝑛
𝑘=0

𝑛
𝑘=0

𝑛+1
 . (4) 1 

The function 𝑓0 is usually named the linear regression for a given empiric 2 
sequences 𝑋 and 𝑌. The function 𝑓0 plays the role of optimal function with the 3 
smallest quadratic deviation from the mentioned above observations. In literature, 4 
cf. [Sen, Srivastava 1990, Seber, Wild 2003], one may find a number of its 5 
modifications, obtained by properly used diffeomorphic modifications and 6 
localization. 7 

The generalization to the case, when instant of the space of the linear 8 
functions space ℱ, formed by linear functions, one uses an arbitrary, finite or 9 
infinite dimensional, Hilbert function space ℋ. An introduction and basic results 10 
are presented in [Partyka, Zając 2015]. The background for further considerations 11 
is a regression structure of the form 12 

 ℜ ≔ (𝐴, 𝐵, 𝛿; 𝑥, 𝑦) , (5) 13 

where: 14 

1. 𝐴, 𝐵 are given nonempty sets; 15 

2. obtained by an experiment or observation the functions 𝑥: Ω1 → 𝐴 and 𝑦: Ω2 →16 
𝐵 for some nonempty sets Ω1 and Ω2; 17 

3. 𝛿: (Ω1 → 𝐵) × (Ω2 → 𝐵) → ℝ̅ is a matching measure of theoretical function to 18 
empirical data 𝑥 and 𝑦. 19 

Hence, one has given a theoretical functional model ℱ of a considered 20 
structure ℜ, such that  ℱ ⊂ (𝐴 → 𝐵), where 𝐴 → 𝐵 denotes the class of all 21 
functions acting from 𝐴 to 𝐵, where 𝐴 and 𝐵 are arbitrary sets3; usually subsets of 22 
ℝ̅. Our purpose is to determine such functions 𝑓0 ∈ ℱ, which satisfy the following 23 
condition of the best matching to the empirical data 24 

 𝐹(𝑓) ≔ 𝛿(𝑓 ∘ 𝑥, 𝑦) ≥ 𝐹(𝑓0) , (6) 25 

Here, instead of extremality condition (1) one considers much more general 26 
condition (6). 27 

Generalization of the classic square deviation, calculated with respect to any 28 
measure 𝜇: ℬ → [0, +∞), is defined by 29 

 𝛿(𝑢, 𝑣) = ∫ |𝑢(𝑡1) − 𝑣(𝑡2)|2
Ω1×Ω2

d𝜇(𝑡1, 𝑡2) , (7) 30 

assuming that the family of subsets of the Cartesian product Ω1 × Ω2 form a 𝜎-31 
field ℬ and functions 32 

 Ω1 × Ω2 ∋ (𝑡1, 𝑡2) → 𝑢(𝑡1)   and   Ω1 × Ω2 ∋ (𝑡1, 𝑡2) → 𝑣(𝑡2)  (8) 33 

are measurable. The set of all 𝑓0 ∈ ℱ satisfying inequality (6) is denoted by 34 
Reg(ℱ, ℜ), whereas each of 𝑓0 ∈ Reg(ℱ, ℜ) is said to be the regression function in 35 
ℱ with respect to ℜ. 36 

                                                 
3  Partyka D., Zając J. (2015) Generalized approach to the problem of regression, Anal. 

Math. Phys., DOI 10.1007/s13324-014-0096-7, Anal. Math. Phys. (2015) 5, 251. 
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The usually used synchronous case one obtains by setting 𝑡1 = 𝑡2 = 𝑡 and 1 
𝜇(𝑡1, 𝑡2) = 𝜇(𝑡), which covers the case of the classical measure, used in linear 2 
regression theory. 3 

In [Partyka, Zając 2015] one may find  a precise mathematical description, 4 
leading to solution of the extremal problem (6) both in the case of finite as well as 5 
infinite dimensional Hilbert or pseudo Hilbert  space. Moreover, it is showed there, 6 
that the solution, called generalized regression function, is constructed there as a 7 
linear combination of the basis vectors, same in the case of finite as infinite 8 
dimensional Hilbert space; see Theorem 4.3 and Theorem 5.1 in [Partyka, Zając 9 
2015]. 10 

As a sort of special advantage of this theory we would like to point out that 11 
one has here freedom in choosing the basis vectors. By this we may properly adopt 12 
the space in question to the observed phenomena. 13 

