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Abstract: In the era of increasingly widespread use of electronic 
communication tools, constant growth of e-commerce turnover is hardly 
surprising. One of its mechanisms are online auctions whose turnover, on a 
global scale, is enormous. This paper proposes a stochastic model of the value 
of subsequent actual bids appearing in the course of a dynamic internet 𝑘-th 
price auction. On this basis, it was possible to determine unconditional joint 
probability distributions, as well as univariate marginal distributions of 
successive bids appearing in the course of the auction type under consideration. 
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INTRODUCTION 

Auctions other than first-price took place as early as the end of the 19th 
century, but the first time they gained a complete theoretical description was in 1961, 
thanks to [Vickrey 1961]. The original Vickrey-type auctions are second-price 
auctions. Over time, this type of auction was generalized to the 𝑘-th price auction. 
𝑘-th price auctions, similarly to classic auctions, can be held both in a static and 
dynamic form. 

The latter form began to develop dynamically with the emergence and 
widespread use of electronic media. The current wide-ranging availability of the 
Internet means that e-auctions no longer of interest only to a limited group of parties 
but to billions of customers worldwide. Consequently, they involve enormous 
financial flows. An introduction to the theory of auctions and a broad review of the 
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literature can be found, among others, in [Klemperer 1999], [Ockenfels et al. 2006], 
[Hickman et al. 2012]. 

One may understand static 𝑘-th price auction as a game consisting of two 
stages: 1) auction participants get to know the starting price and submit bids 
(knowing only their own offer); 2) the participant with the highest bid wins, but pays 
the 𝑘-th highest bid price for the auctioned object. Numerous papers describe this 
type of auction (especially for 𝑘 = 2). They draw from game theory and aim to study 
the efficiency, equilibrium points, or limiting properties of the auction with an 
infinite increase in the number of participants. Occasionally, in the conducted 
analyses, risk-neutral bidders and risk-averse bidders are discerned or the possibility 
of collusion between certain bidders, and other specific circumstances, is assumed. 
See, e.g., [Fibich, Gavious 2008], [Fibich, Gavious 2010], [Mezzetti, Tsetlin 2009], 
[Gorelkina 2014], [Hickman 2010], [Mihelich, Shu 2020], [Myerson 1981]. 

By contrast, in dynamic auctions, successive bids of various bidders 
(including repeated bids) are registered one by one within a predetermined time 
interval, and the current purchase price changes with successively incoming bids. 
The bidders know the price at all times. Such an auction is completed at the end of 
the set time interval, and the last current price becomes the purchase price. Here, one 
may apply the 𝑘-th price auctions. 

Following the distinction indicated in [Athey, Haile 2007] and the definitions 
contained therein, we note that the literature proposes two types of stochastic models 
of bid flow in dynamic auctions: 1) models taking into account potential bids (bids 
from potential bidders (e.g. [Haile, Tamer 2003], [Canals-Cerdá, Pearcy 2013])); 2) 
models taking into account actual bids (bids of actual/active bidders (e.g. [Barbaro 
et al. 2006], [de Haan et al. 2008], [Namazi, Schadschneider 2006], [Roth and 
Ockenfels 2000])). In both cases (potential and actual bids), stochastic modeling of 
the sequence of bid values is reduced to the determination of an appropriately 
selected (finite) sequence of random variables. Potential bids make it possible to use 
a sequence of independent and identically distributed random variables. 

Although such a sequence does not necessarily accurately describe reality, it 
makes it easier to use probabilistic tools, e.g., the theory of 𝑘-th record values (see 
[Dziubdziela, Kopociński 1976], [Dziubdziela 2018]). A general model of potential 
bids for any 𝑘 was considered by Dziubdziela [2008], who examined limiting 
properties of relative increment of auction prices, using the results obtained in the 
papers of [Bieniek, Szynal 2000] and [Bieniek, Szynal 2003]. At the same time, the 
special case of 𝑘 = 2 was analyzed more thoroughly in [de Haan et al. 2008], [de 
Haan et al. 2009]. 

In contrast, the values of actual bids – by their very nature – cannot be modeled 
with the use of a sequence of independent random variables with the same 
probability distribution. That is because in this case it is necessary to use sequences 
of random variables that assume ever greater values from a certain moment. 
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Consequently, these variables are dependent and have different probability 
distributions. 

