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Abstract: This paper examines major U.S. financial crises from the 
beginning of the nineteenth century to the present.  The financial crises of 
Poland are also discussed.  Observing similarities and differences among 
various financial crises, including their causes and government responses, can 
shed light on the nature of financial crises.  The current financial crisis is 
described and potential policies that may remedy the problem are discussed.  
Additionally, the paper briefly describes financial crises in Poland.  The 
conclusion is that financial crises cannot be avoided. 
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INTRODUCTION 

Former British Prime Minister Tony Blair, in his recent memoir, devotes the 
last chapter to the recent financial crisis.  Blair (2010) points at governments, 
regulations, politicians, and monetary policies as the key culprits of the crisis.  He 
sees the crisis as a consequence of the perception that expansionary monetary 
policy and low inflation could co-exist in the long run.  Although Blair (2010) 
blames political leadership, he mainly accuses regulators who, in his opinion, are 
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responsible for alerting leaders that a serious crisis is about to break.  He claims 
that if political leaders had a warning, they would have acted to prevent, or at least 
alleviate the impending crisis.  

Nobel Laureate Joseph Stiglitz (2010) also notes that policymakers did not 
see the recent crisis coming and, once the bubble burst, thought that the 
consequences would be short lived.  Addressing the issue of who should be 
blamed, Stiglitz (2010) emphasizes the roles of the financial institutions that did 
not understand the risks being taken, the regulators who failed to see what was 
coming, and not least, the economic profession.  He observes that standard 
macroeconomic models did not incorporate adequate analyses of banks. 

Similarly, Paul Krugman (2009), another Nobel Laureate, claims among 
other scholars that the current economic crisis parallels that of the Great 
Depression.  Krugman (2009) traces the financial crisis -- the greatest since the 
1930s -- to the failure of regulation to keep pace with what he calls an “out-of-
control financial system.” 

Looking at financial crises through the lens of the last two centuries, this 
paper casts a doubt on the global rush to further empower the regulators who have 
failed to anticipate past panics and ballooning bubbles. 

The paper is organized as follows: Section II provides a literature review.  
Section III discusses the main U.S. banking panics of the nineteenth century.  
Section IV explains the causes and effects of the current financial crisis.  Section V 
briefly relays financial crises in Poland.  Section VI is a conclusion. 

LITERATURE REVIEW  

Recent literature highlights a variety of theories with regards to the causes 
and conditions engendering financial panics.  Reinhart and Rogoff (2008, 2009A, 
2009B) present evidence that these crises are not limited to the U.S.  They assert 
that any parallels drawn between crises within the United States can be extended to 
other countries.  Bordo (2003) examines the economic history of the United 
Kingdom and the United States and concludes that stock market crashes are 
worsened by unstable financial conditions. 

Kaminsky and Reinhardt (1999) claim that financial crises can be traced to 
deteriorating economic fundamentals, mainly increases in either private or national 
debt that at some point become impossible to refinance.  Similarly, García-Herrero 
and Del Rio-Lopez (2003), studying episodes from seventy nine countries for the 
years 1979 until 1999, similarly conclude that when a central bank pursues an 
objective of financial stability, the likelihood of a crisis is reduced.  Demirgüç-
Kunt and Detragiache (1998) and Laeven and Valencia (2008) identify several 
conditions which encourage large-scale breakdowns, such as a ratio over ten 
percent of non-performing to total bank capital or a large cost of two percent of 
GDP as the cost of the government bailout. 
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Boyd, Nicolò, and Loukoianova (2009) postulate that banking crises are due 
to responses of the financial institutions to government intervention.  Klomp (2010) 
examines 132 banking crises across 110 countries and concludes that the GDP 
growth rate and the real interest rate can indicate the onslaught of a financial crisis, 
but that not a single factor is significant in causing more than 60 percent of crises. 

NINETEENTH AND TWENTIETH CENTURY FINANCIAL CRISES IN 
THE UNITED STATES 

As a newly developed country, the United States experienced a period of 
frequent banking panics in the nineteenth century with eight major crises.  These 
eight episodes include the Panics of 1819, 1837, 1839, 1857, 1873, 1884, 1893 and 
1896.  The major crises of that century, which occurred in the years 1819, 1837, 
1857, 1873, and 1893, are described below. Then the two major crises from the 
twentieth century, taking place in the years 1907 and 1929, are recounted. 

The Panic of 1819 

The Panic of 1819 was the first national financial crisis in the United States.  
The panic began with a sharp expansion of the money supply, leading to a bubble 
that burst and caused a sharp downturn.  Prior to the War of 1812, regulation of 
banks was minimal with only two main constraints.  During the War of 1812 the 
government of the United States had limited means of raising revenue for the war 
effort. Following the expiration of the First Bank of the United States’ Charter in 
1811, the constraints on bank lending were loosened, and many banks extended 
credit beyond their reserves, thus creating a large expansion of the money supply.  
As this increased lending continued, banks saw their reserves flowing to other 
banks with safer lending practices.  For example, since New England opposed the 
war, its banks did not extend credit to the government, causing reserves to flow 
from the rest of the nation to New England. 

As these practices continued, the government tried to prevent further 
withdrawals from banks, and thus suspended convertibility of banknotes into 
specie, the main venue for extending the money supply.  Following the war, it was 
apparent that convertibility could not be restored immediately.  The Second Bank 
of the United States was created in 1817 to allow for the transition back to the 
bimetallic standard.  However, while the creation of this bank allowed banks to 
resume convertibility, it facilitated further lending that expanded the money supply 
even more.  For example, by 1818, the bank had lent out $41 million and 
transferred the risk from bank balance sheets to its own balance sheet.  The bank 
also increased the total banknote issue by $23 million, with only $2.5 million in 
reserves. 

The policies of the new bank encouraged other banks to further expand their 
issuance of banknotes.  This expansion caused a sharp increase in the price level, 
speculation in real estate and the founding of many banks.  For example, the 
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number of banks increased from 208 to 245 in the year of 1815 alone.  However, 
with the repayment of the “Louisiana debt” that was used for the Louisiana 
Purchase in 1818 and 1819, required in specie, The Second Bank of the United 
States had to engage in a series of policies to reverse the expansion in the money 
supply.  

The actions of the bank facilitated the Panic of 1819 by creating a 
deflationary environment where debtors were no longer able to repay the banks, 
and the value of banknotes depreciated.  By 1821, the panic and depression began 
to clear and the credit contraction ended.  Though it had been painful, the United 
States had survived the first of the eight banking panics in the nineteenth century 
(Rothbard, 1962). 

The Panic of 1837 

The next banking crisis was the Panic of 1837.  In the five years following 
the suspension of specie payments, 194 of the 729 chartered banks failed.  The 
book assets of state owned and controlled banks fell 45 percent.  Five-year 
depression ensued.  Rousseau (2002) enumerates two main causes of the crisis.  
The first was the Deposit Act of 1836, which forced the government to distribute 
$28 million of the $34 million in Federal surplus to state banks, other than New 
York City banks.  The other was the “Specie Circular,” also passed in 1836, which 
required public lands to be paid for in specie.  These two policies led to a drain in 
the reserves of deposit banks from New York City and other commercial centers to 
the rest of the country.  The reserves in New York fell from $7.2 million on 
September 1, 1836 to $1.5 million on May 1, 1837.  This drain in reserves from the 
commercial centers of the United States led to a loss of confidence in New York 
banks, making the panic inevitable.  The policy of enacting regulations intended to 
respond to one problem simultaneously and inevitably creates other impediments, 
not less severe.  This is the hallmark of financial regulations since these essential 
liquid instruments, just like water, will eventually find their way out to the 
unregulated high seas.  This phenomenon repeats itself in many past, present and 
future crises. 

Rolnick, Smith and Weber (1997) emphasize two different causes of the 
Panic of 1837.  One view sees the culprit as President Andrew Jackson for not 
renewing the charter for The Second Bank of the United States, which had 
disciplined weaker banks by returning their paper.  The other highlights the fall in 
cotton prices as conducive to the crisis. 

Following the implementation of the Deposit Act and the Specie Circular, 
banks began suspension of converting banknotes into specie in May of 1837.  
Almost a year later, in April of 1838, banks began to resume convertibility.  In the 
following year, a further economic slowdown occurred, causing banks to again 
suspend payments, leading to many additional bankruptcies.  Two more years of 
recession followed (Rolnick, Smith and Weber, 1997). 
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The Panic of 1857 

The Panic of 1857 was characterized by the closure of the Ohio Life and 
Trust Company, a collapse of the stock and bond markets and a sharp recession.  
The United States was on a bi-metallic (gold and silver) standard at the time.  Thus 
the discovery of new gold deposits sharply increased the money supply.  
Consequently, a speculative bubble emerged, primarily in railroads and the land 
required to build them.  Nearly $700 million was spent over a nine year period to 
construct about 18,000 miles of rails, which at the time accounted for over 77 
percent of all railroad mileage in the United States (Conant, 1915, p. 637). 

When the bubble burst, speculators were unable to repay their debts causing 
some banks to fail.  This increased the probability that other banks would go 
bankrupt.  Bank runs resulted in the collapse of stock and bond markets, which 
further exacerbated the situation.  As banks failed, many cities and states 
suspended the convertibility of bank deposits into gold.  However, lacking a central 
monetary authority, nation-wide coordination among banks was impossible.  Thus, 
when Philadelphia suspended convertibility in September of 1857 and New York 
City did not, fear–induced bank runs ensued in New York City.  Consequently, on 
October 13, 1857, New York City suspended convertibility.  Only on November 20 
did New York resume partial convertibility, thus averting a major crisis (Calomiris 
and Schweikart, 1991, p. 822-828). 

The Panic of 1873 

The Panic of 1873 was caused by rapid overexpansion following the 
American Civil War.  From the mid-1860s to the early 1870s, the United States 
railroad industry thrived.  As tracks were laid, railroad companies benefited from 
government grants and subsidies.  These grants and subsidies, in turn, spurred 
private investment in the industry (Oberholtzer, 1926).  The railroad industry grew 
at a fast pace, eventually creating an excess supply of railroads and dramatically 
reducing the returns to investment in new rails. 

Significant debt accumulation led to failure of many large entities, including 
Jay Cooke & Company.  The stock exchange closed for ten days starting on 
September 20, 1873, setting off a chain reaction.  Bank runs ensued as people 
panicked due to losses from railroad investments, causing further failures of banks.  
The U.S. GDP decreased for the following six years. 

As in previous panics, the Panic of 1873 was worsened by government 
policies.  The Coinage Act of 1873, issued earlier in the year, moved the United 
States to a pure gold standard, so that silver was dethroned as a form of exchange.  
The amount of currency available decreased, which led to sudden and severe 
deflation.  Furthermore, the monetary policy of President Ulysses Grant consisted 
of further contracting the money supply (Wheeler, 1973).  The resultant sudden and 
unexpected high interest rates hindered the repayment of debt.  Although the U.S. 
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government tried to mitigate the deflation by buying bonds, the attempt was 
insufficient to counter the decrease in GDP. 

The Panic of 1893 

The Panic of 1893 is considered the worst financial crisis in the United 
States prior to the Great Depression (Timberlake, 1997).  Similar to the Panic of 
1873, it was caused by an array of factors, the most important being the 
overexpansion of the railroad industry and an expansionary monetary policy. 

The previous decade of the 1880s was a time of high economic growth and 
optimism.  However, the main engine of this growth was risky speculation.  In the 
1860s, citizens invested heavily in American railroads creating excess capacity in 
the industry, leading to bankruptcies.  The dissolution of the Philadelphia and 
Reading Railroad was the first sign of the panic (Holton, 1990).  As more railroads 
companies and their suppliers filed for bankruptcy, concern among the general 
public grew, and bank runs began.  More entities failed, leading to widespread 
layoffs and causing unemployment to increase to 19 percent at the peak of the 
panic (Hoffman, 1970). 

Analogous to the previous panics, the Panic of 1893 was worsened by a 
deflationary monetary policy.  The Sherman Silver Purchase Act of 1890 required 
the U.S. government to purchase silver using currency backed by metallic specie.  
Soon there were not enough reserves in banks to exchange silver for gold.  The 
value of silver became practically negligible, and deflation persisted for years, 
making it difficult for firms and individuals to repay debt. 

The Panic of 1907 

The Panic of 1907, another of the most severe financial crises before the 
Great Depression, was triggered by a sudden downturn in the New York Stock 
Exchange.  Stock prices fell almost fifty percent from the previous year 
(Braunstein, 2009).  One of the most significant causes of the downturn was a 
failed bid to corner the stock of the United Copper Company.  When the venture 
failed, entities that had banked on its success incurred substantial losses. 

Bank runs began as concerns about decreased liquidity surfaced (Bruner and 
Carr, 2007).  The runs only compounded the shortage of funds, and firms accrued 
significant amounts of debt.  The lack of a U.S. central bank to inject liquidity 
meant that the crisis could only be temporarily ameliorated by the lending of 
emergency funds by wealthy magnates and large corporations. 

In just a few months, however, the stock value of the Tennessee Coal, Iron, 
and Railroad Company (TCI) plummeted.  Crisis was once again closely averted 
by another emergency purchase—J.P. Morgan bought TCI to bolster the value of 
its shares (Bruner and Carr, 2007). 

Unlike in Panics of 1853, 1873, and 1893, economic overexpansion did not 
play a significant role in the Panic of 1907.  Instead, the cause of the crisis was a 
lack of funds, exacerbated by the absence of a central banking system, which was 
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disbanded when President Andrew Jackson did not renew a charter for a central 
bank in 1823.  However, the crisis was among a series of factors that led to the 
establishment of the Federal Reserve in 1913 (Caporale and McKiernan, 1998). 

The Great Depression 

The most severe financial crisis of the twentieth century in the United States 
began after a dramatic stock market crash in October 1929.  In just a few months, 
the Dow Jones Industrial Average fell from the high 300s to below 100 (PBS, 
2008).  The causes of the crash were similar to those of previous financial panics.  
There was a rise in speculation during the “Roaring Twenties” which led to a 
financial bubble.  The bubble burst in 1929, and was followed by widespread 
panic.  As many attempted to retrieve their bank deposits and to sell stocks, 
financial institutions incurred more debt and stock prices fell further.  Other factors 
that led to the depression include the unbalanced world economy in the wake of 
World War I and the resulting inflation, left unchecked by the newly-established 
Federal Reserve. 

