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INTRODUCTION 

This paper is a consequence of our concerns with trying to extend the concepts 
of absolute and relative risk aversion to utility functions, that are piecewise linear, 
with a kink at the origin, in order to account for “loss aversion” (at initial wealth) 
that many individuals seem to display. In mathematics and statistics, a piecewise 
linear, PL or segmented function is a real-valued function of a real variable, 
whose graph is composed of straight-line segments. (See [Stanley 2004] page 143). 
Needless to say, piecewise linear functions have the scope for wide applicability in 
economics, of which utility theory of gains and losses is just one example. 
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The following statement can be found in page 5 (Chapter 1) of the well-known work 
by Eeckhoudt, Gollier and Schlesinger [Eeckhoudt, Gollier and Schlesinger 2005]: 
“… most human beings do not extract utility from wealth. Rather, they extract utility 
from consuming goods that can be purchased with this wealth.” 
Our understanding is that most human beings do not extract “satisfaction” from 
wealth. Rather, they extract “satisfaction” from consuming goods that can be 
purchased with this wealth. Although wealth may not yield “satisfaction”, it has use-
value since it can be used to purchase goods that yield satisfaction. We are at this 
point drawing a clear distinction between satisfaction derived from consumption and 
use-value of an instrument that is used to derive satisfaction from consumption. The 
use-value of wealth- purely as an instrument used to extract satisfaction from 
consumption- may be referred to as utility of wealth. 
 
Since it may be difficult to measure or quantify the satisfaction extracted from 
consuming goods, if possible and quantifiable, the utility of wealth that is used to 
purchase goods, could be used as a “proxy” for the satisfaction that is derived or 
extracted from consuming these goods. 
 
Given this understanding of utility functions for wealth-and hence utility functions 
for gains and losses with initial wealth being located at the origin- in the next section 
we proceed to develop “a calculus” (allowing for the possibility of other approaches) 
to tackle the problem of measuring risk aversion, both absolute and relative, when 
utility functions for gains (losses being negative “gains”) are piecewise linear and 
possibly non-differentiable, particularly at the origin. In the same section, we extend 
the calculus-from our perspective-to multi-piecewise linear functions. An example 
of such a utility function is the one in page 224 (the fourth section of Chapter 13) of 
the work cited above by Eeckhoudt, Gollier and Schlesinger. We discuss issues 
related to risk aversion for this particular utility function in a final section of this 
paper. Prior to the discussion of risk aversion for the specific utility functions, we 
define the concepts of concave and convex piece-wise linear functions on closed and 
bounded intervals of the real line and obtain their equivalence with the expected 
properties in terms of second derivatives. Is Newtonian calculus, therefore, 
a “trivialization” of the mathematics required to understand the essentially “discrete” 
real world we live in? 

FIRST AND SECOND DERIVATIVES FOR PIECEWISE LINEAR 
FUNCTIONS 

A real-valued function f whose domain denoted dom(f) is a non-degenerate interval 
in the real line is said to be a real-valued finitely generated PL if or some positive 
integer ‘n’ with n  2, there exists a non-empty finite set of real numbers  
{xj| j = 1,…, n} and satisfying xj < xj+1 for j{1,…,n-1} if n >1 such that: 
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(i)  The restrictions of f to (-, x1] dom(f), [xn, +) dom (f) and [xj, xj+1] for 
j{1,…,n-1} if n >1 are all affine, i.e. the restriction of f on each segment 
mentioned above satisfies f(px + (1-p)y) = pf(x) + (1-p)f(y) for all p[0,1] and  
x,y belonging to the segment. 

(ii)  If (-, x1) dom(f)  , then (-, x1) dom(f) is a non-degenerate open interval 
in the real line. 

(iii)  If (xn, +) dom (f)  , then (xn, +) dom (f) is a non-degenerate open 
interval in the real line. 

(iv)  For all xj with j{2,…,n-1}: 
௙(௫೔)ି௙(௫೔షభ)

௫೔ି௫೔షభ
  

௙(௫೔శభ)ି௙(௫೔)

௫೔శభି௫೔
. 