The bid value model proposed in the article refers to the principles of 
conducting eBay on-line auctions which are very similar to dynamic second-price 
auctions (see [Namazi, Schadschneider 2006]). This model does not consider the 
minimum bid increment and the possibility of using a proxy bidding system. 
Although our model describes one aspect of an auction (bid amounts) and uses 
certain simplifying assumptions, it is innovative on the account of a simple ploy of 
using exceedance distributions to describe actual bids that are stochastically 
dependent. 

RESULTS 

Model definition 

Without loss of generality, we assume that a seller price 𝑋଴ = 0. Let 
𝑋ଵ, 𝑋ଶ, 𝑋ଷ, … be a sequence of random variables that represent actual bids – 
announced successively by active bidders – in a dynamic '𝑘-th-price' auction, for a 
priorly fixed 𝑘 ≥ 2, 𝑘 ∈ ℕା. Then, 𝑋௞ < 𝑋௞ାଵ < 𝑋௞ାଶ < ⋯ almost surely, which 
means that the auction is ascending from the 𝑘-th bid. 

Let 𝐹 be a common cumulative distribution function (cdf) of 𝑋ଵ, 𝑋ଶ, …, 𝑋௞. 
Since 𝑋ଵ, 𝑋ଶ, … , 𝑋୩ ≥ 0, then 𝐹(0) = 0. We additionally assume that 𝑋ଵ, 𝑋ଶ, …, 𝑋௞ 
are absolutely continuous, which means that 𝐹 is differentiable. So let 𝑓 = 𝐹ᇱ be 
probability density function (pdf) of these variables. 

With respect to the given cdf 𝐹 and pdf 𝑓, we consider a family of ‘exceedance 
distributions’ indexed by all real 𝑎 ≥ 0, thus we work on two families {𝐹௔ത}௔ஹ଴, and 
{𝑓௔ത}௔ஹ଴ of cdf's, and pdf's, given by the following formulas: 

𝐹௔ത(𝑡) =
ி(௧)ିி(௔)

ଵିி(௔)
⋅ 𝕀(௔,ାஶ)(𝑡), 

𝑓௔ത(𝑡) =
௙(௧)

ଵିி(௔)
⋅ 𝕀(௔,ାஶ)(𝑡). 

Note that 𝐹଴ഥ = 𝐹, 𝑓଴ഥ = 𝑓, and 𝐹௔ത(0) = 0 for any 𝑎 ≥ 0 
This family of distributions was used by [Haile, Tamer 2003], followed by 

[Canals-Cerdá, Pearcy 2013], which is a very practical approach (Haile and Tamer 
called these distributions as ‘truncated distributions’). However, we must clearly 
emphasize that these papers considered models of the distributions of private 
valuations coming from potential bidders, and not, as in our case, the distributions 
of actual bids. 

By our definition, the course of bidding assumes 𝑋ଵ, 𝑋ଶ, … , 𝑋௞ to be 
independent and identically distributed with a common cdf 𝐹, while on the basis of 
the given family of exceedance distributions, conditional distributions of variables 
𝑋௞ାଵ, 𝑋௞ାଶ, … are: 

(𝑋௡ାଵ|𝑋௡ = 𝑥௡, 𝑋௡ିଵ = 𝑥௡ିଵ, … , 𝑋ଵ = 𝑥ଵ, ) ∼ 𝐹௫೙షೖ:೙షభതതതതതതതതതതതതത. 
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Model properties 

Let 𝒟௡
(௞) designate the support of joint distribution of vector (𝑋ଵ, 𝑋ଶ, … , 𝑋௡). 

Therefore: 

 𝒟௡
(௞)

= ℝା
௡ , for 𝑛 ∈ {1, … , 𝑘} 

 𝒟௡
(௞)

= {(𝑥ଵ, … , 𝑥௡) ∈ ℝା
௡ : ∀௝∈{௞ାଵ,…,௡} 𝑥௝  >  𝑥௝ି௞∶௝ିଵ, for 𝑛 > 𝑘 

where 𝑥ଵ:௡ ≤ ⋯ ≤  𝑥௡:௡ stand for the ordered configuration of numbers 𝑥ଵ, … , 𝑥௡ 

Let 𝑥 ∈ 𝒟௡
(௞) for a given 𝑘 and 𝑛. Then we define: 

Σ௫
(௞,௡)

 =  ቄ 𝜎 ∈ 𝒫(𝑛): 𝜎ത(𝑥) ∈ 𝒟௡
(௞)

ቅ, 

where 𝜎ത(𝑥) = ൫𝑥ఙ(ଵ), … , 𝑥ఙ(௡)൯ and 𝒫(𝑛) designates the permutations' set of 
{1, … , 𝑛}. 