The Great Depression lasted for several years, despite efforts at resolution by 
the U.S. government.  The Hoover Administration directly lent capital to banks and 
individuals with the passing in 1932 of the Reconstruction Finance Corporation 
Act and the Federal Home Loan Bank Act.  In the years from 1933 to 1938, 
President Franklin Roosevelt actuated the New Deal, a series of economic 
programs which generated millions of jobs for the unemployed.  Ultimately, 
though, it was the build-up for World War II that bolstered spending and Gross 
Domestic Product, ending the depression (Klein, 1947). 

The Great Depression led to the establishment of the Glass – Steagall Act in 
1933, which regulated the economy for years to come.  It divided banks into 
separate categories, and created the Federal Deposit Insurance Corporation (FDIC) 
to insure citizens in case of bank runs. 

The Savings and Loan Crisis 

The Savings and Loan Crisis was rooted in the failure of many Savings and 
Loans (S&L) associations. These associations traditionally offer interest on savings 
deposits and use the deposits to make additional loans.  Until 1980, the thrift 
industry was regulated by the U.S. government. However, with the passage of the 
Depository Institutions Deregulation and Monetary Control Act in 1980 and the 
Garn – St. Germain Depository Institutions Act of 1982, thrift institutions became 
financial intermediaries with the power of banks, but without the associated 
regulations (Mason, 1993). Risky speculation began, especially concerning real 
estate. With time, as yields on speculation declined, many Savings and Loans 
institutions failed. 

Other factors which led to the crisis include the Tax Reform Act of 1986, 
which removed tax shelters and decreased values of many investments.  
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Government deposit insurance of thrift institutions led S&Ls to invest in riskier 
ventures. The collapse was ineluctable (Strunk and Case, 1988). 

As a result of The Savings and Loan Crisis, the government repealed the 
Glass-Steagall Act. Furthermore, the federal government provided funds and bailed 
out many S&L institutions. Many point to these bailouts as contributing to the large 
budget deficit in the 1990s and beyond. 

THE CURRENT FINANCIAL CRISIS 

The current financial crisis, which began in 2007, is said to be the worst 
economic crisis to strike the U.S. since the Great Depression.  It was caused by a 
variety of factors, but once again, its roots can be traced to speculation and the 
bursting of a financial bubble.  Before the crisis struck, in 2006, the value of real 
estate peaked.  However, much of the rise in prices was hinged on speculation. 

In the early- and mid-2000s, as many foreign and domestic citizens invested 
in mortgage-related companies and products, liquidity increased in the real estate 
industry.  Companies took this availability of funds for granted and began to issue 
mortgages at very low rates.  Financial innovations such as collateralized debt 
obligations (CDOs) and mortgage-backed securities (MBSs) surfaced.  People who 
could not necessarily afford some homes in the long run began to purchase them.  
The effects of these new deals were not strictly internalized or regulated. 

When mortgage rates began to rise due to declining prices and lagging 
investment in the housing industry around late 2006, new homeowners could not 
pay the amounts that were demanded by the subprime mortgage industry.  A wave 
of home foreclosures began.  Even when foreclosing, however, companies could 
not retrieve the full worth of the house that had been sold.  This is because the U.S. 
government does not allow companies to claim assets besides the house itself to 
retrieve lost value.  Though a landlord has the right to evict a tenant with five days 
notice if rent payments are late, banks must foreclose on a house and have a court 
order issued before a tenant can be evicted.  Also, if the value of a house is lower 
than it was at the time of purchase, the owner loses money by having to pay more 
than the house is currently worth.  Thus, the owner is technically permitted to walk 
away from paying the mortgage.  The U.S. does not allow banks to seize assets in 
order to obtain repayment of loans. 

As housing prices began to fall, buyers preferred to renege on payments of 
less-valued houses than to make an effort to pay for them.  Thus, the value of the 
housing industry and its stocks declined further.  Figure I shows the median and 
average sales prices of new homes sold in United States from 1963 until 2009.  
Whereas the median and average home prices were $245,300 and $301,200 in 
February 2008, the corresponding figures for July 2010 are $204,000 and 
$235,300, respectively.  These figures represent a drop of about 17 percent in the 
median and a dive of about 22 percent in the price of the average house sold in the 
United States.  
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Figure II presents annual data of the number of housing units in thousands 
for sale in the United States and in its sub-regions from 1975 until 2009.  Whereas 
in the year 2006 the numbers were 537, 54, 97, 267, and 119 for the U.S., North-
East, Mid-West, South and West, respectively, these numbers dropped in 2009 to 
232, 27, 38, 118, and 48.  Percentage-wise these figures represent a drop of about 
57 percent for the United States as a whole and decreases of 50, 61, 56 and 60 
percent, for the North-East, Mid-West, South and West, respectively.  Figure III 
presents annual data of the lots sold for future construction of housing units in the 
United States in what are called “permit-issuing areas that will never have a permit 
authorization.”  This figure is useful because it indicates expectations for future 
development, since at the time of purchase people do not have permits to build on 
these lots.  According to these data, whereas in 2005 the figures for the United 
States, the Northeast, the Midwest, the South and the West regions were 1,283, 81, 
205, 638 and 358, respectively, these figures dropped in 2009 to 375, 31, 54, 202, 
and 87.  Figure IV shows the current state of the U.S. housing market.  The regions 
in the blue are the housing markets that were the most stable in August 2010.  
However, even in these “stable” locations, prices are dramatically lower than 
would be expected.  For some houses, prices are currently more than 80% lower 
than they were in 2006. 

The result of falling sales and prices of houses was manifested in 
devaluation of companies with mortgage-backed securities.  Bear Sterns was taken 
over by J.P. Morgan Chase in 2008.  Later that same year, Lehman Brothers filed 
for bankruptcy.  Also in 2008, Fannie Mae and Freddie Mac, both companies that 
sold many risky deals and assets, were essentially taken over by the U.S. 
government.  By October 2010, Fannie Mae and Freddie Mac have cost taxpayers 
an estimated $400 billion, and there is currently no path to resolution.  Merrill 
Lynch was sold at a price far below its market value.  Goldman Sachs and Morgan 
Stanley, though avoiding failure, yielded to more government regulation (Labaton, 
2008). 

The sudden decline of large, well-known financial entities led to general 
concern and panic.  As in other financial crises, bank runs began, and there was a 
sharp drop in investor confidence.  Companies and industries that relied on credit 
from the financial services industry began to suffer as well.  For example, the 
purchase of automobiles generally requires substantial credit, and consequently 
General Motors and Chrysler required government assistance to be bailed out in 
2009.  As companies tried to cut back on spending, unemployment rose and 
general spending declined, bringing the United States to a full-fledged recession. 

Figure V shows the unemployment rate for U.S. citizens 16 years of age and 
over since 1948.  A period of unemployment similar to the present state occurred in 
1982-1983.  For 18 months, from March 1982 to November 1983, the 
unemployment rate was above 9 percent.  The U.S. actually had fifty-six months of 
unemployment at 7 percent or above, lasting from May 1980 until January 1986.  
In this most recent recession, the U.S. unemployment rate has been above 9 percent 
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for 16 months from May 2009 through August 2010, and above 7 percent for 21 
months since December 2008 to August 2010.  History again provides evidence of 
the difficulties in reducing unemployment.  Recently released data from the U.S. 
Labor Department indicates that unemployment from month-to-month and year-to-
year is still stagnant and remains high.  Eleven of the fifty states showed no change 
in unemployment, and twenty-seven states showed only a slight increase (Izzo, 
2010). 

Such long-term high unemployment rates are intimately related to both 
demand and supply of labor.  Unemployed laborers lose skills, making the process 
of rehiring slow and difficult.  The effects on general standard of living are also 
detrimental.  Figure VI and Table 1 show the poverty rate from 1959 to 2009.  The 
poverty rate is currently at 14.3 percent - the highest it has been in fifteen years.  
The number is even higher among certain minorities.  For example, more than one-
fourth of both the African American and Hispanic American populations are 
estimated to be living “in poverty.” 

There have been significant government attempts to quell the recession 
beginning in 2008.  During the Bush Administration, the U.S. government 
purchased troubled assets that were causing lack of funds.  These policies, 
however, were not very successful.  The Obama Administration introduced large 
stimulus packages, in order to increase employment and spending.  However, the 
effect of the stimulus has not yet been particularly pronounced.  In fact, some argue 
that the Keynesian multiplier, which determines how effective government 
spending is in combating recession, is much lower than it was in previous decade 
(Cogan, Cwik, Taylor, and Wieland, 2009).  Significant public spending, 
monetarists argue, contributes to national debt more than it supports the economy. 

As Figure VII and Table 2 show, federal outlays as a percent of GDP are 
currently very high—about 24.7 percent of GDP can be attributed to government 
spending.  The only time the government spending comprised a larger percent of 
GDP was during WWII (41.88 percent in 1945).  The comparable number for 
1920, two years after the end of World War I was only 7.33 percent.  Even during 
the American Civil War of 1861–1865, the number peaked at a mere 14.2 percent.  
Meanwhile, the Federal Reserve Bank is currently cutting and maintaining low 
interest rates.  While there are concerns that inflation may result from the latter 
action, proponents claim that interest rates can and will be stabilized once the 
economy begins to recover. 

What else can be done to help the U.S. out of the current recession?  Shultz, 
Boskin, Cogan, Meltzer, and Taylor (2010) claim that it was deviating from sound 
economic principles which caused the recession.  Policies, they argue, should take 
into account incentives and disincentives.  Tax cuts are effective, but they only 
evince the intended incentives when they are permanent.  Government intervention 
should be less than it is at the moment, given the current U.S. deficit and large 
federal budget, and the potentially stifling crowding out effect that it has on 
industries.  To prevent future panic, the Fed should have a set of concrete rules to 
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follow in hypothetical situations.  Rules which are simple and transparent, rather 
than discretionary economic policies, should be the norm.  Any discretionary 
government interventions should be discouraged. 

Additionally, in an increasingly globalized world, it is important to consider 
the role of world economies in the onset and the alleviation of recessions.  There is 
implicit competition among countries in terms of regulation.  Economies with 
fewer regulations inherently tend to attract more investment and resources. 

FINANCIAL CRISES IN POLAND 

Poland experienced a major crisis in 1991.  The Bank for Food Economy 
and the cooperative banking system, together with seven of the nine state-owned 
banks, which controlled ninety percent of the national credit market, all 
experienced solvency problems.  It is estimated that the losses in the crisis 
amounted to seven percent of the Polish GDP (Klytchnikova, 2000).  

Despite the banking crisis in the early 90s, Poland has fared well in the most 
recent crisis.  As the International Monetary Fund 9IMF0 Managing Director 
Dominique Strauss-Kahn observes, Poland employs sound macroeconomic policies 
and financial management and thus has remained relatively unscathed.  With 
Poland being one of the few European Union countries to register positive 
economic growth for 2009, his claims are not unfounded.  Table 3 shows that 
Poland has a higher GDP growth rate compared with the average figure for the 
emerging markets in eastern and central Europe.  Figure VIII shows the Warsaw 
Stock Exchange Index (WIG) from 1991 to 2009, as well as a narrower view to 
provide detail on recent fluctuations.  

CONCLUSION 

Economic recession can often trace its roots back to unregulated expansion, 
as shown in many crises in the last three centuries.  Almost every past panic has 
begun with rapid expansion in some industry.  The rapidly expanding industry 
often falls into the pattern of acquiring assets and funding from new or risky 
financial institutions and instruments. The expanding bubble ultimately bursts 
when the growth slows.  Millions lose money and assets, and the resulting failure 
of banks, companies and even government entities leads to panic, deflation and 
unemployment. 

If expansion of an industry were to be kept in check, so that bubbles and 
artificial growth could be avoided, perhaps panics would be less pronounced.  
However, examining past crises shows one very important pattern.  No matter what 
regulations a government attempts to impose, people find ways to circumvent 
them.  The boom-bust cycle that is typical of a capitalist economy is seemingly 
unavoidable.  Further regulations are no panacea because regulators systematically 
fail to foresee the extent of human ingenuity in circumventing their restrictions. 
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The Median and Average Sales Prices of New Homes Sold in United States 
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Figure II 
Houses for Sale by Region 
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Figure III 
The Annual Data of the Number of Housing Units in Thousands of Houses Sold in the 
United States by Region in Permit-issuing Areas That Will Never Have a Permit 
Authorization 
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Figure IV 
The Best and Worst Markets in the U.S. for Single-Family Real-Estate Investment Property 

 

Source: Wall Street Journal-McQueen, M.P, August 2010 
 
Figure V 
Unemployment Rate, 16+ Years of Age, 1948-Present 

 

Source: Bureau of Labor Statistics (BLS), 2010 
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Figure VI 
US Poverty Rate, Sorted by Race, 1959-2009 

 
Source: DeNavas-Walt Carmen, Bernadette D. Proctor and Jessica C. Smith (2010) U.S. 