(v)  If x1-hdom (X) for some h > 0, then 
௙(௫భ)ି௙(௫భି௛)

௛
  

௙(௫మ)ି௙(௫భ)

௫మି௫భ
. 

(vi)  If xn+hdom (X) for some h > 0, then 
௙(௫೙ା௛)ି௙(௫೙)

௛
  

௙(௫೙)ି௙(௫೙షభ)

௫೙ି௫೙షభ
 

 

In this case we say that f is a real-valued finitely generated PL function 
generated by {xj| j = 1,…, n}. 
Let f  be “a real valued finitely generated” PL function generated by {xj| j = 1,…, 
n}. Let x dom(f). For all j{1,…,n-1}: (i) For all x[x1, xn)[xj, xj+1), let D+f(x) = 
௙൫௫ೕశభ൯ି௙(௫ೕ)

௫ೕశభି௫ೕ
; and (ii) For all x(x1, xn](xj, xj+1], let D-f(x) = 

௙൫௫ೕశభ൯ି௙(௫ೕ)

௫ೕశభି௫ೕ
. Thus 

D+f(xj) = D-f(xj+1) for all j{1,…,n-1}.  
 

If (-, x1) dom(f)  , then let D-f(x1) = D-f(x) = 
௙(௫భ)ି௙(௫)

௫భି௫
 = D+f(x) for all  

x(-, x1) dom(f). 

If (xn, +) dom (f)  , then let D+f(xn) = D+f(x) = 
௙(௫)ି௙(௫೙)

௫ି௫೙
 = D+f(x) for all 

x(xn, +) dom (f)  . 
Clearly, for all xdom(f)\{x1,…, xn}, D+f(x) = D-f(x) and for all xi satisfying (-, xi) 
 dom(f)   and dom(f) (xi, +)  , it is the case that D+f(xi)  D-f(xi). 
 
Given [0,1] and xdom(f) such that (-, x)dom(f)   and (x, +)dom(f)  
, let the -first derivative of f at x, denoted D()f(x) = D+f(x) + (1-)D-f(x) and 
the second derivative of f at x denoted D2f(x) = 𝐷ା𝑓(𝑥)- 𝐷ି𝑓(𝑥). 
 

Note the difference between () in the definition of D()f(x) and the positive integer 
2, written without any brackets in D2f(x). Also note that given [0,1] and 
xdom(f) such that (-, x)dom(f)   and (x, +)dom(f)  , D()f(x) = D-f(x)+ 
D2f(x). 
Thus, {xdom (f)| D2f(x)  0} = {xi| (-, xi) dom(f)   and dom(f) (xi, +)  } 
Given any real valued finitely generated PL f, any xdom(f) such that Df(x) is well-
defined, and m[min{D+f(x), D-f(x)}, max{D+f(x), D-f(x)}], the straight-line  
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z = my + [f(x)-mx] is said to be a tangent to f at x, with the slope of the tangent 
to f at x being ‘m’.  
 

Note: Given a PWL function f, x dom(f) is said to be a local maximum of f if there 
exists  > 0 such that f(x)  f(y) for all y(x-, x+) dom(f) and a local minimum 
of f if there exists  > 0 such that f(x)  f(y) for all y(x-, x+) dom(f). It is easily 
verified that xdom(f) is a local maximum of f if and only if the following two 
conditions are satisfied: (i) If (x, +)dom (f)  , then D+f(x)  0; and (ii) If (-
,x)dom(f)  , then D-f(x)  0. 
 

The calculus discussed above can be easily extended to the multi-variable case. 
 

For a positive integer n ≥ 2, let N = {1,2,…,n} and for any non-empty subset J of N 
and any non-empty set Y, let YJ denote the set of functions from J to Y, where that 
for all yYJ and jJ, y(j) is written as yj. 
For each j{1,…,n}, yℝே and ℝ, let (y-j,) denote xℝே such that xi = yi for ij 
and xj = . 
 