 
Lemma 1. 

If 𝑛 ≥ 𝑘, then for any 𝑥 ∈ 𝒟௡
(௞) we have #Σ௫

(௞,௡)
= 𝑘௡ି௞𝑘!. 

 
Proof: For a fixed value of 𝑘 we use induction with respect to 𝑛. 

1. In the basic case, since 𝑛 = 𝑘, 𝒟௡
(௞)

= ℝା
௡ , then #Σ௫

(௞,௡)
= 𝑘!. 

2. In the inductive step (where 𝑛 > 𝑘), assuming that for any 𝑥 ∈ 𝒟௡
(௞) we have 

#Σ௫
(௞,௡)

= 𝑘௡ି௞𝑘!, we show that for any 𝑥′ ∈ 𝒟௡ାଵ
(௞)  we obtain #Σ௫ᇱ

(௞,௡ାଵ)
=

𝑘௡ି௞ାଵ𝑘!. 

For a given 𝑥ᇱ = (𝑥ଵ
ᇱ , … , 𝑥௡

ᇱ , 𝑥௡ାଵ
ᇱ ) ∈ 𝒟௡ାଵ

(௞) , it follows that 𝑥 ≔ (𝑥ଵ
ᇱ , … , 𝑥௡

ᇱ ) =

𝜋(ଵ,…,௡)(𝑥) ∈ 𝒟௡
(௞). Let 𝜎 ∈ Σ௫

(௞,௡) and (𝑦ଵ, … , 𝑦௡) ≔ ൫𝑥ఙ(ଵ)
ᇱ , … , 𝑥ఙ(௡)

ᇱ ൯. By 

definition of 𝒟௡
(௞), we get ∀௝∈{௞ାଵ,…,௡} 𝑦௝  >  𝑦௝ି௞∶௝ିଵ. Next, by definition of 

𝒟௡ାଵ
(௞) , we have 𝑥௡ାଵ

ᇱ  >  𝑦௝ି௞ାଵ∶௡. 
In such circumstances, there are exactly 𝑘 possibilities to expand the permutation 

𝜎 ∈ 𝒟௡
(௞) to such a permutation 𝜎′ ∈ 𝒟௡ାଵ

(௞)  that 𝜎ᇱ|{ଵ,…,௡} = 𝜎: 
𝜎തଵ

ᇱ(𝑥ᇱ) = (𝑦ଵ, … , 𝑦௡ି௞ାଵ, 𝑥௡ାଵ
ᇱ , 𝑦௡ି௞ , … , 𝑦௡), 

𝜎തଶ
ᇱ(𝑥ᇱ) = (𝑦ଵ, … , 𝑦௡ି௞ାଶ, 𝑥௡ାଵ

ᇱ , 𝑦௡ି௞ାଵ, … , 𝑦௡), 
⋮  

𝜎ത௞
ᇱ (𝑥ᇱ) = (𝑦ଵ, … , 𝑦௡, 𝑥௡ାଵ

ᇱ ),  

which encompasses exactly all the possible permutations in 𝒟௡ାଵ
(௞) . 

Steps 1. and 2. justify the proof. 
 

Since the number #Σ௫
(௞,௡)

= 𝑘௡ି௞𝑘! does not depend on the choice of 𝑥 ∈

𝒟௡
(௞), we denote it hereinafter as 𝑁(𝑘, 𝑛). 
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Theorem 2. 
The joint unconditional pdf of vector (𝑋ଵ, 𝑋ଶ, … , 𝑋௡) has a form: 

𝑓௡(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) =
௙(௫భ)⋅௙(௫మ)⋅…⋅௙(௫೙)

ீ(௫భ:ೖ)⋅ீ(௫మ:ೖశభ)⋅…⋅ீ(௫೙షೖ:೙షభ)
⋅ 𝕀

𝒟೙
(ೖ)(𝑥ଵ, … , 𝑥௡), 

where 𝐺(𝑡)  =  1 −  𝐹(𝑡). 
 
Remark 3. 