Census Bureau, September 2010; Table B1 
 

Figure VII  
 
Federal Spending as a % of GDP, 1795 – Present; Present – 2050 (Projected)   

 
Source: Wall Street Journal- Shultz, Taylor, Cogan, Meltzer, 2010 
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Figure VIII  
Warsaw Stock Exchange Index (WIG) 1991 – Present  
 

 
Source : http://www.bloomberg.com/markets/ 
 
Figure VIII  
Warsaw Stock Exchange Index (WIG) 1991 – Present (continued) 

 
This more close up view shows that though there was a rather consistent increase in the index 

until 2007, from July 2007 onwards, the index has been declining. The index is currently at 44249 – a 
35% decline from its peak of 67568 

 
 

Source : http://www.bloomberg.com/markets/ 
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Table 1 
US Poverty Rate (%), Sorted by Race, 1959 – 2009 

Year All White Black Asian Hispanic 
2009 14.3 12.3 25.8 12.4 25.3 
2008 13.2 11.2 24.7 11.6 23.2 
2007 12.5 10.5 24.5 10.2 21.5 
2006 12.3 10.3 24.3 10.1 20.6 
2005 12.6 10.6 24.9 10.9 21.8 
2004 12.7 10.8 24.7 9.7 21.9 
2003 12.5 10.5 24.4 11.8 22.5 
2002 12.1 10.2 24.1 10 21.8 
2001 11.7 9.9 22.7 10.2 21.4 
2000 11.3 9.5 22.5 9.9 21.5 
1999 11.9 9.8 23.6 10.7 22.7 
1998 12.7 10.5 26.1 12.5 25.6 
1997 13.3 11 26.5 14 27.1 
1996 13.7 11.2 28.4 14.5 29.4 
1995 13.8 11.2 29.3 14.6 30.3 
1994 14.5 11.7 30.6 14.6 30.7 
1993 15.1 12.2 33.1 15.3 30.6 
1992 14.8 11.9 33.4 12.7 29.6 
1991 14.2 11.3 32.7 13.8 28.7 
1990 13.5 10.7 31.9 12.2 28.1 
1989 12.8 10 30.7 14.1 26.2 
1988 13 10.1 31.3 17.3 26.7 
1987 13.4 10.4 32.4 16.1 28 
1986 13.6 11 31.1  27.3 
1985 14 11.4 31.3  29 

Source: DeNavas-Walt Carmen, Bernadette D. Proctor and Jessica C. Smith (2010) U.S. 
Census Bureau, September 2010; Table B1 
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Table 1 
US Poverty Rate (%), Sorted by Race, 1959 – 2009 (continued) 

Year All White Black Asian Hispanic 
1984 14.4 11.5 33.8  28.4 
1983 15.2 12.1 35.7  28 
1982 15 12 35.6  29.9 
1981 14 11.1 34.2  26.5 
1980 13 10.2 32.5  25.7 
1979 11.7 9 31  21.8 
1978 11.4 8.7 30.6  21.6 
1977 11.6 8.9 31.3  22.4 
1976 11.8 9.1 31.1  24.7 
1975 12.3 9.7 31.3  26.9 
1974 11.2 9.6 30.3  23 
1973 11.1 8.4 31.4  21.9 
1972 11.9 9 33.3  22.8 
1971 12.5 9.9 32.5   
1970 12.6 9.9 33.5   
1969 12.1 9.5    
1968 12.8 10 32.2   
1967 14.2 11 34.7   
1966 14.7 11.3 39.3   
1965 17.3 13.3 41.8   
1964 19 14.9    
1963 19.5 15.3    
1962 21 16.4    
1961 21.9 17.4    
1960 22.2 17.8    
1959 22.4 18.1    

   55.1   

Source: DeNavas-Walt Carmen, Bernadette D. Proctor and Jessica C. Smith (2010) U.S. 
Census Bureau, September 2010; Table B1 
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Table 2 
Federal Spending as a % of GDP, 1795 – Present ; Present – 2050 (projected) 

Year Total 
Outlays  Year Total 

Outlays 
1795 1.90%  1935 9.21% 
1800 2.07%  1940 9.78% 
1805 1.50%  1945 41.88% 
1810 1.01%  1950 15.59% 
1815 2.84%  1955 17.35% 
1820 2.12%  1960 17.80% 
1825 1.52%  1965 17.21% 
1830 1.39%  1970 19.33% 
1835 1.10%  1975 21.29% 
1840 1.41%  1980 21.67% 
1845 1.21%  1985 22.85% 
1850 1.56%  1990 21.85% 
1855 1.54%  1995 20.60% 
1860 1.41%  2000 18.20% 
1865 14.20%  2005 19.90% 
1870 3.65%  2008 20.66% 
1875 3.04%  2009 24.71% 
1880 2.40%  2010 24.30% 
1885 2.21%  2015 23.30% 
1890 2.35%  2020 25.90% 
1895 2.43%  2025 29.10% 
1900 2.79%  2030 32.20% 
1905 2.16%  2035 35.20% 
1910 2.22%  2040 38.50% 
1915 2.06%  2045 41.70% 
1920 7.33%  2050 45.30% 
1925 3.22%  2055 49.30% 
1930 3.41%  2060 53.70% 

Source: Wall Street Journal- Shultz, Taylor, Cogan, Meltzer, 2010 
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Table 3 
Selected Emerging European Economies : Real GDP, Consumer Prices, and Current  

 

Source: World Economic Outlook, 2009. 
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Abstract: The paper presents an approach for optimal planning of biomass 
energy system based on carbon footprint minimization. A geographical 
spatial demand driven approach is applied to assess the feasible ways for 
transferring energy from renewable sources to district heating plants in the 
Province of Florence (Italy). The proposed approach has been developed on 
three levels. In the first one, the Province of Florence is partitioned into a 
number of Regional Energy Cluster (REC) using a multidimensional 
algorithm of regionalization called SKATER. The variables used in SKATER 
model are related in order to realize sustainable policy for forest and 
agriculture biomass productions. In the second step a geographical fuzzy 
multiple attribute decision making model was applied to the selection of 
biomass district heating localization. Finally, in the third step a geo-
referenced Mixed Integer Linear Programming model based on resource-
supply-demand structure for carbon-minimization energy planning has been 
applied. 

Keywords: carbon footprint, biomass, MILP, fuzzy MADM, regionalization, 
spatial analysis, GIS. 

INTRODUCTION 

Biomass is one of the key renewable energy sources. Using biomass to 
generate heat reduces emissions of greenhouse gases compared to the emissions of 
fossil fuel use. However, the dispersed nature of biomass resource involves 
complex transportation (and also environmental)  problems within the supply 
chain. As a result, the environmental efficiency of a regional energy supply chain 
has the characteristics of spatial and geographical planning problem.  
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Several indicators for evaluating environmental impact of biomass supply 
process have been proposed. Carbon FootPrint (CFP) is defined as the total amount 
of CO2 emitted over the full life cycle of biomass production process (Lam et al. 
2010a).  The CFP of a biomass supply chain is the total CO2 amount emitted 
throughout the supply chain life cycle (Perry et al., 2008). Energy supplied from 
biomass cannot be considered truly carbon-neutral even though the direct carbon 
emissions from combustion have been offset by carbon fixation during feedstock 
photosynthesis (Anderson and Fergusson, 2006). The net CFP is mainly caused by 
the indirect carbon emissions generated along the supply chain, especially by 
harvesting, transportation and burning which release emissions. Especially 
transportation activities could contribute to the greater part of the CFP in the 
supply chain (Forsberg, 2000). The typical locations of biomass sources (farms, 
forest, etc.), the relatively low energy density and the distributed nature of the 
sources require extensive infrastructures and huge transport capacities for 
implementing the biomass supply networks. A solution to this problem is the 
utilization of biomass for heating houses, because this demand source is also 
dispersed in territory. District heating (less commonly called tele-heating) is an 
efficient system for distributing heat generated in a centralized location for 
residential and commercial heating requirements.  

The paper presents an approach for optimal planning of biomass energy 
system based on CFP minimization in district-heating planning. A geographical 
spatial demand driven approach is applied to assess the feasible ways for 
transferring energy from renewable sources to district heating plants in the 
Province of Florence (Italy). 

Section 2 presents the case study, Section 3 describes the methodological 
approach concerning how to minimize CFP in district heating planning at regional 
level. In Section 4 results are discussed.  

THE CASE STUDY: DESCRIPTION OF THE PROVINCE OF 
FLORENCE 

The territory of the Province of Florence covers an area of 3,514 km2, with a 
population of 985,273 inhabitants (ISTAT, 2008) and a density of population of 
about 280 inhabitants/km2, which sensitively increases to 1,644 inhabitants/km2 in 
the urban area. The total surface covered by urban area is 183 km2. The settlement 
morphology varies from the conurbation formed by Florence and by the others 
towns of the plain, with a higher urbanization, to the system of the small historical 
villages, farms, villas and parishes which are the evidence of the strong 
relationships which, in the past, described the rural organization of the countryside 
of Florence and, nowadays, “outline” the Chianti landscape. 

The agro-forest environment of the Province is characterized by 1,640 km2 
of forest area, mainly covered by deciduous broad-leaf. The presence of 
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agricultural land cultivated with permanent crops is relevant mainly in the hills 
surrounding the town of Florence, where the olive growing areas reach 278 km2, 
while in the Florentine Chianti the vineyards reach 166 km2. 

METHODOLOGY 

Biomass to energy projects are highly geographical dependent and the 
supply chain efficiency can be strongly influenced by location of district-heating, 
particularly in terms of CFP minimizations. The key element is to obtain sufficient 
biomass quantities in order to satisfy the energy plant demand, at least the carbon 
emission cost paid for transportation. 

The problem of choosing the best locations for energy facilities is commonly 
assessed using a specific application based on the geographic informative system 
(GIS). Noon and Daly (1996), Bernetti et al. (2004) and Noon et al. (2002) used 
GIS, in order to identify the sites for only one facility, but without assessing site 
competition. However, when resources in the region are scarce, the district heating 
plants have to compete in order to meet their own demand. This leads to a location-
allocation problem. Nord-Larsen and Talbot (2004) and Ranta (2005) applied 
linear programming in order to minimize transportation cost to detected units. 
Finally Panichelli and Gnansounou (2008) used a GIS based linear programming 
approach for selecting least cost bio-energy location.   

Minimizing CFP in district heating issues requires the optimization both of 
demand location and of biomass network transfer links by the coupling of linear 
programming model and Geographic Information System. The main problem of 
this methodology regards the size of the model that, for a global optimization, can 
rise also to about several trillion of decision variables. 

To face up to this problem Lam et al. (2010b) proposed a Regional Energy 
Clustering approach.  The region under consideration is modeled as a collection of 
zones. The zones are smaller areas within the region, accounting for administrative 
or economic boundaries, which are considered atomic (i.e. non-divisible). For each 
zone corresponding rates of energy demands and biomass resource availability are 
specified. 

In this paper, in order to obtain an environmentally efficient local 
optimization, the proposed approach has been developed on three levels. 

In the first level, the region is partitioned into a number of Regional Energy 
Cluster (REC) using a multidimensional algorithm of regionalization called 
SKATER. The variables used in SKATER model are related in order to realize 
sustainable policy for forest and agriculture biomass productions. In the second 
step, a geographical fuzzy multiple attribute decision making model (FMADM) is 
applied to the selection of efficient biomass district heating localization. Finally, in 
the third step a geo-referenced Mixed Integer Linear Programming (MILP) model 
based on resource-supply-demand structure for carbon-minimization energy 
planning has been applied for each Regional Energy Cluster (Fig. 1). 
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Figure 1. Methodology overview 

 

As explained in figure 1, the GIS realized for the development of the model 
is composed by the following data bases: a) Forest Inventory of the Province of 
Florence, extracted by Tuscany’s Inventory (vectorial format); b) Digital Terrain 
Model (raster format); c) Road system (vectorial format); d) Administrative 
boundaries (vectorial format); e) Housing units (vectorial format); f) Corine Land 
Cover land use map (raster format); g) Census data on Industry and Services 
(numerical format). 

The REC step 

In our approach the cluster combines smaller zone to assure efficient 
biomass energy policy. The zones are the smallest administrative units within the 
Province of Florence. Regionalization is to divide this large set of zones into a 
number of spatially contiguous regions while optimizing an objective function, 
which is a homogeneity intra-zones/heterogeneity inter-zones measure of the 
derived regions (Gou, 2008). In our model homogeneity/heterogeneity is related to 
indicators of sustainability of biomass harvest and supply chain logistics that are 
the characteristics of the agro-forest land and the potential supply of agro-energies 
and traditional timber assortments for each of the minimum administrative units. 
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The used sustainability indicators are the following ones: 
- land agro-forest characteristics, defined through the quantification of the 

percentages of arable land areas, of permanent crops and forest areas; 
- biomass products, including both the bio-fuel deriving from the agricultural 

crops and forest cultivations and from the traditional timber assortments (calculated 
with the methodology proposed by Bernetti et al., 2004); 

- agricultural specialization index: it quantifies the importance of the 
agricultural sector, at municipal level, through the percentage of the workers 
involved in the same sector in relation to the total number of workers and in 
relation to the Region (Tuscany). 

Given a set of spatial objects (e.g. administrative units) with a set of 
multivariate information a regionalization method aggregates the spatial objects 
into a number of spatially contiguous regions while optimizing an objective 
function, which is normally a measure of the attribute similarity in each region. 
With SKATER (Spatial ‘K’luster Analysis by Tree Edge Removal) method a 
connectivity graph to capture the adjacency relations between objects is used. 
Figure 2 shows the connectivity graph for Province of Florence.  

 

 
Figure 2. SKATER process 
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The cost of each edge is proportional to the dissimilarity between the objects 
it joins, where the dissimilarity is measured using the values of the attributes of the 
neighboring pair. It is possible to limit the complexity of the graph pruning the 
edge with high dissimilarity. An efficient method for pruning the graph is the so 
called “minimum spanning tree”. A minimum spanning tree is a spanning tree with 
minimum cost, where the cost is measured as the sum of the dissimilarities over all 
the edges of the tree (Figure 2.b). By cutting the graph at suitable places, connected 
clusters (Figure 2.c and 2.d) are obtained (for further details see Assunçao et al.  
2006). 

The fuzzy FMADM step 

District heating efficient location has been evaluated by the application of a 
model of decisional analysis based on a multi-attribute fuzzy approach (FMADM; 
Munda, 1995). The evaluation was done on the basis of the suitability to installing 
wood biomass plants for three different settlement typologies (ISTAT, 2001), 
which are: i) towns: aggregation of contiguous or nearby houses separated by 
roads, squares or similar; ii) residential complexes: aggregation of contiguous 
houses with the absence of squares or similar; iii) scattered houses: buildings 
scattered in the municipal territory having a distance such as neither creating a 
residential complex. 

The indexes implemented in the model FMADM were elaborated on a GIS 
platform and then they were normalized with fuzzy functions (Cox, 1993; 
Zimmermann, 1987) on the basis of the information given by experts of the agro-
energetic sector (table 1). 

 



30 Iacopo Bernetti, Christian Ciampi, Sandro Sacchelli 

Table 1. Utilized Indicators in the model FMADM 

Indicator Description Elaboration Membership 
functions 

Rurality Index (R) It defines the potential 
easiness of wood bio-fuel 
supplying at a local scale. 
 

It is calculated as 
the percentage of 
the agro-forest 
land with a Density 
index having a 
radius of 175 m 
around the 
settlement element. 

 

House density 
(Hd) 

It defines the economic-
logistic suitability for the 
creation of a district-
heating plant. 
 

It is calculated 
with a Density 
index having a 
radius from the 
buildings of 75 m, 
around the 
settlement element. 

 

Road distance 
(Rd) 

It defines the access 
suitability to the plant, in 
terms of supplying costs 
of the raw material and of 
the CFP of the productive 
process. 
 

It is calculated 
with a distance 
from the major and 
minor roads. 

 

 

The aggregation of the fuzzy criteria was done on the basis of two different 
techniques: one for the towns and the residential complexes and one for the 
scattered houses. 

The following aggregation was applied for the towns and the residential 
complexes: 

  I tr
j = 1+R j

2  (1) 

with Itr being the suitability for the localization of the district heating plant j 
within the town or the residential complex and R being the rural index.  