Let f be a real-valued function f whose domain denoted dom(f) is a non-empty subset 
of ℝே. 
For each j and yℝே, let domj(f|y-j) = {ℝ|(y-j,) dom(f)}, and if domj(f|y-j)  , 
let f(j)(.|y-j) be the real valued function defined on domj(f|y-j) = dom(f(j)(.|y-j) such that 
for every  dom(f(j)(.|y-j), f(j)(|y-j) = f(y-j,). 
 
We are interested in the case where dom(f(j)(.|y-j) is the union of a finite set of 
mutually disjoint non-degenerate intervals of ℝ, {I1,…,IK}. 
Suppose that the restriction of f(j)(.|y-j) to Ik for some k{1,…,K} is a real valued 
finitely generated PL function and suppose Ik. To keep notations simple we will 
use f(j)(.|y-j) to denote its restriction to Ik. 
 
If Ik(, +)  , then let 𝐷௝

ାf(y-j,) = D+f(j)(|y-j).  
If Ik(-, )  , then let 𝐷௝

ିf(y-j,) = D-f(j)(|y-j). 

If both Ik(, +)   and Ik(-, )  , then for [0,1] let 𝐷௝
()f(y-j,) = 

𝐷௝
ା𝑓(𝑦ି௝ , ) + (1 − )𝐷௝

ି𝑓(𝑦ି௝ , ) and 𝐷௝
ଶf(y-j,) = 𝐷௝

ାf(y-j,)- 𝐷௝
ିf(y-j,). 

Such functions may be referred to as multi-piecewise linear (M-PL) functions. 

𝐷௝
()f(y-j,) may be called the jth partial -derivative of f at (y-j, ) and 𝐷௝

ଶf(y-j,) 

may be called the jth partial second derivative of f at (y-j, ). 
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 CONCAVE AND CONVEX FUNCTIONS 

A PL function f generated by {x1,…,xn} on dom (f) = [x1, xn] is said to be concave if 
for all x, ydom(X) satisfying x < xi < y for some i{2,…,n-1} and t(0,1),  
f(x + t(y-x)) > f(x) + t[f(y)-f(x)]. 
 
A PL function f generated by {x1,…,xn} on dom (f) = [x1, xn] is said to be convex if 
for all x, ydom(X) satisfying x < xi < y for some i{2,…,n-1} and t(0,1),  
f(x + t(y-x)) < f(x) + t[f(y)-f(x)]. 

It is easy to see that f is concave if and only if -f is convex.  
 
Proposition 1:  
Suppose f is a PL function generated by{x1,…,xn} on dom (f) = [x1, xn]. 
(i) [D2f(xj) < 0 for all j{2,…,n-1}] if and only if f is concave. 
(ii) [D2f(xj) > 0 for all j{2,…,n-1}] if and only if f is convex.  
 
Proof:  
(i) Suppose D2f(xj) < 0 for all j{2,…,n-1}.  
Let x,ydom(f) with x < xj <y for some xj. Let x[k, k+1], y[h, h+1]. Since x < 

xj <y, it must be the case that 
௙(௫ೖశభ)ି௙(௫ೖ)

௫ೖశభି௫ೖ
  

௙(௫೓శభ)ି௙(௫೓)

௫೓శభି௫೓
 which along with D2f(xj) 

< 0 for all j{2,…,n-1} and x < y implies k < h and 
௙(௫ೖశభ)ି௙(௫ೖ)

௫ೖశభି௫ೖ
  

௙(௫೓శభ)ି௙(௫೓)

௫೓శభି௫೓
 

For t(0,1), consider the point (x + t(y-x), 0) on the horizontal axis. The vertical line 
on (x + t(y-x), 0) meets the chord joining (x, u(x)) and (y, u(y)) at the point (x + t(y-
x), u(x) + t(u(y)-u(x))). This follows immediately by applying the relevant property 
of similar triangles. 