Definition of 𝒟௡
(௞) yields that if (𝑥ଵ, 𝑥ଶ, … , 𝑥௡) ∈ 𝒟௡

(௞), then 𝑥௣:௥ = 𝑥௣:௦ for any 
ordered entries 𝑥௣:௥, 𝑥௣:௦ such that 𝑘 ≤ 𝑝 + 𝑘 − 1 ≤ 𝑟 ≤ 𝑠 ≤ 𝑛. For that reason the 
pdf in Theorem 2 may be rewritten as: 

 𝑓௡(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) =
௙(௫భ)⋅௙(௫మ)⋅…⋅௙(௫೙)

ீ(௫భ:೙షభ)⋅ீ(௫మ:೙షభ)⋅…⋅ீ(௫೙షೖ:೙షభ)
⋅ 𝕀

𝒟೙
(ೖ)(𝑥ଵ, … , 𝑥௡) =  

 =
௙(௫భ)⋅௙(௫మ)⋅…⋅௙(௫೙)

ீ(௫భ:೙)⋅ீ(௫మ:೙)⋅…⋅ீ(௫೙షೖ:೙)
⋅ 𝕀

𝒟೙
(ೖ)(𝑥ଵ, … , 𝑥௡).  

 
Proof of Theorem 2: On the basis of the proposed definition of 𝑘-th-price-auction 
model it emerges that if number of bids 𝑛 is smaller or equal to 𝑘, then the bids are 
independent, which leads to joint pdf given by a formula: 
 𝑓௡(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) = 𝑓(𝑥ଵ) ⋅ 𝑓(𝑥ଶ) ⋅ … ⋅ 𝑓(𝑥௡).  
So as a special case we have: 
 𝑓௞(𝑥ଵ, 𝑥ଶ, … , 𝑥௞) = 𝑓(𝑥ଵ) ⋅ 𝑓(𝑥ଶ) ⋅ … ⋅ 𝑓(𝑥௞).  
Otherwise (𝑛 > 𝑘), 𝑛 − 𝑘 last bids depend on the previous ones. In this case, we 
derive recursively joint pdf of (𝑋ଵ, 𝑋ଶ, … , 𝑋௡) with the use of conditional pdf's: 
𝑓௡(𝑥ଵ, … , 𝑥௡) = 𝑓௡ିଵ(𝑥ଵ, … , 𝑥௡ିଵ) ⋅ 𝑓௑೙|௑భୀ௫భ,…,௑೙షభୀ௫೙షభ

(𝑥௡|𝑥ଵ, … , 𝑥௡ିଵ) =  

 = ⋯ = (1) 
 = 𝑓௑೙|௑భୀ௫భ,…,௑೙షభୀ௫೙షభ

(𝑥௡|𝑥ଵ, … , 𝑥௡ିଵ) ⋅ … ⋅  

 ⋅ 𝑓௑ೖశభ|௑భୀ௫భ,…,௑ೖୀ௫ೖ
(𝑥௞ାଵ|𝑥ଵ, … , 𝑥௞) ⋅ 𝑓(𝑥௞) ⋅ … ⋅ 𝑓(𝑥ଵ).  

Now, since the conditional distributions are modeled by a given family of 
exceedance distributions, then the direct substitution in (1) completes the proof. 
 

The obtained joint distribution formula leads to unconditional marginal 
distributions of all variables 𝑋௞ାଵ, 𝑋௞ାଶ, 𝑋௞ାଷ, …, which is stated in: 
 
Theorem 4. 
For fixed 𝑘 and 𝑛, 𝑛 > 𝑘, the unconditional marginal pdf of 𝑋௡ has a form: 

𝑓௑೙
(𝑡) = ቀ

௞

௞ିଵ
ቁ

௡ି௞
𝑓(𝑡) ቌ1 −  𝐺௞ିଵ(𝑡) ෍

(1 − 𝑘)௜

𝑖!
ln௜ 𝐺(𝑡)

௡ି௞ିଵ

௜ୀ଴

ቍ. 
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Before we proceed with the proof of Theorem 4, we consider auxiliary 
integrals that are recursively defined for a fixed 𝑡 > 0 as follows: 

 𝑐ଵ(𝑥) ≔ ∫
௙(௦)

ீ(௦)
𝐺௞ିଵ(𝑠)𝑑𝑠

௧

௫
,    𝑐௠ାଵ(𝑥) ≔ ∫

௙(௦)

ீ(௦)
𝑐௠(𝑠)𝑑𝑠

௧

௫
  

where 0 < 𝑥 < 𝑡, 𝑚 ∈ ℕା. 
 