The following formula was applied for the scattered houses: 

 ( )
2

jjj
j

sh
R+Rd,Hdmin=I  (2) 

with Ish being the suitability for the localization of the district heating plant j 
within the house cluster, Hd is the house density, Rd being road distance and R is 
the rural index. 
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The MILP step 

The objective of MILP model is to minimize CFP within the boundary of 
each REC. The model structure is the following: 

MIN ∑
j=1

m

∑
i= 1

n

t i,j X i,j   (3) 

s.t  
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0,1

   1
1

1 1

 (4) 

 

with: Yj, being the district heating location; Xi,j, being the raster location of 
biomass source obtained from the regional forest inventory as data point 
representing 1 Km2 of land and allocated to district heating j; dj, being demand of 
biomass from district heating j; pi being the supply of biomass from source i; ti,j, 
being the carbon emission in full life cycle of biomass process (harvest + 
transportation) from source i to district heating j, calculated through a GIS cost 
surface procedure. 

RESULTS AND DISCUSSION 

The SKATER step 

Figure 3 shows the results of the SKATER procedure in terms of the average 
value of the utilized indicators. From the analysis of the figure, it is possible to 
highlight that, among the ten obtained regions (R1, R2, …R10), the allocation of 
the agro-forest land shows greater values than the average value for the Province of 
Florence for: a) the arable land area in the R1, R5, R6, R8 and R10; b) the 
permanent crops in the R1, R3, R4, R7 and R10 and c) the woods in the R2, R5, R8 
and R9. The availability of traditional timber assortments (other biomass) is 
directly linked with the wood area, while the wood splinter productive potentiality 
shows a tight correlation with the permanent crops areas. Thus, thanks to the 
clustering deriving from the SKATER analysis, it is possible to distinguish the 
territorial peculiarities of each region; for instance, the areas characterized by a 
high forest relevance (R9) and the ones in which the permanent crops are 
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important, both in terms of cultivated area (R3 e R4) and of employment linked to 
the sector (R4). 

 
Figure 3. SKATER results 
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The FMADM step 

The application of the FMADM model allowed the evaluation of the 
efficiency of the possible localizations of new plants. From the analysis of table 2, 
it is possible to highlight how the greater number of plants belongs to the medium-
low, zero and low classes; these turn to be mainly the scattered houses, which is the 
least suitable settlement typology for the installation of district heating plants. For 
this reason, in order to optimize the agro-energetic planning process linked to the 
minimization of the CFP, the selected plants for the development of the MILP 
models are the ones with a highest possible efficiency.  
Table 2. FMADM results 

Efficiency 
class 

Total 
plants 

% 
scattered 
houses 

% Towns 
and 

residential 
complexes 

Total 
energetic 

requirement 
(MWh/year) 

Potential installing 
power (MW) 

0 5,887 90.8 9.2 7,876,097 4,653 
0.01 - 0.25 2,441 97.5 2.5 554,842 267 
0.26 - 0.5 7,454 99.5 0.5 1,245,963 619 

0.51 - 0.75 33 3 97 98,656 28 
0.76 - 1 187 0 100 302,612 156 

In order to identify the localizations of new district-heating plants for the 
planning of the supply chain in every single REC, the district-heating localization 
in each REC has been ranked. Then, the localizations have been selected in order 
of decreasing efficiency until the biomass requirement (demand) came out to be 
equal to the annual yield (supply), considering also the sustainability of a wood 
ecological conservation. The results of the selection of each REC are showed in 
figure 4. 

 

 
Figure 4. FMADM selection results 
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The MILP step 

The most direct and immediate result of the adopted procedure is the 
possibility of planning with an high territorial degree an energetic supplying of the 
district heating plants in the REC, thus minimizing the environmental impact in 
terms of carbon dioxide emission. 

By aggregating the results obtained from the 10 MILP models, it is possible 
to evaluate the global impact of the district-heating energy plan in the Province of 
Florence. As it is showed in figure 5, the optimization of the supply chain with the 
use of operational research methods allows the achievement of moderate CFP. In 
fact (see table in figure 5), the median of the transport distance is about 3 
kilometers, with an interval between the first and the fourth quartile included 
between 2.7 and 4.5. The distribution of the frequency shows how values grater 
than 10 kilometers are rare. In addition, by examining the scatter plot between 
carbon footprint and power of district heating plant, it is possible to notice how the 
adopted procedure allows the achievement of limited distance of transportation 
values, also in the case of high power installations. 

 

 

Mean Distance for supply (m) 

1st Qu. Median Mean 3rd Qu. Max. 

1053 2661 3124 4500 19090 

 
Figure 5. CFP data by district-heating implant 

By examining figure 6, which shows the previously explained elaboration 
for each REC, it is possible to notice how the lower CFP is obtained in REC 1 
(Florence), 2 (Fiesole and the hills surrounding Florence), 6, 7 (hills of Vinci) and 
10, corresponding to localizations characterized by a supplying based on the 
vineyards and olive growing pruning, which are generally close to the most 
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suitable localizations for the rural district-heating plants. Worse results are evident 
for REC 5 and 9, characterized by a supplying based on forest resources often far 
from the towns. 
 

Figure 6. Carbon footprint by district-heating plant and by REC 

CONCLUSIONS 

When assessing simultaneous potential locations for energy facilities the 
location–allocation problem has to be solved in order to tackle resources 
competition among facilities. A multi-step procedure combined with GIS-based 
approach seems to be effective for selecting suitable energy facilities location. 
Addressing the problem through a convenient approach is fundamental to define 
facilities location as the optimal sites can vary in function of resources competition 
and environmental impact, evaluated through the carbon footprint concept. 

The quantity and heterogeneity of the input data and the need for a structured 
analysis of the information make essential the need of integrated tools to assess the 
problem.  

Further efforts have to be done to integrate software tools and data 
processing. The developed approach allows the planning of district-heating supply 
chain and select best energy facilities locations based on minimization of carbon 
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footprint. Nevertheless, other models belonging to the logistic structure are being 
investigated, considering not only carbon footprint minimization but also 
environmental and social constraints. 
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Abstract: The aim of the paper is to show the relationship between the value 
of Japanese yen and the investors’ risk aversion. The correlation results from 
the application of carry trade strategies by investors. An increase in carry 
trade positions is associated with the decrease in risk aversion. The Japanese 
yen is one of the most popular carry trade funding currency and therefore the 
change in the value of this currency reflects the change in the investors’ 
mood. This paper shows that there is a negative relationship between the 
USD/JPY and the risk aversion measured by volatility index (VIX).  

Keywords: risk aversion, USD/JPY market, volatility index VIX 

INTRODUCTION 

During last years the carry trade phenomenon has started to be one of the 
main feature of the present financial markets. This strategy is based on borrowing 
in low interest yielding currency and using the funds to invest in high interest rate 
currencies [Fong, 2010]. In this way the investors obtain the money in the country 
where interest rates are low and then invest the capital in bonds, shares or 
commodities markets in the country with higher interest rates. This trading strategy 
can exhibit a favourable payoff but the risk involved in it is high. A carry traders 
are associated with the investors of low aversion towards risk. It is believed that the 
carry traders’ activity on the market is going up when the level of investors’ risk 
aversion is decreasing. Carry trade is applied by hedge funds, pension funds, 
investment banks, other financial institution and individual investors [Gagnon at 
al., 2007]. As a result the change in investors’ involvement in this strategy has 
a huge impact on the price movements on the currency market. Japanese yen is one 
of the most popular carry trade funding currency and consequently the change in 
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the value of this currency is likely to reflect the fluctuations in the investors’ 
attitude towards risk. The growth in investors’ risk aversion brings about the 
unwinding of carry trades [Brunnermeier at al., 2008]. It means that the investors 
start to withdraw their capital from the country of high interest rate and then buy 
Japanese yen to discharge a debt. Following, an increase in demand on the 
Japanese currency leads to the yen appreciation.  

The aim of this paper is to investigate the relationship between the Japanese 
Yen exchange rate (USD/JPY) and the investor’s risk aversion measured by the 
S&P500 option implied volatility index (VIX). It is shown that during the time in 
which the VIX decreases the Japanese yen depreciates. However, when there is 
unease on the market and when the risk aversion measured by VIX goes up then 
the Japanese currency appreciates. This articles studies the link between USD/JPY 
and volatility index VIX. By using the Autoregressive Conditional 
Heteroscedasticity (ARCH) model it provides evidence of negative relationship 
between the analyzed data. The data set used in research covers the period from 
January 2006 to February 2009. 

THE IMPACT OF CARRY TRADE ON THE VALUE OF JAPANESE 
YEN 

There is several factors which have a crucial impact on the price movement 
on the currency market. Some of the most important are inflation rates, interest 
rates, change in a country’s price competitiveness, balance of payments and the 
economic growth of the country. The article shows that the currency exchange rate 
can be also significantly influenced by a change in the level of investor’s risk 
aversion. The driving force behind it is the implementation of carry trade strategies 
by the investors. This paper is focused on the Japanese yen which is a prominent 
funding currency in carry trade. Japanese Yen is a funding currency for overseas 
investments because of prolonged low-interest rate policy of the Bank of Japan. In 
order to describe the relationship between value of the yen and the level of 
investors’ risk aversion the author scrutinizes the USD/JPY market volatility and 
the change in investors’ risk aversion measured by volatility index VIX. 

Before the financial crisis of 21st century Japan enjoyed rapid economic 
growth. However, the Japanese currency was constantly depreciating, which means 
that the rate USD/JPY was going up. Between May 2006 and July 2007 the level of 
USD/JPY went up from 109,67 to 123,86 (Graph 1). It means that the yen 
depreciated 12,5 per cent against the U.S. dollar. There was several factors which 
had a crucial impact on the yen depreciation. For instance, the yen decrease in 
value was caused by the reduction in the share of yen-denominated assets held by 
the central banks. However, undoubtedly the depreciation of Japanese yen was 
exacerbated by the carry trade. The high investors’ involvement in the carry trade 
led to an outflow of speculative investment from Japan [Winters, 2008]. Moreover, 
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the carry traders activities contributed to the significant increase in supply of yen 
which also had a profound impact on the yen depreciation. The situation has 
changed when the sub-prime mortgage crisis began.  

 
Graph 1. USD/JPY market between January 2006 and February 2009 

 
Source: data - Reuters Information Agency 
 

 
The collapse of U.S. sub-prime mortgage market had a ripple effect around 

the world. The global financial crisis of 21st century had a negative impact on the 
stock market. Many financial institution collapsed or were bought up. Because of 
the financial crisis of 21st century the market participants became more averse to 
risk. The carry traders simultaneously started to withdraw their funds and then buy 
Japanese yen to pay off a debt. It brought about the impressive increase of demand 
on the yen. Between July 2007 and February 2009 the level of USD/JPY went 
down from 123,86 to 87,32 (Graph 1). The Japanese currency became stronger 
although there were no sufficient fundamental reasons for it. It indicates that the 
carry trade accounts for the important factor which influences the value of Japanese 
yen.  

THE RELATIONSHIP BETWEEN THE LEVEL OF INVESTORS’ RISK 
AVERSION AND THE USD/JPY EXCHANGE RATE 

The investors’ risk aversion can be measured by the Chicago Board Options 
Exchange (CBOE) S&P 500 options implied volatility index (VIX) [Coudert at al., 
2008]. It reflects the investors’ expectations on future market volatility. The VIX 
value greater than 30 is associated with a high risk aversion among the market 
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participants. The table below provides descriptive statistics of VIX before and 
during the financial crisis. The calculation is based on daily data and covers the 
period from January 2006 to February 2009. 

 
Table 1. Descriptive statistics of VIX before and during the financial crisis of 21st century 

  01.2006-07.2007 08.2007-02.2009 
mean 13,13 31,24 

standard deviation 2,44 14,57 
maximum 24,17 80,86 
minimum 9,89 16,12 
kurtosis 2,49 0,93 

skewness 1,41 1,39 
coefficient of variation 0,19 0,47 

Source: data - Reuters Information Agency 
 

Both mean value and the standard deviation of the VIX have increased 
during the second period (08.2007-02.2009). It implies that during the financial 
crisis of 21st century the volatility on the market have increased significantly. 
Moreover, one may presume that between 08.2007 and 02.2009 the investors’ 
aversion to risk swelled considerably. The maximum value of VIX was 80,86 in 
comparison to the first period when it was just 24,27.  

Based on the VIX descriptive statistics and the graphs of USDJPY one may 
assume that there is a positive relationship between the value of the Japanese 
currency and the level of investor’s risk aversion. Thereby, there is negative 
association between USD/JPY and the VIX. When the investor’s aversion towards 
risk is going up, the yen is appreciating which means the USD/JPY exchange rate 
is decreasing. Moreover, it is shown that this relationship became even stronger 
during the financial crisis of 21st century. The table below presents the Spearman’s 
rank correlation coefficient between USD/JPY and the Volatility Index VIX. The 
calculation is based on the daily data and covers the period from January 2006 
to February 2009. Spearman rank correlation coefficient is a non-parametric 
statistic and thus can be used when the data have violated parametric assumptions 
such as non-normally distributed data [Field A., 2005]. Moreover, it is a better 
indicator than Pearson’s correlation coefficient when the relationship between two 
variables is non-linear. Taking into account the features of the analyzed data, the 
Spearman’s rank correlation can be used for an initial analysis of the relationship 
between USD/JPY and VIX. 
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Table 2. The Spearman’s rank correlation coefficient between USD/JPY and the VIX 

  01.2006-07.2007 08.2007-02.2009 
Spearman rank correlation coefficient -0,12 -0,64 

p-value 0,0118 0,0000 
 

Source: data - Reuters Information Agency 
 

The figures in the table suggest that there is the significant relationship 
between these two variables. The correlation itself is negative. When the USD/JPY 
exchange rate goes up, the Volatility Index (VIX) decreases. Additionally, the 
correlation between USD/JPY and VIX is substantially stronger from August 2007 
to February 2009 (-0,64 versus -0,12). 
 