If 
௙(௬)ି௙(௫)

௬ି௫
  

௙(௫ೖశభ)ି௙(௫ೖ)

௫ೖశభି௫ೖ
 then since 

௙൫௫೒శభ൯ି௙൫௫೒൯

௫೒శభି௫೒
 is a strictly decreasing function 

of ‘g’, then f(y) = f(x) + 
௙(௫ೖశభ)ି௙(௫ೖ)

௫ೖశభି௫ೖ
(xk+1 – x) +…+ 

௙(௫೓శభ)ି௙(௫೓)

௫೓శభି௫೓
(y-xh) along with 

௙(௫ೖశభ)ି௙(௫ೖ)

௫ೖశభି௫ೖ
 > 

௙(௫೓శభ)ି௙(௫೓)

௫೓శభି௫೓
 implies 

f(y) < f(x) + 
௙(௬)ି௙(௫)

௬ି௫
[(xk+1 – x) + … + (y-xh)] = f(x) + 

௙(௬)ି௙(௫)

௬ି௫
 (y-x) = f(y), i.e., 

f(y) < f(y), which is not possible. Thus, 
௙(௬)ି௙(௫)

௬ି௫
 < 

௙(௫ೖశభ)ି௙(௫ೖ)

௫ೖశభି௫ೖ
. 

 

On the other hand, if 
௙(௬)ି௙(௫)

௬ି௫
  

௙(௫೓శభ)ି௙(௫೓)

௫೓శభି௫೓
, then - 

௙(௬)ି௙(௫)

௬ି௫
  - 

௙(௫೓శభ)ି௙(௫೓)

௫೓శభି௫೓
.  

Thus, f(x) = f(y) -  
௙(௫೓శభ)ି௙(௫೓)

௫೓శభି௫೓
(y-xh) -…- 

௙(௫ೖశభ)ି௙(௫ೖ)

௫ೖశభି௫ೖ
(xk+1 – x) along with - 

௙(௫ೖశభ)ି௙(௫ೖ)

௫ೖశభି௫ೖ
 <  - 

௙(௫೓శభ)ି௙(௫೓)

௫೓శభି௫೓
  implies 
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f(x) < f(y) - 
௙(௬)ି௙(௫)

௬ି௫
[(y-xh)+ … +(xk+1 – x)] = f(y) - 

௙(௬)ି௙(௫)

௬ି௫
(y-x) = f(x), i.e. f(x) < 

f(x) which is not possible. 
 

Thus, 
௙(௬)ି௙(௫)

௬ି௫
 > 

௙(௫೓శభ)ି௙(௫೓)

௫೓శభି௫೓
. Thus, 

௙(௫ೖశభ)ି௙(௫ೖ)

௫ೖశభି௫ೖ
 > 

௙(௬)ି௙(௫)

௬ି௫
 > 

௙(௫೓శభ)ି௙(௫೓)

௫೓శభି௫೓
. 

Thus, for x + t(y-x)(xk, xk+1], f(x+t(y-x)) = f(x) + t 
௙(௫ೖశభ)ି௙(௫ೖ)

௫ೖశభି௫ೖ
(y-x) > f(x) + 

t
௙(௬)ି௙(௫)

௬ି௫
(y-x) = f(x) + t(f(y)-f(x)). 

 

Suppose h = k + 1. Then since x < xj < y for some xj, it must be the case that y > xh. 
Suppose xh+1  y > xh. For x + t(y-x)(xk, xk+1] we already have f(x+t(y-x)) > f(x) + 
t(f(y)-f(x)). Hence suppose xh+1 > x+t(y-x) > xh.  
Thus, xh = x + s(y-x) for some s(0,t). 
 
Consider the function | f(x) + (f(y)-f(x)) and the function, | f(x + (y-x)) = 

f(xh) + 
௙(௫೓శభ)ି௙(௫೓)

௫೓శభି௫೓
(-s)(y-x) for [s,1]. 

The latter holds since x + (y-x) – xh = [x + (y-x)]- [x + s(y-x)] = (-s)(y-x). 
Both are affine functions of , with f(x + s(y-x)) = f(xh) > f(x) + s(f(y)-f(x)). 
Thus at  = 1, the two affine functions attain the same values f(y). 
 