Lemma 5. 
The auxiliary integrals are given by: 

 𝑐௠(𝑥) =
ଵ

(௞ିଵ)೘ 𝐺௞ିଵ(𝑥) +
ଵ

௞ିଵ
𝐺௞ିଵ(𝑡) ∑

ଵ

௝!
𝑎௠ିଵି௝(𝑡) ln௝ 𝐺(𝑥)௠ିଵ

௝ୀ଴ , (2) 

where 

 𝑎௝(𝑡) = − ∑
(ିଵ)೔

௜!(௞ିଵ)ೕష೔ ln௜ 𝐺(𝑡)௝
௜ୀ଴ .  

Proof: We use induction with respect to 𝑚. 
1. In the basic case, the calculation yields that: 

 𝑐ଵ(𝑥) = ∫ 𝑓(𝑠)𝐺௞ିଶ(𝑠)𝑑𝑠
௧

௫
=

ଵ

௞ିଵ
ቀ𝐺௞ିଵ(𝑥) − 𝐺௞ିଵ(𝑡)ቁ.  

In this case 𝑎଴(𝑡) = 1. 
2. In the inductive step (where 𝑚 > 1), assuming that (2) holds, and knowing that: 

 ∫
௙(௦)

ீ(௦)
ln௝ 𝐺(𝑠) 𝑑𝑠

௧

௫
=

ଵ

௝ାଵ
൫ln௝ାଵ 𝐺(𝑥) − ln௝ାଵ 𝐺(𝑡)൯,  

for 𝑗 ∈ ℕ , we calculate: 

 ∫
௙(௦)

ீ(௦)
𝑐௠(𝑠)𝑑𝑠

௧

௫
=

ଵ

(௞ିଵ)೘శభ ቀ𝐺௞ିଵ(𝑥) − 𝐺௞ିଵ(𝑡)ቁ  

 +
ଵ

௞ିଵ
𝐺௞ିଵ(𝑡) ∑

ଵ

௝!
𝑎௠ିଵି௝(𝑡)

ଵ

௝ାଵ
൫ln௝ାଵ 𝐺(𝑥) − ln௝ାଵ 𝐺(𝑡)൯௠ିଵ

௝ୀ଴   

 =
ଵ

(௞ିଵ)೘శభ 𝐺௞ିଵ(𝑥) +
ଵ

(௞ିଵ)೘శభ 𝑎଴(𝑡)𝐺௞ିଵ(𝑡)  

 +
ଵ

௞ିଵ
𝐺௞ିଵ(𝑡) ∑

ଵ

௝!
𝑎௠ି௝(𝑡)൫ln௝ 𝐺(𝑥) − ln௝ 𝐺(𝑡)൯௠

௝ୀଵ   

 = 𝑐௠ାଵ(𝑥) −
ଵ

௞ିଵ
𝐺௞ିଵ(𝑡)𝑎௠(𝑡) −

ଵ

௞ିଵ
𝐺௞ିଵ(𝑡) ∑

ଵ

௝!
𝑎௠ି௝(𝑡) ln௝ 𝐺(𝑡)௠

௝ୀଵ   

 +
ଵ

(௞ିଵ)೘శభ 𝑎଴(𝑡)𝐺௞ିଵ(𝑡)  

 = 𝑐௠ାଵ(𝑥) −
ଵ

௞ିଵ
𝐺௞ିଵ(𝑡) ∑

ଵ

௝!
𝑎௠ି௝(𝑡) ln௝ 𝐺(𝑡)௠

௝ୀ଴ +
ଵ

(௞ିଵ)೘శభ 𝐺௞ିଵ(𝑡).  

Now let 𝑆 = ∑
ଵ

௝!
𝑎௠ି௝(𝑡) ln௝ 𝐺(𝑡)௠

௝ୀ଴ . Then 𝑆 = −(𝑘 − 1)ି௠, because: 