THE APPLICATION OF ARCH MODEL 

This paper adopts Autoregressive Conditional Heteroscedasticity (ARCH) 
model to explore the relationship between USD/JPY and VIX. The ARCH model 
was introduced by Engle (1982). This model is chosen mainly because it provides 
a way to solve the problem of heteroscedasticity. The volatility of USD/JPY is 
affected by change in investors’ risk aversion. Therefore, the model additionally 
consists of the independent variable which expresses the investors’ mood. The data 
series embrace daily closing values of USD/JPY and daily values of Volatility 
Index VIX. The daily series are generated from the following equation. 
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Where ln is the natural logarithm operator, t the time period, y is the 
outcome variable and x the independent variable. The data cover the period from 
January 2006 to February 2009. Both series are found to be stationary which was 
checked by the Augmented Dickey-Fuller unit root test (ADF). The graph below 
present fluctuations of the dependent variable y (left side) and independent variable 
x (right side) in the analysed time. 
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Graph 2.  The volatility of dependent variable y and independent variable x 

  
Source: data - Reuters Information Agency 
 
The general form of ARCH is [Hughes at al., 2004 and Trzpiot, 2010]: 
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Where ty  is the dependent variable, tx  is a 1×k  vector of independent 
variables, tε  is the disturbance term, tξ  is the white noise process (with 

0)( =tE ξ  and 1)( 2 =tE ξ ), 2
tσ  is the conditional variance, 

),...,,,( 10 ′′= qαααβθ  is the vector of unknown parameters and q is the order of 
the ARCH model. By the time the unknown parameters are estimated the test for 
ARCH effects is carried out. The Lagrange Multiplier (LM) Test is applied to 
check the existence of ARCH effects. The null hypothesis is 

qH αααα ==== ...: 2100 . The null hypothesis means that the ARCH effect 
does not exist. To verify this hypothesis the test statistics (LM) and the critical 
value ( )(2 qχ ) are estimated for the q (order of ARCH) for 1, 5, 10, 15 lags. The 
results are presented in the table below. 
 
Table 3. The Lagrange Multiplier Test’s results 

 LM p-value 
q = 1 16,1548 0,0000 
q = 5 54,2893 0,0000 
q = 10 60,7871 0,0000 
q = 15 110,837 0,0000 

Source: data - Reuters Information Agency 
 

The LM test for ARCH(1), ARCH(5), ARCH(10) and ARCH(15) errors 
confirm the presence of ARCH effects in the analyzed data. The p-value 
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( ))(( 2 LMqP >χ ) is less than the required significance level which means that 
the null hypothesis is rejected.  

Further, the investigation if the VIX has any explanatory power for 
USD/JPY exchange rate is carried out. The model is estimated and evaluated using 
daily data (variable x and variable y computed like in equations 1 and 2). The 
sample covers the period 02.01.2006 – 27.02.2009 which corresponds to 825 daily 
observations. The table below presents the results for ARCH(1) and ARCH(2). The 
ARCH(q) with q larger than 2 do not fulfil all requirements (e. g. the significance 
of all parameters) that is why they are not included in the Table 4.  
 
Table 4. ARCH(1) and ARCH(2) models 

 ARCH(1) ARCH(2) 
β1 -0,04324** -0,04064** 
α0 0,00003** 0,00003** 
α1 0,27066* 0,16423** 
α2  0,17506* 

Akaike’s Information Criterion (AIC) -5934,06 -5964,08 
Schwarz Criterion (SC) -5915,17 -5940,51 

       *significant at the 0,05 level  **at the 0,01 level 
Source: data - Reuters Information Agency 
 

In order to select the most appropriate model the Akaike’s Information 
Criterion and the Schwarz Criterion are used. The lower the value of AIC and SC 
the better the model is. On the basis of Akaike’s Information Criterion (AIC) and 
Schwarz Criterion (SC), the model ARCH(2) is chosen (Table 4). On the basis of 
equations 1 through 5, the form of ARCH(2) is written as: 
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The coefficient β1 is negative and significant. Therefore, the results show 
that there is a statistically significant relationship between USD/JPY exchange rate 
and the Volatility Index VIX. At the same time, the outcomes indicate that the 
association between the value of Japanese yen and the level of investors’ risk 
aversion exists. The negative coefficient β1 suggests that when there is an increase 
in risk aversion among investors then the USD/JPY exchange rate decreases. 
Consequently, the growth of risk aversion brings about the appreciation of the 
Japanese currency.  As a result, the change in investor’s mood is observed in the 
USD/JPY market.  
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The volatility in the Japanese yen market reflects the change in investors’ 
risk aversion. When the market expands, share prices increase, the investors have 
positive attitude towards risk then one can expect the depreciation of Japanese yen. 
However, when stock market crashes, the financial market is hit by crisis of 
confidence, investor’s risk aversion is rising a drop of USD/JPY exchange rate 
follows. 

CONCLUSIONS  

1. There is statistically significant relationship between USD/JPY exchange rate 
and the Volatility Index VIX. The negative coefficient β1 suggests that when 
there is growth in investors’ risk aversion then the USD/JPY exchange rate is 
decreasing.  

2. During the financial crisis of 21st century the volatility in the market increased 
significantly. Between August 2007 and February 2009 investors’ aversion to 
risk increased considerably. The maximum value of VIX was 80,86 in 
comparison to the time before the financial crisis (01.2006-07.2007) when the 
maximum value of the VIX was just 24,27. Moreover, the relationship between 
USD/JPY and VIX is substantially stronger during the financial crisis. 

3. The yen market reflects the change in investor’s attitude towards risk. The 
USD/JPY exchange rate is decreasing when there is an increase in investors’ 
risk aversion. On the other hand, the Japanese currency depreciates when 
investors’ attitude towards risk is positive.  

REFERENCES 

Brunnermeier M. K., Nagel S., Pedersen L., Carry trades and currency crashes, NBER 
Working Paper Series, November 2008, p. 24. 

Coudert V., Gex M., Does risk aversion drive financial crisis? Testing the predictive power 
of empirical indicators, Journal of Empirical Finance, no 15, 2008,  p. 168. 

Engle R. F., (1982), Autoregressive Conditional Heteroscedasticity with Estimates of the 
Variance of United Kingdom Inflations, Econometrica, v50(4), p. 987-1008.  

Field A., Discovering Statistics Using SPSS, SAGE Publications 2005, p. 129. 
Fong W. M., A stochastic dominance analysis of yen carry trades, Journal of Banking & 

Finance, no 34, 2010, p. 1237. 
Gagnon J. E., Chaboud A. P., What can the data tell us about carry trades in Japanese Yen?, 

International Finance Discussion Papers, no 899, 2007, p.2. 
Hughes A., King M., Kwek K., Selecting the order of an ARCH model, Economics Letters, 

no 83, 2004, p. 269. 
Trzpiot G., Wielowymiarowe metody statystyczne w analizie ryzyka inwestycyjnego, 

Polskie Wydawnictwo Ekonomiczne, Warszawa 2010, p. 165. 
Winters C., The Carry Trade, Portfolio Diversification, and the Adjustment of the Japanese 

Yen, Discussion Paper, Bank of Canada 2008, p. 7. 



QUANTITATIVE METHODS IN ECONOMICS 
Vol. XI, No. 1, 2010, pp. 45-59 

RADAR MEASURES OF STRUCTURES’ CONFORMABILITY 

Zbigniew Binderman, Bolesław Borkowski 
Department of  Econometrics and Statistics, Warsaw University of Live Sciences 

Wiesław Szczesny 
Department of Informatics, Warsaw University of Live Sciences 

e-mails: zbigniew_binderman@sggw.pl;boleslaw_borkowski@sggw.pl, 
wieslaw_szczesny@sggw.pl 

 

Abstract: In the following work a new method was proposed to study 
similarity of objects’ structures. This method is an adaptation of radar 
methods of objects’ ordering and cluster analysis, which are being developed 
by the authors. The value added by the authors is the construction of 
measures for conformability of structures of two objects. Those measures 
may also be used to define similarities between given objects. Proposed 
measures are independent of the order of features. 

Key words: radar method, radar measure of conformability, measure of 
similarity, synthetic measures, classification, cluster analysis. 

INTRODUCTION 

Authors have for many years been researching into the problem of regional 
measurement of differentiation of agriculture in both dynamic and static aspects 
[Binderman, Borkowski, Szczesny 2008, 2009a, 2009b, 2010; Borkowski, 
Szczesny 2002]. In economic-agricultural research based on empirical data almost 
invariably there is a need of ordering, classification and clustering of homesteads, 
objects (units) of a multidimensional space of variables. Study of regional 
differentiation of agriculture is crucial now because of EU’s politic of 
regionalization of allocation of funds. Presently, there are many methods used for 
classification and clustering of objects [Gatnar, Walesiak 2009, Hellwig 1968, 
Kukuła 2000, Malina 2004, Młodak 2006, Pociecha 2009, Strahl 1990, Zeliaś 
2000]. 

Dynamic analysis of regional differentiation of agriculture based on a single 
feature was the common ground of those studies. Key differences in evaluation of 
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similarity or spatial differentiation of agriculture formed by different authors using 
different measurement methods were apparent. Methods of measuring 
conformability (differentiation) of structures in a dynamic aspect were seldom used 
in economic-agricultural research. The basis of comparative analysis of structures 
is a set of m spatial units (in our scenario voivodeships) characterized by n features. 
The problem of examining structures’ conformability is present in numerous 
scientific publications, e.g. [Binderman, Borkowski, Szczesny 2008, Binderman, 
Szczesny 2009, Ciok, Kowalczyk, Pleszczyńska, Szczesny 1995, Kukuła 2000, 
2010, Ostasiewicz 1999]. In order to compare structures different methods are 
used, depending on the goals of research, possibility of evaluation, interpretation of 
analysis results and desired algebraic and statistical properties. Many methods are 
constructed intuitively, based on graphical analysis. Radar methods, which are used 
to display objects defined by a number of features, are an example of such 
methods. Synthetic index is constructed based on the area of a polygon which is 
used to illustrate objects in question. This method is simple and intuitive but has a 
serious flaw because the field value is dependent on the order of features. Our 
research is aimed at eliminating this flaw. Several proposed indices without this 
flaw are presented in [Binderman, Borkowski, Szczesny 2008] and [Binderman, 
Szczesny 2009]. In this work we present a manner in which the idea of measures 
based on the area of a polygon may be used to measure the conformability of two 
structures. This manner creates opportunities of using those measures to compare 
agricultural regions, which are characterized by many features. The use of methods 
given in this work is included in the article [Binderman, Borkowski, Szczesny 
2010]. For entire collection of the conformability of two structures see [Grabiński, 
Wydymus, Zeliaś 1989, Kukuła 1989, 2010, Malina 2004, Strahl 1985, 1996, 
Walesiak 1983, 1984]. 

CONSTRUCTION OF RADAR MEASURES OF CONFORMABILITY 

In their previous works authors used radar methods to order and classify 
objects [Binderman, Borkowski, Szczesny 2008, 2009, 2009a, 2010, Binderman, 
Szczesny 2009, Binderman 2009, 2009a]. Those methods are independent of the 
manner of ordering of features that describe a given object. In this work authors 
attempted to adapt radar methods to compare structures of given objects. Methods 
presented below may seem to be complicated in terms of calculations. However, 
with the beginning of the digital age that became inconsequential. Moreover, 
software to perform calculations for those methods is being developed. 
Let Q and R be two objects described by sets of values of n (n > 2) features. We 
assume that objects Q,R are described by two vectors ,n

+∈ℜx, y where 

1 2 1 2
1 1

1 20 and 1 1
n n

n n i i i i
i i

i nx x x y y y x y x y
= =

== = ≥ = =∑ ∑x y , , ...,( , ,..., ), ( , ,..., ); , ; , .  
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For a geometric representation of the method we inscribe a regular n-gon into a 
unit circle (with a radius of one) centered at the origin in the polar coordinate 
system and connect the vertices of the polygon with the origin. Obtained line-
segments with a length of one will be named, in sequence, O1, O2, …, On, for 
definiteness, beginning with the line-segment covering the w axis. Let’s assume 
that at least two coordinates of each of the vectors x, y are nonzero. As features of 
objects x and y take on a value between 0 and 1, meaning 

0≤x≤1≡0≤xi≤1, 0≤y≤1≡0≤yi≤1, i=1,2,...n, where 0=(0,0,...,0), 1=(1,1,...,1), 

it is possible to represent those values on a radar chart. To do this let xi (yi) denote 
points of intersections of axes Oi with circles centered at the origin of the 
coordinate system with a radius of xi (yi), i=1,2,...,n. By connecting points x1 with 
x2, x2 with x3, ..., xn with x1 (y1 with y2, y2 with y3, ..., yn with y1) we obtain n-gons 
SQ and SR, which areas  ⎢SQ⎢, ⎢SR⎢ are given by 
 

i i 1 i i 1 n 1 1

i i 1 i i 1 n 1 1

n n

Q
i 1 i 1
n n

R
i 1 i 1

2 2
:

n n

2 2
:

n n

1
2

1
2

1S sin sin , where ,2

1S sin sin , where .2

x x x x x

y y y y y

S x

S y

+ + +

+ + +

= =

= =

π π
= =

π π
= =

= =

= =

∑ ∑

∑ ∑

x

y

 

 
The following graph gives an illustration for vectors: 
 

1 1 1 1 3 3 1 3 1 1 3
8 8 8 16 16 16 16 16 16 16 16

8, ,..., , , , , , , ,( ), ( ), .n= = = =1x y8  
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Illustration 1. Radar charts for vectors x and y 
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Source: our investigation 

 
Given such a graphical illustration, each of the objects Q and R is defined by a 
polygon of vertices Q1,Q2,…,Qn and R1, R2,…,Rn, respectively. In a Cartesian 
coordinate system those points take on coordinates Qi(si,ti), Ri(wi,zi), i=1,2,…,n; 
where 

21 1 2

cos , sin , cos , sin ,

( ) , , ,..., .

i i i i i i i i i i i i

i

s x t x w y z y

i i nn

= ϕ = ϕ = ϕ = ϕ
πϕ = − =

 

Let us denote the areas set by vectors x and y (describing objects Q and R) by Sx 
and Sy, respectively, and their intersection by: 

:S S S∩ = ∩x y x y  
Let us consider one segment of the area ,iS ∩ − Πx y  contained within an angle 

2 2 1( )
,[ ]i i

n n
π π +

. The following, mutually exclusive cases are possible: 

1. 1 1 1 10 0 0 0,i i i i i i i iy x x y x y y x+ + + +> > > > > > > >∨ ∧∧   
2. 1 1 1 10 0 0 0,i i i i i i i iy x x y x y y x+ + + += > > > = > > >∧ ∨ ∧  
3. 1 1 1 10 0 0 0,i i i i i i i ix y x y x y y x+ + + += > > > = > > >∧ ∧∨  
4. 1 10 0,i i i iy x x y+ += > = >∧  
5. 1 1 1 10 0 0 0,i i i i i i i ix y x y y x y x+ + + +> > > > > > > >∧ ∨ ∧  
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xi

u

v

 yi

xi+1 

yi+1

0

xi=yi

u

v

xi+1=yi+1

0

xi

u

v

 yi

xi+1=yi+1

0

xi=yi

u

v

 

xi+1 

yi+1

0

6. Product of coordinates 1 1 0i i i ix y x y+ + = . 
Below we provided representative cases of the above possible situations, 
linked with the manner of application of the equations. 
 