Now, consider the function | f(x + (y-x))-[f(x) + (f(y)-f(x))] for [s,1]. 
Since it is the difference of two affine functions, it must be affine. 
At  = s, the value of the function is positive and at  = 1, the value of the function 
is zero. Hence for t[s,1), the value of the affine function must be positive, i.e., f(x 
+ t(y-x)) > f(x) + t(f(y)-f(x)) for t[s,1). 
Thus, if h = k+1, then f(x + t(y-x)) > f(x) + t(f(y)-f(x)) for t(0,1). 
 

Suppose that f(x + t(y-x)) > f(x) + t(f(y)-f(x)) for t(0,1) if h{k+1,…, k+j} and 
now suppose h = k+j+1. Thus, y(xk+j+1, xk+j+2]. 
By the induction hypothesis, f(x + t(xk+j+1-x)) > f(x) + t(f(xk+j+1)-f(x)) for t(0,1), 
i.e., f(x + t(xh-x)) > f(x) + t(f(xh)-f(x)) for t(0,1). 
y > xh implies xh = x + s(y-x) for some s(0,1). 
Thus, x + ts(y-x) = (1-t)x + t[x + s(y-x)] = (1-t)x + txh = x + t(xh-x) for all t[0,1]. 
Thus, f(x + st(y-x)) > f(x) + t(f(xh)-f(x)) for t(0,1).  
 
Towards a contradiction suppose f(xh)  f(x) + s(f(y)-f(x)). 

Now f(y) = f(xh) +
௙(௫೓శభ)ି௙(௫೓)

௫೓శభି௫೓
(y-xh) and at the same time 

 f(y) = [f(x) + s(f(y)-f(x))] + 
௙(௬)ି௙(௫)

௬ି௫
 (y-xh)  f(xh) + 

௙(௬)ି௙(௫)

௬ି௫
(y-xh). 
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Since 
௙(௬)ି௙(௫)

௬ି௫
 > 

௙(௫೓శభ)ି௙(௫೓)

௫೓శభି௫೓
, we get f(y)  f(xh) + 

௙(௬)ି௙(௫)

௬ି௫
(y-xh) > f(xh) + 

௙(௫೓శభ)ି௙(௫೓)

௫೓శభି௫೓
(y-xh) = f(y), i.e., f(y) > f(y), which is not possible. 

Thus, it must be the case that f(xh) > f(x) + s(f(y)-f(x)), i.e., f(xh)-f(x) > s(f(y)-f(x)). 
Thus, applying the induction hypothesis, we get 

f(x + st(y-x)) = f(x + t(xh-x)) > f(x) + t(f(xh)-f(x)) > f(x) +ts(f(y)-f(x)) for all t(0,1]. 

Thus, f(x + t(y-x)) > f(x) +t(f(y)-f(x)) for all t(0,s]. 
 
Consider the functions t| [f(x + t(y-x))] –[f(x) +t(f(y)-f(x))] for all t[s, 1]. 

f(x + t(y-x)) = f(xh) + [
௙(௫೓శభ)ି௙(௫೓)

௫೓శభି௫೓
](t-s)(y-x) for all t[s, 1]. 

[f(x + t(y-x))] –[f(x) +t(y-x)] = f(h) + [
௙(௫೓శభ)ି௙(௫೓)

௫೓శభି௫೓
](t-s)(y-x) - [f(x) +t(f(y)-f(x))] 

for all t[s, 1]. 

Thus, t| f(x + t(y-x)) –[f(x) +t(f(y)-f(x))] for all t[s, 1] is an affine function. 
 
At t = s, the value of the function is f(xh) – [f(x) + s(f(y)-f(x))] > 0 and at t = 1, the 
value of the function is 0. 
 

Thus, [f(x + t(y-x))] –[f(x) +t(f(y)-f(x))] > 0 for all t[s, 1). 
Combined with what we obtained earlier we get f(x + t(y-x)) > f(x) +t(f(y)-f(x)) for 
all t(0, 1). 
 