The regression problem for ℱ with respect to ℜ is to determine all functions 14 
𝑓0 ∈ ℱ minimizing the functional 𝐹 and satisfying the following equality 15 

 𝐹(𝑓) = ∫ |𝑓 ∘ 𝑥(𝑡1) − 𝑦(𝑡2)|2
Ω1×Ω2

d𝜇(𝑡1, 𝑡2) ,      𝑓 ∈ ℱ , (9) 16 

which is the discrete case is leading to 17 

 𝐹(𝑓) = ∑ |𝑓 ∘ 𝑥(𝑘) − 𝑦(𝑘)|2𝑛
𝑘=0 = ∑ |𝑓(𝑥𝑘) − 𝑦𝑘|2𝑛

𝑘=0  ,      𝑓 ∈ ℱ . (10) 18 

These forms are suggesting to consider the family ℒ1(ℜ) of all functions 19 
𝑓: 𝐴 → 𝐵, such that 𝑓 ∘ 𝑥(𝑘) are measurable of finite 𝐿2-norm. 20 

In symmetry to this one may consider the family ℒ2(ℜ) of all functions 21 
𝑔: 𝐵 → 𝐵 such that 𝑔 ∘ 𝑦(𝑡2) is measurable of finite 𝐿2-norm. Hence, the structure 22 
ℋ(ℜ): = (ℒ2(ℜ), +,∙, 〈∙ | ∙〉) is a Hilbert space, where (ℒ1(ℜ), +,∙)  is a complete 23 
linear space, where 24 

 〈𝑢|𝑣〉: = ∫ 𝑢 ∘ 𝑥(𝑡1)𝑣 ∘ 𝑥(𝑡1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
Ω1×Ω2

d𝜇(𝑡1, 𝑡2) (11) 25 

is well defined scalar product. 26 
To each 𝑔 ∈ ℒ2(ℜ) we associate the functional 27 

 𝑔∗(𝑢) = ∫ 𝑢 ∘ 𝑥(𝑡1)𝑔 ∘ 𝑦(𝑡2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
Ω1×Ω2

d𝜇(𝑡1, 𝑡2) (12) 28 

well defined for all 𝑢 ∈ ℒ1(ℜ). 29 
Within this notations we may present4 the solution of the regression problem 30 

which, taking into account the ortogonal decomposition procedure, reeds as 31 
Theorem: Given 𝑝 ∈ ℕ ∪ {∞} let ℎ𝑘 ∈ ℒ1(ℜ)\{Θ} be an orthogonal 32 

sequence in the ℋ(ℜ) and 𝑔 ∈ ℒ2(ℜ). If 𝑝 ∈ ℕ, then 33 

 Reg(ℱ, ℜ𝑔) = (Θ ∩ ℱ) + ∑
𝑔∗(ℎ𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

‖ℎ𝑘‖2 ℎ𝑘
𝑝
𝑘=1 , (13) 34 

                                                 
4  Partyka D., Zając J. (2015) Generalized approach to the problem of regression, Anal. 

Math. Phys., DOI 10.1007/s13324-014-0096-7, Anal.Math.Phys. (2015) 5, p. 258. 
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where ℱ: = lin({ℎ𝑘: 𝑘 ∈ ℤ1,𝑝}) and Θ is the set of functions in ℒ1(ℜ) with zero 1 

norm.  If 𝑝 = ∞, then 2 

 Reg(cl(ℱ), ℜ𝑔) = Θ + ∑
𝑔∗(ℎ𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

‖ℎ𝑘‖2 ℎ𝑘
∞
𝑘=1  . (14) 3 

Here ℜ𝑔: = (𝐴, 𝐵; 𝛿, 𝑥, 𝑔 ∘ 𝑦) is a regression structure for each 𝑔: 𝐵 → 𝐵, which is 4 

properly described balancing function.5  5 
By this each 𝑓 ∈ Reg(ℱ, ℜ) is of the form 6 

 𝑓 =  ∑ 𝜆𝑘ℎ𝑘
𝑝
𝑘=1  (15) 7 

for a sequence {𝜆𝑘}, such that 𝜆𝑘 ∈ ℬ, as 𝑘 = 1,2, . . . , 𝑝. 8 
The coefficient 𝜆𝑘 is of the form 9 