Illustration 2. Graphical representation of possible cases. 
 

  

1. 1 10 0i i i iy x x y+ +> > > >∧  2. 1 10 0i i i iy x x y+ += > > >∧  

  

3. 1 1 0 0i i i ix y x y+ += > > >∧  4.  1 10 0,i i i iy x x y+ += > = >∧  
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yi

u

v

 xi

xi+1 

yi+1

0
xi=0 u

v

 yi

xi+1 

yi+1

  

5. 1 10 0i i i ix y x y+ +> > > >∧  6. 0ix =  

Source: own investigation 
 
Let us consider the first case when one of the segments of the area ,iS P∩ −x y  is a 
quadrilateral, given by the origin of the coordinate system O(0, 0) and points Qi, 
Ri+1, which satisfies our assumption that 0<xi<yi, 0<yi+1<xi+1 (see illus. 3) 
i∈{1,2,…,n}.  
 
Illustration 3. Illustration of case: 0<xi<yi, 0<yi+1<xi+1. 

Qi

u

v

 Ri

Qi+1 

Ri+1

0

Ai

Bi

Pi(ui,vi)

Sx

Sy

Source: own investigation 
 
Area P consists of two triangles Ai and Bi. Value of the area of triangle Ai is 

defined as 1
1 2
2 sini i iA x y n+

π= . Thus, to calculate the area of the quadrilateral 

Si:=OQiPiRi+1 we must find the value of the area of triangle Bi. In order to do this 
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we notice that the line containing points Ri(wi,zi) and Ri+1(wi+1,zi+1) is described by 
the equation: 

1 1
0i i

i i i i

u w v z
w w z z+ +

− −⎛ ⎞
=⎜ ⎟− −⎝ ⎠

 

Whereas the line containing points Qi(si,ti) i Qi+1(si+1,ti+1) is described by the 
equality: 

1 1
0.i i

i i i i

u s v t
s s t t+ +

− −⎛ ⎞
=⎜ ⎟− −⎝ ⎠

 

Coordinates of point Pi(ui,vi), which is the point of intersection between the above 
lines, are the solution to the following system of equations:  

1 1 1 1

1 1 1 1

( ) ( ) ,
( ) ( ) .

i i i i i i i i

i i i i i i i i

z z u w w v w z z w
t t u s s v s t s t
+ + + +

+ + + +

− − − = −
− − − = −  

The solutions can be described using Cramer’s rule as follows: 
1 1

1 1

1 1 1 1 1 1

1 1 1 1 1 1

where W=

W = W =

i ii iu v
i i

i ii i

i i i i i ii i i i i i
u v

i i i i i ii i i i i i

z z w wW Wu vW W t t s s

w z z w w w z z w z z w
s t s t s s t t s t s t

+ +

+ +

+ + + + + +

+ + + + + +

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− −
= =

− −

− − − −
− − − −

, , ,

, .

 

Let us notice that a line containing two points Qi(si,ti) i Ri+1(wi+1,zi+1) can be 
described by the equation: 

1 1
0,i i

i i i i

u s v t
w s z t+ +

− −⎛ ⎞
=⎜ ⎟− −⎝ ⎠

 

 
which is identical to 1 1 1 1 0( ) ( ) .i i i i i i i iz t u w s v z s w t+ + + +− − − − + =  
The distance h between point Pi(ui,vi) and line containing points Qi(si,ti) and 
Ri+1(wi+1,zi+1) is determined by the equality: 
 

1 1 1 1 1 1 1 1

2 2
2 21 1

1 1
22

( ) ( ) ( ) ( )

( ) ( ) cos

i i i i i i i i i i i i i i i i i i i i
i

i i i i
i i i i

z t u w s v z s w t z t u w s v z s w t
h

z t w s y x x y n

+ + + + + + + +

+ +
+ +

− − − − + − − − − +
= =

π− + − + −

We utilize the cosine rule to calculate the length of ai, a line-segment 
between points Qi(si,ti) and Ri+1(wi+1,zi+1) 

2 2
1 1

22 cosi i i i ia y x x y n+ +
π= + −  

Thus, we obtain that the area of the triangle Bi is equal to: 
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1 1 1 1
1 1
2 2 ( ) ( )i i i i i i i i i i i i iB a h z t u w s v z s w t+ + + += = − − − − +  

and so the area of quadrilateral Si is described by the equality: 

1 1 1 1 1
1 2 1
2 2sin ( ) ( ) .i i i i i i i i i i i i i i iS A B x y z t u w s v z s w tn+ + + + +

π= + = + − − − − +  

In a similar manner one can obtain the area of segment Si which is a quadrilateral 
given by the origin of the coordinate system O(0, 0) and points Qi+1, Ri, what 
corresponds with the assumption that 0<yi<xi, 0<xi+1<yi+1 i∈{1,2,…,n}. 
In the case of 1 1 1 10 oraz 0 0 oraz 0{ }i i i i i i i ix y x y x y x y+ + + += > > = > >  segment 
Si is a triangle with an area described by the equality: 

1 1 1
1 2 1 2
2 2i i i i i i i in n

S x x y S x x y+ + +
π π= =sin min sin min( , ) { ( , )}.  

In the case of 1 1 1 10 oraz 0 0 oraz 0{ }i i i i i i i ix y x y y x y x+ + + +> > > > > > > >  
Segment Si is a triangle with an area described by the equality: 

1 1
1 2 1 2
2 2i i i i i iS y y S x xn n+ +

π π= =sin sin{ }.  
In the case of 1 1 0i i i ix y x y+ + =  segment  Si  is a line-segment or a point and its area 
is equal to 0: 0.iS =  
The area of the intersection of polygons Sx and Sy is described by the equality: 

1
.

n

i
i

S S S
=

∩ =∑x y  

Let us assume µxy as a measure of conformability of structures of two objects Q 
and R induced by vectors x and y. thus: 

for 3

for 4

(1)

S S
n

S S
n

∩
=σ

∩
≥ω

⎧
⎪
⎪⎪μ = ⎨
⎪
⎪
⎪⎩

x y

xy

xy

x y

xy

 

 
gdy 0 gdy 0

1 gdy 0 1 gdy 0
where

S S S S S S S S

S S S S

> >

= =

⎧ ⎧
⎪ ⎪σ = ω =⎨ ⎨
⎪ ⎪⎩ ⎩

x y x y x y x y

xy xy
x y x y

min( , ) max( , )
: , : .  

Let us notice that the above measure of conformability satisfies 0≤μx.y≤1 and is 
dependent on the order of features [Binderman, Borkowski, Szczesny 2008]. 



Radar measures of structures conformability 53 

In order to define a measure of conformability which is independent of the order of 
features let us denote by pj a j-th permutation of numbers 1, 2, …, n. There are n! 
such permutations. Each permutation corresponds to a permutation of coordinates 
of vectors x and y. Let xj, yj denote the j-th permutation of coordinates of vectors x 
and y accordingly, where x1=x and y1=y. E.g. if n=3, x=(x1,x2,x3), y=(y1,y2,y3) and 
p1=(1,2,3), p2=(1,3,2), p3=(2,1,3), p4=(2,3,1), p5=(3,1,2), p6=(3,2,1) then: 
x1=(x1,x2,x3), y1=(y1,y2,y3), x2=(x1,x3,x2), y2=(y1,y3,y2) x3=(x2,x1,x3), y3=(y2,y1,y3), 
x4=(x2,x3,x1), y4=(y2,y3,y1), x5=(x3,x1,x2), y5=(y3,y1,y2), x6=(x3,x2,x1), y6=(y3,y2,y1). 
Based on our previous pondering we conclude that each j-th permutation xj, yj of 
coordinates of vectors x and y corresponds to a measure of conformability of 
structures: 
 

(2)
j j

j
Q Rμ = μ x y, ,  

where, naturally, 
1
,Q Rμ =μxy . 

In accordance with the above let us define three different measures of 
conformability of considered objects Q and R: 
 

1

1

1

1

(3)

j
Q R Q Rj n

j
Q R Q Rj n

n
j

Q R Q R
jn

≤ ≤

≤ ≤

=

= μ

= μ

= μ∑

M , ,!

, ,!

!

, ,

max ,

min ,

.!

m

S

 

To compare structures of two objects 

1 2 1 2n nx x x y y y= =x y( , ,..., ), ( , ,..., ):
1 1

1 20 1 1
n n

i i i i
i i

i nx y x y
= =

=≥ = =∑ ∑, ,...,, ; ; , ,  

utilizing a popular and simple in use coefficient [Chomątowski, Sokołowski 1978] 
 

1
: min( , ) . (4)

n

i i
i

W x y
=

=∑xy  

 
In order to present the described above method of comparing structures we will 
consider three simple examples. 
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Example 1.  

Let 1 1 1 1 1
, , 0 , ,

2 2 3 3 3
Q , R .⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
x y Let the following take on values: 

1 4 2 5 3 6 1 2 3 4 5 6
1 1 1 1: : , : : ,0, , : : 0, , , : : : : :
2 2 2 2
⎛ ⎞ ⎛ ⎞= = = = = = = = = = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

x x x x x x x y y y y y y y  

 
Thus, we receive: 
 

1 2 1 1 1 2 1 1 1 2 1 1sin , 3 sin , sin ,
2 3 2 2 2 3 3 3 2 3 3 3

1 2 1 1sin 22 3 3 3 , for 1,2,...,6.1 2 1 1 3sin
2 3 2 2

i i i i

i i

S S S S

i

π π π

π

μ π

= = ∩ =

= = =

x y x y

x y

 

 

And so 
2
3Q R Q R Q Rm S= = =, , , ,M  where coefficients Q R Q R Q Rm SM , , ,, ,  are 

described by equations (3). It is worth noting that when a coefficient is described 

by the equation (4) then 
1 1 20 .
3 3 3

W = + + =xy  

The following illustrations present the considered example. 
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Illustration 4. Graphical presentation of the method for vectors 
1 1 1 1 1

, , 0 , ,
2 2 3 3 3

, .⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

x y  

( )
( )

1 4

1 4

1 1
, , 0

2 2

1 1 1
, ,

3 3 3

,= =

= =

x x

y y
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( )2 5

1 1
, 0,

2 2
: := =x x

( )52
1 1 1

, ,
3 3 3

= =y y

 

0

0,25

0,5
1

23

x2 y2

 

( )3 6

1 1
0, ,

2 2
: := =x x

( )3 6

1 1 1
, ,

3 3 3
= =y y  0

0,25

0,5
1

23

x3 y3
 

Source: own investigation 
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Example 2. 

Let 
1 1 1 1 1 1

, ,0,0 , ,
2 2 4 4 4 4

Q , R , .⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

x y  Let the following take on 

values:
1 2 3 4 5 6 7 8

1 1: : : : , : : : : , 0 , , 0 ,
2 2

⎛ ⎞= = = = = = = = ⎜ ⎟
⎝ ⎠

x x x x x x x x x  

9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24

1 1 1 1: : : : ,0,0, , : : : : 0, , ,0 , : : :
2 2 2 2

1 1 1 1: : 0,0, , , : : : : 0, ,0, , : for 1, 2,..., 24.
2 2 2 2 i i

⎛ ⎞ ⎛ ⎞= = = = = = = = = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= = = = = = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

x x x x x x x x x x x

x x x x x y y

T

hus, we receive: 
1 11 1 11 1 11sin , 4 sin , sin , 1,...,4; 1,2,...,24;
2 2 2 2 2 2 4 4 2 2 44j i j jS S S S j iπ π π= ⋅ = ⋅ ⋅ ∩ = ⋅ = =x y x y  

1 1 1sin 12 2 4 4 , for 1,2,3,4; where is defined by formula (2).1 1 1 24 sin
2 2 4 4

j j j jj

π

μ μπ

⋅
= = =

⋅
x y x y

 
It can be easily verified that 

8,9,..., 20 5,6,7,8, 21, 22, 23,24
1 , for and 0 for .
2j j j j jjμ μ == = =x y x y  

Hence 1 1
2 3Q R Q R Q R= =M , , ,, m = 0, S , where the coefficients Q R Q R Q Rm SM , , ,, ,  

are described by equations (3). In this example the coefficient of structures 
conformability is equal to: 

1 1 10 0
4 4 2

W = + + + =xy , 

where Wxy is described by the formula (4). 

The following illustrations present the considered example. 
 
Illustration 5. Graphical presentation of the method for vectors 

1 1 1 1 1 1
, , 0, 0 , ,

2 2 4 4 4 4
, , .⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
x y  
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Example 3. 

Let 
1 1 1 1 1

, , 0, 0, ..., 0 , , ...,
2 2 4

, , 4.n

n n
Q R n⎛ ⎞ ⎛ ⎞= = = = ∈ℜ ≥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
x y  It can be shown 

that 2 4
1Q R Q R Q Rn n n= = −M , , , ,( ), m = 0, S  where coefficients Q R Q R Q Rm SM , , ,, ,  
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are described by equations (3). In this example the coefficient of structures 
conformability (described by the equation (4)) takes on the value: 

1 1 2
0 ... 0 .W

n n n
= + + + + =xy  

 
SUMMARY 
This work presents a mean to study conformability of structures but it is easily seen 
that introduced norms can also be used to analyze similarity of studied objects. 
Presented radar methods create a possibility of utilizing them in decision analysis 
on a local level. Radar methods are commonly used due to the ease of visualization 
of multidimensional data. However, some analyses incorrectly employ indices 
based solely on those illustrations, meaning they do not ensure the basic 
requirement of stability of the employed method – independence of the order of 
features [Jackson 1970]. The method presented by the authors does not have that 
flaw. As complicated as the presented methods may seem, in the digital age it 
remains largely inconsequential. Even more so with software for the presented 
methods is being developed. 
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Abstract: The general objective of this research is to assess the impact of 
demographic variables on food demand in Poland. The empirical analysis of 
this paper is based on the household data, collected by GUS (Central 
Statistical Office) in the years 2001-2004 (household budget data). 
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INTRODUCTION 

During the last three decades, consumer demand analysis has moved toward 
system-wide approaches. Increasing attention has been given to the estimation of 
complete demand systems that consistently account for the interdependence in the 
choices made by consumers between a large number of commodities. Many 
algebraic specifications of demand systems have been developed, including the 
linear and quadratic expenditure systems, the Rotterdam model, Translog models 
and the Almost Ideal Demand System (AIDS) or its quadratic extension (QUAIDS) 
[Barnett, Serletis 2008].  

The objective of this study is to estimate the impact of economic factors, 
such as the prices and the expenditures, and noneconomic factors, i.e. the 
demographic variables, on household demand for eight aggregated food items in 
Poland. 