 𝑆 = − ∑
ଵ

௝!
௠
௝ୀ଴ ∑

(ିଵ)೔

௜!(௞ିଵ)೘షೕష೔ ln௜ 𝐺(𝑡) ln௝ 𝐺(𝑡)௠ି௝
௜ୀ଴   

 =
ିଵ

(௞ିଵ)೘  ∑ ∑ ቀ௝ା௜
௝

ቁ
(௞ିଵ)ೕశ೔

(௝ା௜)!
ln௝ 𝐺(𝑡) (− ln 𝐺(𝑡))௜ 

௠ି௝
௜ୀ଴

௠
௝ୀ଴   

 =
ିଵ

(௞ିଵ)೘  ∑ ∑ ቀ௟
௝
ቁ

(௞ିଵ)೗

௟!
ln௝ 𝐺(𝑡) (− ln 𝐺(𝑡))௟ି௝ ௟

௜ୀ଴
௠
௟ୀ଴   
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 =
ିଵ

(௞ିଵ)೘  ∑
(௞ିଵ)೗

௟!
(ln 𝐺(𝑡) − ln 𝐺(𝑡))௟௠

௟ୀ଴   

 =
ିଵ

(௞ିଵ)೘,  

where we substitute 𝑙 = 𝑗 + 𝑖, and assume that 0଴ = 1. 
 
Proof of Theorem 4: For a given 𝑘 and 𝑛, 𝑛 > 𝑘, we calculate: 

 𝑓௑೙
(𝑡) = ∫ 𝑓௡(𝑥ଵ, 𝑥ଶ, … , 𝑥௡ିଵ, 𝑡)𝑑(𝑥ଵ, 𝑥ଶ, … , 𝑥௡ିଵ)

{(௫భ,௫మ,…,௫೙షభ)∈ℝ೙షభ}
  

 = ಿ(ೖ,೙)

ೖ!
∫

௙(௫భ)௙(௫మ)…௙(௫೙)

ீ(௫భ:ೖ)ீ(௫మ:ೖశభ)…ீ(௫೙షೖ:೙షభ)
𝑑(𝑥ଵ, 𝑥ଶ, … , 𝑥௡ିଵ){(௫భ,௫మ,…,௫೙షభ)∈ℝ೙షభ:

௫భழ௫మழ⋯ழ௫೙షೖ,

௫೙షೖశభ,…,௫೙షభ,௧வ௫೙షೖ}

 

 = 𝑘௡ି௞𝑓(𝑡) ∫
௙(௫భ)

ீ(௫భ)
∫

௙(௫మ)

ீ(௫మ)

௧

௫భ
… ∫

௙(௫೙షೖ)

ீ(௫೙షೖ)

௧

௫೙షೖషభ

௧

଴
  

 ∫ 𝑓(𝑥௡ି௞ାଵ) … ∫ 𝑓(𝑥௡ିଵ)𝑑𝑥௡ିଵ𝑑𝑥௡ିଶ … 𝑑𝑥ଶ𝑑𝑥ଵ
ାஶ

௫೙షೖ

ାஶ

௫೙షೖ
 

and notice that 𝑓௑೙
(𝑡) = 𝑘௡ି௞𝑓(𝑡)𝑐௡ି௞(0) which completes the proof. 

 

FINAL REMARKS 

This paper proposes a stochastic model of the course of actual bid values in  
a dynamic internet 𝑘-th price auction. The model takes into account the existence of 
stochastic dependence and different probability distributions describing subsequent 
bids. Despite conducting an extensive search of the literature on the subject, we were 
not able to find studies that would explicitly model actual bid values appearing in 
the course of a dynamic action in a way similar to our proposal. In our opinion, the 
determination of unconditional joint probability distributions of bid values, and 
especially marginal probability distributions thereof, is an interesting mathematical 
problem – even if considered separately from the auction framework. 

We observe that in the case of 𝑘 = 1, the probability distributions of 
subsequent bids in our model are identical to the distributions of maxima of 
independent and identically distributed random variables. This is so provided that 
the latter variables are given by the same cumulative distribution function 𝐹 as the 
sequence of bids in the model. The mentioned maxima of independent and 
identically distributed random variables are the records in the sense of [Chandler 
1952], and also they are the first record values (𝑘 = 1) in the sense of [Dziubdziela, 
Kopociński 1976]. However, we notice that for 𝑘 ≥ 2 such an equality of marginal 
bid distribution in 𝑘-th price auction and of 𝑘-th record values no longer holds. 

Though the presented model describes bid amounts only, it can be combined 
with models describing two other aspects of dynamic auctions, i.e., time arrivals and 
the number of bids. For example, an interesting model of bid times has been 
proposed by [Shmueli et al. 2008]. Simultaneously, the number of bids can be 
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naturally modeled using the Poisson process, as indicated in [de Haan et al. 2009], 
[Hickman et al. 2012], [Saeedi, Hopenhayn 2015], [Shmueli et al. 2008], [Wang et 
al. 2008]. 
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