 𝜆𝑘 =
𝑔∗(ℎ𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

‖ℎ𝑘‖2  ,    𝑘 = 1,2, … , 𝑝 . (16) 10 

To present a connection between the classical regression function and the 11 
generalized one, let us see the example, given in [Partyka, Zając 2015]. To this let 12 
the real regression structure ℜ be given with 𝑔 ∈ ℒ2(ℜ), where ℱ: = lin({ℎ1, ℎ2}) 13 
as ℎ1, ℎ2 ∈ ℒ1(ℜ) such that ℱ ∩  Θ = {𝜃}. 14 

Then 15 

 Reg (ℱ, ℜ) = (Θ ∩ ℱ) + ∑
𝑔∗(ℎ𝑘

′ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅

‖ℎ𝑘
′ ‖

2 ℎ𝑘
′2

𝑘=1  , (17) 16 

where ℎ1
′ = ℎ1 and ℎ2

′ ≔ ℎ2 −
〈ℎ2|ℎ1〉

‖ℎ1‖2 ℎ1.  17 

Denoting 18 

 𝑎2 ≔
𝑔∗(ℎ2

′ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅

‖ℎ2
′ ‖

 (18) 19 

and 20 

 𝑎1 ≔
𝑔∗(ℎ1

′ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅

‖ℎ1
′ ‖

2 −
〈ℎ2|ℎ1〉

‖ℎ1‖
ℎ1 (19) 21 

we obtain 22 

 Reg (ℱ, ℜ) = (Θ ∩ ℱ) + 𝑎2ℎ1 + 𝑎1ℎ1 .  (20) 23 

If, in particular, ℎ2(𝑡) = 𝑡, ℎ1(𝑡) = 1 and 𝑔(𝑡) = 𝑡, 𝑡 ∈ ℝ, we obtain the 24 
classical linear regression function.6 25 

For some additional, theoretical and practical, examples of the general 26 
regression theory see [Fałda, Zając 2011, Fałda, Zając 2012, Partyka, Zając 2015, 27 
Partyka, Zając 2010 and Zając 2010]. 28 

                                                 
5  Partyka D., Zając J. (2015) Generalized approach to the problem of regression, Anal. 

Math. Phys., DOI 10.1007/s13324-014-0096-7, Anal. Math. Phys. (2015) 5, 283. 
6  Partyka D., Zając J. (2015) Generalized approach to the problem of regression, Anal. 

Math. Phys., DOI 10.1007/s13324-014-0096-7, Anal. Math. Phys. (2015) 5, 294-299. 
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The generalized regression theory allows us to construct, in pretty easy way, 1 
nonlinear regression functions, with a very good matching with the phenomena 2 
described by them. 3 

THE CASE OF THE UNIT CIRCLE 4 

Many phenomena observed in biology, geography, medicine and economy 5 
barely submits to the description using the linear coordinate system, also called as 6 
the rectangular coordinate system. This great idea of geometrization 7 
of mathematics, introduced in the seventeenth century by Deskartes, approached 8 
difficult mathematical concepts and increased possibilities of their use. In this way 9 
he found a strict method of consideration of many scientific issues of a local 10 
nature, where straight line, plane or 𝑛-dimensional space with a system 11 
of rectangular coordinates are excellent centers of modelling. For the study 12 
of phenomena of a global nature, this idea applies with difficulty, leading to 13 
discrepancies with the data observed. However, it remains very useful in linear 14 
modelling, where the space is replaced with the tangent one. Global information 15 
can be obtained then by “gluing” local information. 16 

While it is easy to find examples of the global character phenomena 17 
in biology, geography or medicine, the globalization of economic processes has 18 
intensified only in the last period of time; financial markets and capital, 19 
international logistics and demographic issues. This means that we have to take 20 
into account the geometric shape of the object on which these phenomena are 21 
observed. A lot of phenomena, occurring on the plane, we can much more easily 22 
describe using polar coordinates rather than the rectangular ones. These include 23 
demographic issues, urban development and transport, in which we consider 24 
transport real distance and its direction. This leads to a model with the plane of the 25 
polar coordinate system. In the case of financial and demographic phenomena their 26 
natural activity area is situated on the sphere, modelling the earth's surface, with 27 
a spherical coordinate system. 28 

The first scientific publications on issues of statistics of random variables 29 
with values taken on the circle appeared in the 70s in connection with research in 30 
biology, geography and medicine. Economic development and related economic 31 
problems provides more reasons to apply the relevant descriptions and appropriate 32 
mathematical tools. This means that the problems of regression we need to replace 33 
eg. a straight line onto circle, and polynomial regression onto trigonometrical 34 
regression, etc.; [Fisher 1995]. 35 