The issue analysed in this paper is particularly important in the case of the 
situation in Poland, where the single-equation approach to demand analysis 
dominates. The use of single-equation models suffers from some shortcomings, 
first of all it ignores the cross-equation restrictions implied by the neoclassical 
theory of consumer behavior. Following paper presents a struggling attempt to fill 
the gap in the literature in regard to system-wide approach to food expenditures in 
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Poland. Moreover, it emphasizes the incorporation of demographic variables in the 
analysis of food demand, which is very important due to changes demographic 
profile of consumers, i.e. the problem of aging society. As far as the author is 
concerned such research has not been conducted for the Polish household data. 

ECONOMETRIC DEMAND ANALYSIS 

The articles written by H. Working in the 1940s and C. Leser in the 1960s 
were one of the first papers on econometric demand analysis. Nonetheless, their 
significant contribution to the demand analysis was not consistent with the utility 
maximization theory. According to this theory, a sample of households behaves as 
a representative consumer who maximizes his utility function ( )u q subject to the 
budget constraint ' x=p q  where: 
q is the vector of  food demanded, = 1 2 n[q , q ,..., q ]q , 
p is the corresponding vector of prices, = 1 2 n[p , p ,..., p ]p , 
x is the total expenditures to consume q . 
By solving this maximization problem, we obtain a system of 1+n  demand 
equations specified as follows (see e.g. [Varian 1992], [Barnett, Serletis 2008]): 
 ( , )x=q q p   (1) 

The solution to the utility maximization problem yields a set of ordinary 
demand curves conditional on given prices and income. The system (1) is assumed 
to satisfy the theoretical plausibility conditions, especially adding up, homogeneity, 
symmetry and negativity1 [Edgerton et al. 1996]. 

Only coherent demand systems allow to model various consumption patterns 
and behavior sufficiently, while simultaneously satisfying restrictions given by the 
economic theory. Such examples of coherent demand system present the Linear 
Expenditure System (LES) [Stone 1954], Transcendental Logarithmic System 
[Jorgenson, Lau Stoker 1982], Almost Ideal Demand System and its quadratic 
extension [Banks et al. 1997].  

In order to illustrate the incorporation of the demographic variables the 
AIDS model (Almost Ideal Demand System) is used in this paper. It would also be 
reasonable to consider other demand systems such as QUAIDS (Quadratic Almost 
Ideal Demand System) and QES (Quadratic Expenditure System), however, 

                                                 
1 These conditions represent the basic restrictions imposed on all demand functions 

( , )i iq q x= p , i= 1, 2, .., n:  
– the adding up restriction implies that the budget x is totally used; 
– the homogeneity condition requires the demand functions to be homogeneous of degree 

zero in both prices and total expenditures;  
– the symmetry and negativity restrictions imply that the substitution matrix should be 

symmetric and negative semidefinite.  
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estimation difficulties relating to the implementation of nonlinear numerical 
procedures, which are characteristic to these models, cause that no such attempt has 
been undertaken2. Though, it appears that in order to achieve the objective of this 
paper, it is sufficient to use a simpler model such as AIDS. 

Apart from its flexibility, the main advantages of the AIDS model are as 
follows: first, it allows an exact aggregation among consumers; second, there is a 
possibility to estimate a non-linear model; third, it is a popular model because of its 
empirical validation. The general specification of the AIDS model is given by 
[Deaton, Muellbauer 1980]: 

 
1

log log( / )
n

i i ij j i
j

w p x Pα γ β
=

= + +∑      (2) 

where: 
iw  is the expenditure share associated with the ith  good, i=1, 2,…,n, 

iα  is the constant coefficient in the ith  share equation, 

ijγ  is the slope coefficient associated with the jth  good in the ith  share equation, 

jp  is the price of the jth  good,  
x  is the total expenditure on the system of goods given by the following equation: 
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=∑ , where iq  is the quantity demanded for the ith  good, 

P  is the general price index defined by: 
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In empirical studies, in order to avoid the non-linearity and reduce the multi-
colinearity effects in the model, the equation (3) is often approximated by a Stone 
index defined as [Deaton, Muellbauer 1980]: 

*

1
log log

n

i i
i

P w p
=

=∑         (4) 

Model AIDS (2) with the price index (4) instead (3) is called LA/AIDS 
model3 (Linear Approximation of the Almost Ideal Demand System).  

                                                 
2 Considering that eight expenditure groups were taken into account in the paper, the 
estimation of nonlinear models using an ordinary personal compute would be extremely 
time-consuming. 
3 The Stone index is one of a numerous of indices that could be used to define a LA/AIDS 
specification. The discussion relating to disadvantages of Stone index can be found in 
[Moschini 1995], [Asche, Wessells 1997] and [Barnett, Seck 2008]. Despite various 
shortcomings, this index is still applied in empirical researches (see e.g. [Suchecki 2006], 
[Regorsek, Erjavec 2007]. 
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In our empirical estimation the usual theoretical restrictions derived from the 
utility maximization and the demand theory are directly imposed into LA/AIDS 
parameters. These restrictions are:  

∑∑∑
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===
n

i
ij

n

i
i

n

i
i

111
0,0,1 γβα  for adding up,     (5) 

∑
=

=
n

j
ij

1
0γ  for homogeneity and,       (6) 

jiij γγ =  for symmetry.        (7) 

According to Green and Alston (1990), elasticities in LA/AIDS can be 

expressed as: 1 i
i

i

e
w
β= +  for income elasticity and * /ij ij j ij ie w wδ γ= − + +  for 

compensated4 (Hicksian) elasticity. The uncompensated (Marshallian) elasticity of 
relative expenditures on the commodity i relative to the price of commodity j is 

given as: ij j
ij ij i

i i

w
e

w w
γ

δ β= − + − , where ijδ is the Kronecker delta taking the value 1 

for ji= and 0 for ji≠  [Dudek 2008]. 

DEMOGRAPHIC VARIABLES 

There are general procedures for taking into account the demographic 
variables into classes of demand system [Pollack, Wales 1981; Ray 1983]. If we 
denote the originally demand system by iw = f( , logx)p , which depends on the 
vector of prices p  and on the total expenditures x, then: 
1) the method known as “demographic scaling” transforms it into 

i iw = m f( , logx) ⋅ p , where the m’s are scaling parameters, which depend on the 
demographic variables [Barten 1964];  
2) the procedure named “demographic translating” replaces and translates the 
original demand system iw = f( , logx)p  into i iw = d + f( , logx) p , where d is a 
parameter depending on the vector of demographic variables [Pollak, Wales 1979]; 
                                                 
4 The economic theory distinguishes two types of demand and thus the elasticities. 
Compensated (or Hicksian) elasticity derived from Hicks (compensated) demand, measures 
only the substitution effect, i.e. the change in demand due to the change in relative prices if 
the effect on real income due to the change in prices is compensated. Marshallian demand 
and elasticity considers, however, not only the substitution effect caused by the relative 
prices change, but also the income effect arising from the change in real income due to the 
change in prices. 
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3) the Gorman’s specification proposed a method that replaces the original demand 
system in the following: i i iw = d + m  f( , logx) ⋅ p , where the d’s and the m’s 
depend on the demographic variables [Gorman 1976]; 
4) the “reverse Gorman” specification can be obtained by firstly by translating, 
then scaling to yield the following demand system: i i iw = m (d  + f( , logx)⋅ p  
[Pollak, Wales 1981]; 
5) the “price scaling” technique replaces the original demand system by 

log log( ( , )),
( , ) logi

i

x mw f
m p

⎛ ⎞ ∂= +⎜ ⎟ ∂⎝ ⎠

p zp
p z

, where ( , )m p z  - the scaling factor,  z  - the 

vector of demographic variables [Ray 1983]. 
The procedures mentioned above are general in the sense that they do not 

assume a particular form of the original demand system, but can be used in 
conjunction with any complete demand system. Arranging these procedures in an 
unambiguous ranking is not possible [Pollak, Wales 1981]. First of all, some of 
them are not nested. Furthermore, their assessment depends also on the functional 
form used to estimate the demand system. Note that the estimation of some 
procedures is computationally complex, thus only one relatively simple procedure, 
“demographic translating”, was taken into account in this paper.  

LA/AIDS models, as originally proposed by Deaton and Muellbauer (1980), 
did not consider the demographic variables. However, such variables appear to be 
crucial in household survey data, in which economic responses to the price changes 
can be considerably influenced by all the sorts of personal or household effects. 
The study takes into consideration the “demographic translating” in the LA/AIDS 
model by allowing the intercept term of each equation to be a function of the 
demographic variables: 
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m
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m
= , j=1,..,K-1,   ln( )Kz m=        (9) 

where mj – a number of household members in age group j,  
m – a household size (number of household members).  
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DATA AND ESTIMATION 

The estimation is based on a sample of the household data, derived from the 
Polish Household Budget Survey5 conducted by the Central Statistical Office of 
Poland annually conducted by the Central Statistical Office of Poland. The data 
mostly come from the survey on household monthly expenditures for the years 
2001-2004, latest data is not available. Only the set of monthly prices indices was 
taken from publication Prices in the National Economy in 2001-2004.   

Generally, data derived from National Household Budget Surveys often 
causes so-called problem of “zero expenditures” due to the fact that not every 
single household adhering to the sample buy at least one commodity from each of 
the aggregated groups. The reasons for this phenomenon are following: the 
infrequency of the purchase, the seasonality of some products, the self-production 
of some commodities, etc. Accordingly, data derived from the household of 
employees6, in which the problem of “zero expenditures” was not so significant as 
in remaining groups, are only taken into account.  

The specific food commodities within the food groups used in the empirical 
analysis are: 1) bread and cereals, 2) meat and fish, 3) milk, cheese and eggs, 4) 
oils and fats, 5) fruit, 6) vegetables, 7) sugar, jam, honey, chocolate and 
confectionery, 8) other food products. For such groups the ratio of households with 
“zero expenditures” did not exceed 3%, thus the problem of the censored data was 
passed over in this study.  

The LA/AIDS model was estimated by the seemingly unrelated regression 
(SUR) technique in the STATA version 10 statistical package. The homogeneity 
and symmetry restrictions were imposed on the estimated model. To avoid 
singularity derived from adding-up constraint in the variance-covariance matrix 
one equation was deleted from direct estimation in the demand system. The 
parameters’ estimates of this equation were recovered using homogeneity, 
symmetry and adding-up conditions.  

RESULTS 

We considered demand systems with various set of the demographic 
variables. In accordance with the statistical criteria, i.e. statistical significance of 
parameters, Akaike and Schwarz information criteria, one model with two 

                                                 
5 The Household Budget Surveys data are considered superior compared to the available 
time-series data for the research because they include detailed demographic characteristics 
that allow heterogeneity in preferences across households. Additionally, the large sample 
size included in the NBS household survey data allows estimating a relatively large demand 
system. 
6 The number of households of employees participating in the survey in each year was 
about 12500.  
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demographic variables, i.e ratio number of household members aged 14 years and 
over7 and household size, was chosen. Most of the parameter estimates were 
significant at the 0,05 significance level. For reasons of space, all detailed results 
could not be presented. The complete results are available from the author upon 
request. The obtained results8 concerning the parameter estimates, standard errors 
and the goodness of fit measures are presented in Table 1. 
 
Table 1. Estimation result of LA/AIDS model  

Variable Estimates of parameters in equation: 
1 2 3 4 5 6 7 8 

z1 -0,0575* 
(0,0014) 

0,0760* 
(0,0021) 

-0,0371* 
(0,0013) 

0,0066* 
(0,0006) 

0,0165* 
(0,0009) 

0,0223* 
(0,0011) 

-0,0303* 
(0,0009) 

0,0033* 
(0,0006) 

z2 0,0018* 
(0,0006) 

-0,0001 
(0,0001) 

-0,0003 
(0,0003) 

-0,0003 
(0,0002) 

-0,0005* 
(0,0002) 

-0,0019* 
(0,0005) 

0,0010* 
(0,0004) 

0,0003 
(0,0002) 

log(x/P) -0,0310* 
(0,0006) 

0,0416* 
(0,0009) 

-0,0135* 
(0,0006) 

-0,0059* 
(0,0002) 

0,0046* 
(0,0004) 

0,0051* 
(0,0005) 

0,0008* 
(0,0004) 

0,0684* 
(0,0005) 

logp1 0,1083* 
(0,0351) 

-0,0653* 
(0,0094) 

0,2459* 
(0,0179) 

-0,2173* 
(0,0100) 

0,0083* 
(0,0036) 

-0,0359* 
(0,0021) 

0,0130*  
(0,0086) 

-0,0569* 
(0,0161) 

logp2 -0,0653* 
(0,0094) 

0,5870* 
(0,0114) 

-0,7930* 
(0,0083) 

0,4655* 
(0,0043) 

-0,0193* 
(0,0036) 

0,0541* 
(0,0025) 

-0,2102* 
(0,0050) 

-0,0188* 
(0,0042)) 

logp3 0,2459* 
(0,0179) 

-0,7930* 
(0,0083) 

0,8180* 
(0,0160) 

-0,5008* 
(0,0071) 

-0,0686* 
(0,0031) 

-0,0462* 
(0,0019) 

0,3024* 
(0,0066) 

0,0423* 
(0,0082) 

logp4 -0,2173* 
(0,0054) 

0,4655* 
(0,0043) 

-0,5008* 
(0,0071) 

0,4775* 
(0,0060) 

0,0578* 
(0,0015) 

0,0121* 
(0,0008) 

-0,3176* 
(0,0042) 

0,0227* 
(0,0049) 

logp5 0,0083* 
(0,0036) 

-0,0193* 
(0,0036) 

-0,0686* 
(0,0031) 

0,0578* 
(0,0015) 

[0,0115* 
(0,0022) 

0,0370* 
(0,0011) 

0,0057* 
(0,0020) 

-0,0093* 
(0,0015) 

logp6 -0,0359* 
(0,0021) 

0,0541* 
(0,0025) 

-0,0462* 
(0,0019) 

0,0121 
(0,0008) 

0,0370* 
(0,0011) 

0,0053* 
(0,0014) 

-0,0263* 
(0,0012) 

0,0001 
(0,0002) 

logp7 0,0130 
(0,0086) 

-0,2102* 
(0,0050) 

0,3024* 
(0,0066) 

-0,3176* 
(0,0042) 

0,0057* 
(0,0020) 

-0,0263* 
(0,0012) 

0,2414* 
(0,0048) 

-0,0083* 
(0,0043) 

logp8 -0,0569* 
(0,0161) 

-0,0188* 
(0,0042) 

0,0423* 
(0,0082) 

0,0227* 
(0,0049) 

-0,0093* 
(0,0015) 

0,0001 
(0,0002) 

-0,0083* 
(0,0043) 

0,0283* 
(0,0088) 

const 0,4288* 
(0,0040) 

0,0100 
(0,0061) 

0,2804* 
(0,0038) 

0,0861* 
(0,0017) 

0,0133* 
(0,0027) 

0,0519* 
(0,0034) 

0,0842* 
(0,0027) 

0,0453* 
(0,0017) 

Goodness of fit 
R2 0,0680 0,0736 0,1636 0,1865 0,0038 0,0269 0,0139 0,0829 

Source: the author’s own computations in the STATA statistical package; z1 denotes ratio 
number of adults, z2 – logarithm of household size; standard error in parentheses; 
asterisk indicates significance at 0,05; food products are following: 1) bread and 
cereals, 2) meat and fish, 3) milk, cheese and eggs, 4) oils and fats, 5) fruit, 6) 
vegetables, 7) sugar, jam, honey, chocolate and confectionery, 8) other food 
products 

 

                                                 
7 This is consistent with the OECD equivalence scale in which members of household aged 
less than 14 are considered children and members aged 14 and over  - adults. 
8 STATA’s sureg command was used for the LA/AIDS estimation.  
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The log likelihood ratio test9 and the t-test show that the inclusion 
of a demographic variables was justified. The implication is that various types 
of a household, the different composition and the age structure, have an impact on 
food demand. Table 2 presents results of total food expenditure elasticities10. 
 