Now, suppose f is concave. Towards a contradiction suppose D2f(xj) > 0 for some 

j{2,…,n-1}. Thus D+f(xj) > D-f(xj). Thus, 
௙൫௫ೕశభ൯ି௙൫௫ೕ൯

௫ೕశభି௫ೕ
 > 

௙൫௫ೕ൯ି௙൫௫ೕషభ൯

௫ೕି௫ೕషభ
. 

Hence (xj-xj-1)f(xj+1) + (xj+1-xj)f(xj-1) > (xj+1-xj-1)f(xj). 

Thus 
௫ೕି௫ೕషభ

௫ೕశభି௫ೕషభ
f(xj+1) + 

௫ೕశభି௫ೕ

௫ೕశభି௫ೕషభ
f(xj-1) > f(xj) = f(

௫ೕି௫ೕషభ

௫ೕశభି௫ೕషభ
xj+1 + 

௫ೕశభି௫ೕ

௫ೕశభି௫ೕషభ
xj-1) = f(xj-

1 +
௫ೕି௫ೕషభ

௫ೕశభି௫ೕషభ
(xj+1-xj-1)), since xj = 

௫ೕି௫ೕషభ

௫ೕశభି௫ೕషభ
xj+1 + 

௫ೕశభି௫ೕ

௫ೕశభି௫ೕషభ
xj-1 = xj-1 +

௫ೕି௫ೕషభ

௫ೕశభି௫ೕషభ
(xj+1-

xj-1). 

Further, 0 < 
௫ೕି௫ೕషభ

௫ೕశభି௫ೕషభ
 < 1. 

This contradicts f is concave and proves that D2f(xj) < 0 for all j{2,…,n-1}.  
(ii) Follows from (i) and the fact that f is convex if and only if -f is concave. Q.E.D. 
Note: With the algebraic proof of Proposition 1 being as noted above, now the 
following alternative proof of Proposition 1 is equally valid: 
Proof: Draw a diagram. Q.E.D. 
 
Applications of the theory discussed in this and the previous section, may be the 
computation of risk-aversion at initial wealth for utility functions which display “loss 
aversion” which is discussed in the next section. 
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RISK AND LOSS AVERSIONS FOR MONETARY GAINS 

The “conjectures” discussed in the previous section may be applied to 
problems associated with measuring risk aversion for piecewise linear functions of 
the type discussed in page 224 (the fourth section of Chapter 13) of the work by 
Eeckhoudt, Gollier and Schlesinger cited earlier in this paper. Absolute risk 
aversion- as defined in [de Finetti 1952], [Arrow 1962] and [Pratt 1963]- is the rate 
of “percentage change in marginal utility of gains”, with respect to “change in 
wealth”. Relative risk aversion is the rate of “percentage change in marginal utility 
of gains”, with respect to “percentage change in wealth”.  

 
In this case the utility function we are concerned with is a piece-wise linear, real 
valued and concave function u with 0int(dom (u)), u(x) = ax for all xdom(u) with 
x ≥ 0 and u(x) = bx for all xdom(u) with x < 0, where b > a > 0. Clearly u is concave 
and further it is non-differentiable at 0. 
 

Thus, D+u(0) = a >0, D-u(0) = b > 0, D2u(x) = a-b < 0 and for [0,1], the -first 
derivative of f at 0, Du()(0) = a + (1-)b > 0. 

For [0,1], the -absolute risk aversion at x = 0 is given by 
௕ି௔

௔ା(ଵି)௕
 and the -

relative risk aversion for initial wealth ‘w’ is given by w
௕ି௔

௔ା(ଵି)௕
.  

We may refer to 
஽ష௨(଴)

஽శ௨(଴)
 (which in this case is 

௕

௔
 ) as the “co-efficient of loss-aversion 

at initial wealth”. Thus, for [0,1], the -absolute risk aversion at x = 0 is 
್

ೌ
ିଵ

ା(ଵି)
್

ೌ

 and the -relative risk aversion for initial wealth ‘w’ is w
್

ೌ
ିଵ

ା(ଵି)
್

ೌ

. 

For  = 1, the 1- absolute risk aversion at x = 0 is 
௕

௔
 – 1 which increases as 

௕

௔
 increases. 