The classical approach to the regression problem, when the probability space 36 
is constructed on a circle, can be found in [Jammalamadaka, Sengupta 2001 and 37 
Marida 1972]. But here, we try to adopt our approach, presented in the previous 38 
section to the case, when ℬ = 𝕋𝑟. To this end let 39 

 𝕋𝑟: = {(𝑥, 𝑦): 𝑥2 + 𝑦2 = 𝑟2}   (21) 40 
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or, equivalently, is defined by polar coordinates (𝑟, 𝜑), in the form 𝑥 = 𝑟 cos 𝜑, 1 
𝑦 = 𝑟 sin 𝜑, where 𝑟 > 0 and 0 ≤ 𝜑 < 2𝜋. For 𝑟 = 1 we have (1, 𝜑) ↔2 
(cos 𝜑, sin 𝜑), which is the unit circle 𝕋: = 𝕋1. 3 

For given 𝛼, 𝛽 ∈ [0; 2𝜋) we describe two measures: 4 

 𝑑0(𝛼, 𝛽): = 𝜋 − (𝜋 − |𝛼 − 𝛽|) ∈ [0, 𝜋]   (22) 5 

and 6 

 𝑑1(𝛼, 𝛽): = 1 − cos(𝛼 − 𝛽) ∈ [0,2).  (23) 7 

Let us consider the regression structure ℜ: = (𝐴, 𝕋;  𝛿, 𝑥, 𝑦), where 𝑥: Ω1 →8 
𝐴, 𝑦: Ω2 → 𝕋. Here Ω1 ≠ ∅ and Ω2 ≠ ∅ are given. The function 𝛿: (Ω1 → 𝕋) ×9 
(Ω2 → 𝕋) → ℝ̅ is given, for 𝑢: (Ω1 → 𝕋) and 𝑣: (Ω2 → 𝕋), by the formula 10 

 𝛿(𝑢, 𝑣) = ∫ |𝑢(𝑡1) − 𝑣(𝑡2)|2d𝜇(𝑡1, 𝑡2)
Ω1×Ω2

  (24) 11 

if the function 𝑢(𝑡1) − 𝑢(𝑡2) is ℬ-measurable and 𝛿(𝑢, 𝑣): = +∞ in other case. 12 
To a given theoretic model ℱ ⊂ (𝐴 → 𝕋) of the structure ℜ we are going to 13 

find Reg(ℱ, ℜ) consisting all functions 𝑓0 ∈ ℱ such that 𝐹(𝑓) ≥  𝐹(𝑓0) for each 14 
𝑓0 ∈ ℱ, where ℱ ∋ 𝑓 → 𝐹(𝑓): = 𝛿(𝑓 ∘ 𝑥, 𝑦) ∈ ℝ̅. 15 