For  = 0, the 0- absolute risk aversion at x = 0 is 1- 
ଵ
್

ೌ

 which increases as 
௕

௔
 increases. 

For (0,1), consider the function x| 
௫ିଵ

ା(ଵି)௫
 whose domain is the set of strictly 

positive real numbers.  
ା(ଵି)௫

௫ିଵ
 =  

ି(௫ିଵ)ା௫

௫ିଵ
 = - + 

௫

௫ିଵ
 = - + 

௫ିଵାଵ

௫ିଵ
 = - + 1 + 

ଵ

௫ିଵ
 decreases as x 

increases. Thus, the function x| 
௫ିଵ

ା(ଵି)௫
 increases as x increases. Thus, for  

(0,1), the - absolute risk aversion at x = 0 is 
್

ೌ
ିଵ

ା(ଵି)
್

ೌ

 which increases as 
௕

௔
 

increases.  
 
It might seem strange that for the same utility function a wealthy person has higher 
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“relative risk aversion” than a less wealthy person. However, it is very unlikely for 
a wealthy person to have the same utility function that a less wealthy person has. For 
one, the wealthy individual is likely to have a lower value for the coefficient of loss-
aversion at initial wealth, than a less wealthy individual, thereby reducing absolute 
risk aversion and possibly relative risk aversion for the former. 

SUMMARY 

In this paper we propose and discuss a kind of calculus for piecewise linear 
functions, that cannot be generalized to a wider class of functions- in particular 
functions which are differentiable. There is a very wide scope for applying such a 
calculus in economics and we choose just one example- measurement of risk 
aversions for monetary gains and losses- to show how it may be applied. It may be 
worth noting that Ross in [Ross 1981] has questioned the validity of absolute risk 
aversion as a “good enough” measure of attitude towards risk. Ross suggests that 
willingness to pay a higher risk premium for the same amount of loss, indicates 
greater risk aversion. In order to incorporate risk premiums in our analysis the utility 
function invoked in the previous section would have to be slightly modified by 
including at least one more point where the second derivative of the utility function 
is negative and this point would have to correspond to a loss of monetary wealth. 
Typically, an individual with a lower second derivative- hence greater absolute value 
of the second derivative, since the second derivative is negative- would be the one 
who would be willing to pay a higher risk premium if the “accidental loss” exceeded 
the loss where the second derivative is negative, and such an individual would be the 
one who is more risk averse in the sense of Ross.      

The framework and the mathematical technology of our discussion is within 
the subject area known as finite mathematics in the tradition of Kemeny, Snell and 
Thomson [Kemeny, Snell and Thomson 1957]. Finite mathematics is the 
mathematics (e.g., real analysis, matrix algebra and analysis, probability theory etc.) 
that is based on just the “ordered field” property (axiom) of the real number system 
but not “the least upper bound” property (axiom) of the real number system. The 
least upper bound property says that “every non-empty subset of real numbers that 
is bounded above has a least upper bound”. That does not prevent us from defining 
the least upper bound of a non-empty subset of real numbers that is bounded above 
and explicitly showing that one exists, if that were possible. For instance, the 
statement “1 is the least upper bound of the closed interval [0,1]” is permissible in 
finite mathematics, since 1 is an upper bound of [0,1] and given any rational number 
 > 0 (i.e., a positive real number that can be expressed as the ratio of two positive 

integers), we can always find a real/rational number, say max {
ଵ

ଶ
, 1-

க

ଶ
} that belongs 

to [0,1] and is greater than 1-. However, since the proof of the Archimedean 
property of the real number system, requires the least upper bound property, the 
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Archimedean property or any of its consequences, is not admissible in finite 
mathematics. 
 
Note: This paper is a revised and considerably expanded version of an earlier note 
by the author entitled: Two observations on “Economic and Financial Decision 
Under Risk” by Eeckhoudt, Gollier and Schlesinger (2005) that is available at: 
https://drive.google.com/file/d/1-UnmzHX16xorCQ9sqzTpyMtijOTdl5Qn/view). 
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