Then 16 

 𝐹(𝑓) = ∫ |𝑓(𝑥(𝑡1)) − 𝑦(𝑡2)|
2

d𝜇(𝑡1, 𝑡2)  as  𝑓 ∈ ℱ
Ω1×Ω2

  (25) 17 

and 18 

∫ |𝑓 ∘ 𝑥(𝑡1) − 𝑦(𝑡2)|2d𝜇(𝑡1, 𝑡2)
Ω1×Ω2

≥ ∫ |𝑓0 ∘ 𝑥(𝑡1) − 𝑦(𝑡2)|2d𝜇(𝑡1, 𝑡2)
Ω1×Ω2

  19 

  (26) 20 

Since |𝑓 ∘ 𝑥(𝑡1)|2 = 1 and |𝑦(𝑡2)|2 = 1 then 21 

∫ Re[𝑓 ∘ 𝑥(𝑡1)𝑦(𝑡2)̅̅ ̅̅ ̅̅ ̅] d𝜇(𝑡1, 𝑡2)
Ω1×Ω2

≤ ∫ Re[𝑓0 ∘ 𝑥(𝑡1)𝑦(𝑡2)̅̅ ̅̅ ̅̅ ̅]d𝜇(𝑡1, 𝑡2).
Ω1×Ω2

  22 

  (27) 23 

Then 24 

 ∫ Re[(𝑓 − 𝑓0)(𝑥(𝑡1)𝑦(𝑡2)̅̅ ̅̅ ̅̅ ̅)]d𝜇(𝑡1, 𝑡2) ≤ 0.
Ω1×Ω2

  (28) 25 

By this we see that 26 

 𝑓0 ∈ Reg(ℱ, ℜ) ⇔ 𝑦∗(𝑓 − 𝑓0) ≤ 0,    𝑓 ∈ ℱ, (29) 27 

where 28 

 𝑦∗(𝑢) ≔ ∫ Re[𝑢 ∘ 𝑥(𝑡1)𝑦(𝑡2)̅̅ ̅̅ ̅̅ ̅]d𝜇(𝑡1, 𝑡2)
Ω1×Ω2

  (30) 29 

for arbitrary 𝑢: 𝐴 → ℝ and 𝑦: Ω2 → ℝ such that the integral in question exists. 30 

Using this notations we may show that 𝑓0 =
𝑦

|𝑦|
𝟏𝕋 or 𝑓0 = −

𝑦

|𝑦|
𝟏𝕋, where 31 

𝑦 ≔ ∫ 𝑦(𝑡2)d𝜇(𝑡1, 𝑡2)
Ω1×Ω2

 and 𝟏𝕋 denotes a constant on 𝕋. By this 32 

 Reg(ℱ, ℜ) = {
𝑦

|𝑦|
𝟏𝕋} =

𝐸𝑌

|𝐸𝑌|
 (31) 33 
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provided 𝐸𝑌 ≠  0 is an expected value on 𝕋.7  1 

THE UNIT SPHERE CASE 2 

Our propose in this section is to present a sort of introduction to the case 3 
when, instead of 𝕋 we consider the unit sphere 4 

 𝕊2: = {(𝑥, 𝑦, 𝑧): 𝑥2 + 𝑦2 + 𝑧2 = 1}. (32) 5 

Using the polar coordinates (1, 𝛼, 𝛽), where 0 ≤ 𝛼 < 𝜋 and 0 ≤ 𝛽 < 2𝜋, we 6 
can see that 7 

 𝑥 = cos 𝛼 cos 𝛽, 8 

 𝑦 = sin 𝛼 cos 𝛽, (33) 9 

 𝑧 = sin 𝛽. 10 

The distance between two points 𝑃1, 𝑃2 ∈ 𝕊 is defined as the length of the 11 
shorter arc, distinguished on the unit circle on 𝕊2 centered at the origin and passing 12 
through the points 𝑃1, 𝑃2. 13 

Similarly to the previous section we may apply here the  generalized 14 
regression technique, which seems to be not so sensitive on the form of domain, 15 
where the functions 𝑥 and 𝑦 are described by (5). To this end we can distinguish 16 
the family Reg(ℱ, ℜ), where 17 

 ℱ: = {𝑒𝑖[𝛼,𝛽]𝟏𝕊: 0 ≤ α < π, 0 ≤ β < 2π} (34) 18 

and 19 

 ℜ = (𝐴, 𝕊, 𝛿; 𝑥, 𝑦),   𝑥: Ω1 → Ω2,   𝑦: Ω2 → 𝕊. (35) 20 

Here Ω1, Ω2 are given. 21 
The symbol [𝛼, 𝛽] denotes fixed polar coefficients of a point on 𝕊, described 22 

by  (33), where 𝛼 and 𝛽 are fixed. The class ℱ is a family of all constant functions 23 
on 𝕊. Obviously, 24 

 𝐴 ∋ 𝑡 → 𝟏𝐴(𝑡) ≔ 1 (36) 25 

for arbitrary 𝐴 ≠ ∅. 26 

Within this notations one searches a function 𝑓0 = 𝑒𝑖[𝛼0,𝛽0]𝟏𝕊, were 27 
𝛼0, 𝛽0 ∈ ℝ and satisfy (6). 28 

CONCLUSIONS 29 

The particular motivation, leading to this kind of extremal mathematical 30 
problem,  defined on the unit sphere, is strongly suggested by global transportation 31 
problems on the earth sphere. Important, from the mathematical point of view, is 32 

                                                 
7  Jammalamadaka S. R., Sengupta A. (2001) Topics in Circular Statistics, World Scientific, 

River Edge, New York, p. 16. 
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the remark saying that the method, used here, can be applied to much general 1 
cases, including arbitrary Riemann surface, instead of the unit sphere 𝕊. 2 
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