Table 2. Estimated food expenditure elasticities for chosen types of households11 

 One adult 
without 
children 

One adult + one member aged 14 and over 
Number of children (aged below 14) 

0 1 2 
bread and cereals 0,8508 

[0,8442;0,8574]
0,8346 

[0,8273;0,8419]
0,8669 

[0,8610;0,8728]
0,8586 

[0,8529;0,8648] 
meat and fish 1,1483 

[1,1416;1,1549]
1,1283 

[1,1226;1,1341]
1,1583 

[1,1512;1,1654]
1,1406 

[1,1343;1,1469] 
milk, cheese and eggs 0,9261 

[0,9190;0,9331]
0,9189 

[0,9111;0,9266]
0,9313 

[0,9247;0,9378]
0,9279 

[0,9211;0,9348] 
oils and fats 0,8997 

[0,8902;0,9093]
0,9018 

[0,8924;0,9111]
0,8884 

[0,8778;0,8991]
0,8934 

[0,8837;0,9041] 
fruit 1,0508 

[1,0390;1,0625]
1,0567 

[1,0436;1,0699]
1,0636 

[1,0489;1,0783]
1,0690 

[1,0530;1,0849] 
vegetables 1,0317 

[1,0217;1,0417]
1,0306 

[1,0210;1,0402]
1,0323 

[1,0222;1,0425]
1,0357 

[1,0245;1,0470] 
sugar, jam, honey, chocolate 
and confectionery 

1,0011 
[0,9889;1,0134] 

1,0013 
[0,9874;1,0402] 

1,0010 
[0,9904;1,0116] 

1,0011 
[0,9898;1,0123] 

other food products 0,8976 
[0,8841;0,9111]

0,8952 
[0,8814;0,9090]

0,8784 
[0,8623;0,8944]

0,8885 
[0,8738;0,9032] 

Source: the author’s own computations in the STATA statistical package. The values 
included in parentheses are the confidential intervals (95%) of the food 
expenditure elasticities 

 
The results presented in Table 2 reveal that all the food groups are fairly 

sensitive to the food expenditure changes. Moreover, the elasticities can vary 
according to the different demographic profiles that exist in the population12.  

The study has found some differences in the elasticity estimates for various 
demographic types of household. For example, the elasticity of meat and fish for 
households with two adults significantly differs from other considered types – 

                                                 
9 The null hypothesis of overall absence of demographic effects is strongly rejected – 
LR=4433 and critical value 2 (0,05;14) 24χ = . 
10 For reasons of space, results of the price elasticities are not presented. 
11 All elasticities are evaluated at group’s means.  
12 It should be noted that the demand for food in Poland, apart from demographic attributes 
of households, probably depends on other numerous relevant attributes of households such 
as, for example place of living, educational attainments and occupation of his members. 
The impact of such features on food demand in Poland can form a subject of research in the 
future.  
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households consisted of: a single person and two adults with one child or two 
children.  

CONCLUDING REMARKS 

The demographic variables played a major role in the analysis of the 
household budget data. Instead of assuming that all the households in the sample 
have identical tastes, only those with the same demographic profiles are assumed to 
have the same demand functions. The household size and its composition have 
been used as the demographic variables in demand studies, although seldom in the 
context of complete system of demand equations. In this study, we used the 
“demographic translation” procedure to incorporate demographic variables into the 
demand system. This procedure allows to explain the heterogeneous nature in the 
household consumption patterns. 

Eventually, the results provide more insight for the understanding of the 
household consumption habits in Poland. It can be valuable for marketing 
strategies because a strong segmentation among households provides a more 
comprehensive picture of the food expenditures. In conclusion, this study indicates 
that the changing demographic profile of consumers in Poland has had a significant 
impact on food demand. 
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Abstract. In our paper, a stochastic model of forecasting of the number 
of firms of a given type, acting on the market in a given year, is proposed. 
The model uses the probabilistic tools of the theory of branching processes. 
Our approach is an alternative method to the forecasting methods proposed 
so far, including those based on time series. The theoretical results presented 
in the paper may be applied in the forecasting of the market position of the 
firms of a given sector. 

Key words: branching processes, moment generating function, forecasting of 
financial positions of firms. 

INTRODUCTION 

Forecasting of the number of firms - preliminaries 

The forecasting of economic events belongs to the most important tasks of 
contemporary econometrics. Accurate econometric predictions help the company 
management and governmental authorities in taking good finacial decisions and 
solutions. A lot of methods of financial forecasting have been worked out so far 
(see [Cieślak 2001], [Gajek and Kałuszka 1999] and [Harvey 1989] among others). 
In our paper, we propose a new approach to this topic. It is based on the 
probabilistic model, while the starting point for the earlier proposed methods was 
an appropriate econometric function or some time series model. A probabilistic 
treatment of the problem of forecasting of economic phenomena is possible, if, 
except for the realizations of the random process, something is also known about 
the elements, which generate this process. In some stages of the construction of our 
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forecasting model we also use some econometric models, but we avoid the 
situation, when some equalities appear a priori, without any explanation. The 
important features of our approach are the following: 1) it gives the possibility of 
economic interpretation of the obtained parameters, 2) it enables to look at the 
problems of economic forecasting from a different point of view than the methods 
proposed so far. 
Analysis of the dynamics of the number of firms may be useful in evaluation of the 
current situation on the labour market, as well as in forecasting of its development 
in the future. The decrease in the dynamics of the number of firms may be caused 
by: too high taxes, strong market competition, bureaucracy, unclear law or 
financial regulations, lack of development plan or financial liquidity of firms, 
unsettled political situation. On the other hand, an increase in the dynamics of the 
number of firms may be caused by: the growing share of the private sector in the 
economy structure, an increase of export, an increase of activity of local 
communities. Such a variety of factors, which slow down or stimulate the process 
of creation of a new firm makes the forecasting of the number of firms fairly 
difficult. 
There are not many publications concerning the issue of forecasting of the number 
of firms. One of a few exceptions is the paper of [Chybalski], which is devoted to 
the forecasting of the number of small and medium-sized enterprises in Poland. 
In our work, we propose the model based on the generalization of the so-called 
branching processes. The definitions of the branching process and their certain 
generalization are given in section 2 of our paper. This section contains also the 
definition of generating function, as some properties of generating functions will be 
applied in constructing of our model. In section 3, we present the main goals of our 
investigations, as well as the proposed model of forecasting of the number of firms. 
In section 4, we describe the estimation procedure applied in the estimation of the 
parameters of our model and present the results of the forecasts obtained with the 
use of this model. In section 5, we compare these results with the results of 
predictions received by applying of some other time series models; our final 
conclusions are also included here. 

BRANCHING PROCESSES AND GENERATING FUNCTIONS 

Let us consider the following population. Suppose that at the beginning 
(time 0) it has c  elements (individuals) and each element changes into the new 
element (or elements), so at time n  we have the n th generation of elements. We 
assume that, for every n , the individuals from the n th generation change 
independently into the new individuals - called descendants - and these new 
individuals form the generation numbered by 1+n . In addition, we assume that the 
individual disappears, if it has no offspring in the subsequent generation. Let us 
define the random variables (r.v.’s) nY  and inξ  as follows: nY  - the number of 
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individuals in the n th generation, cY =0 , and inξ  - the number of descendants of 
the i th individual from the n th generation, nYi 1,2,...,= . We assume that inξ{ : 

nYi 1,2,...,= ; 1,2,...}=n  are independent, identically distributed (i.i.d.) r.v.'s, and 

,0,1,...=,=)=(, jbjPni jinξ∀  where jb  - the probability that the individual 

will change into j  descendants (in particular, 0b  denotes the probability that the 
individual will have no offspring and disappear). Then, the number of individuals 

in the generation 1+n  is given by 
⎪⎩

⎪
⎨
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We call ∞
0=)( nnY  the standard Bienayme-Galton-Watson process. It describes the 

development of descendents of c  ancestors. We assume here that the individuals 
change into the new ones independently of each other and, for any n , i , the r.v.'s 

inξ  are independent r.v.'s from a certain common distribution. 
It seems that branching processes have not been widely used in economic studies 
so far. We partly try to fill this gap and show that a certain generalization of the 
Bienayme-Galton-Watson branching process may be useful in economic 
forecasting. 
We now introduce some generalization of the metioned branching process. Let us 
allow the situation, when the individual may exist longer than one unit of time and 
that it can have descendants at the different moments in time. Then, nY - the 
number of individuals at the moment n  (in the n th generation) - is given by 
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k  years. Furthermore, the number of new individuals in the generation numbered 

by 1+n  is described by ∑
=

+

nY

i
innf

1

0
1 = ξ , and the number of all individuals in this 

generation is expressed by ∑∑
=

+

=
++ +

nY

i
in

n

k

k
nn fY

1

1

1
11 = ξ . In order to find the distribution 

of the random variable nY , the so-called generating function may be used. It is 
defined as follows: Suppose that X  is a discrete random variable with the values 
in the set of natural numbers. Then, the funcion T , defined on the interval [ ]1;1− , 
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The properties in (1) will be used in further parts of our paper. For some more 
informations on the issue of branching processes and their applications, we refer to 
[Dawidowicz et al. 1995], [Epps 1996] and [Haccou et al. 2005]. 

FORMULATION OF THE PROBLEM AND THE PROPOSED MODEL 

Our goals and empirical data 

Our main purpose was to propose the model, which enables to forecast the 
number of firms. In our considerations we restricted ourselves to the firms of the 
building sector from the area of the Masovia Province (the Masovian Voivodeship) 
in Poland. We had the following two reasons for making such a choice: 
1) the dynamics of development of the firms from the building sector is sensitive to 
the changes of both economical and political situation, 2) the Masovia Province 
belongs to the regions in Poland with the largest number of building companies. 
We carried out our forecasts for the years 2008 and 2009. 
Our database consisted of the informations concerning the number of building 
companies from the Masovia Province, registered in the National Court Register 
(Krajowy Rejestr Sądowy - KRS) in the period 2001-2009. These informations 
included the date of registration of the firm in the KRS and the date of declaring 
bankruptcy. The empirical data are collected in the following table: 
 
Table 1. The numbers of firms and their bankruptcies in the period 2001-2009 
(the data marked by * include the number of firms established before 2001) 

The year of 
registration of 

the firm 

The number of firms 
at the end of 2009 

The number of firms, 
which declared 

bankruptcy before 
the end of 2009 

The total number of 
firms 

2001 205* 24 229 
2002 252* 28 280 
2003 129 14 143 
2004 144 9 153 
2005 37 1 38 
2006 24 0 24 
2007 45 1 46 
2008 44 0 44 
2009 36 0 36 

More formally, the purposes of our paper may by described as follows: 
Let nY  - the number of building firms from the area of the Masovia Province in the 
n th year. Our main goal was to estimate ( )nYE  for tn > , by the use of the 
historical data from the years t0,1,..., , where ( )nYE  - the expected number of 
building companies in the Masovia Province in the n th year. We carried out the 
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forecasts for the years 2008 and 2009 by applying of the historical data from the 
period 2001-2007. Thus, in our considerations: 0=n  denoted the year 2001, 

1=n  the year 2002, ..., 6== tn  the year 2007, and tn >  (i.e., 7,8=n ) denoted 
the forecasting years 2008, 2009. After calculating (by means of our model) the 
forecasts of the number of firms for the years 2008 and 2009, we compared these 
forecasts with the real numbers of firms in those years and with the forecasts 
obtained by means of some other time series models. We also calculated the 
relative errors of our forecasts and the forecasts obtained for the other models. 

The proposed model of the number of firms 

Let: nY  - the number of firms on the market in the n th year, k
nf  - the 

number of firms in the n th year existing from k  years, 0≥k  (in particular, 0
nf  - 

the number of new firms in the n th year). Obviously, we have ∑
=

n

k

k
nn fY

0
=  and 
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We made the following two complementary assumptions in our investigations: 
1) establishing of a new firm may be connected with the existence of some other 
stable firms in the past (by stable firms we mean the firms existing from at least 
two years), 2) establishing of a new firm may be caused by some other reasons than 
the existence of the other firms in the previous years (the reasons for the creation of 
a new firm may be connected, for example, with the growth of demand for services 
of a certain type, with the development of high technologies, with the 
environmental changes, with the changes in law, etc.). 
The assumptions above may be described by introducing the following notations: 

k
ng  ( nk 2,...,= ) - the number of new firms in the n th year, the creation of which 

was connected with the existence of firms existing from 1−k  years in the year 
1−n , nϕ  - the number of new firms in the n th year, the creation of which was not 

connected with the existence of firms in the year 1−n . Clearly, we have 
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Our goal now is to derive the formula for ( )0
nfE  in terms of 1

1
−
−
k

nf , nk 1,...,= . 

Due to (3), in order to do it, we need to obtain the formulas for ( )k
ngE , ( )nE ϕ . 
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Denote by iknξ  the number of new firms in the n th year, the creation of which was 
connected with the existence of the i th firm among the firms existing from 1−k  
years in the year 1−n . We assume that { }iknξ  are i.i.d. and 

,0,1,...=,=)=(,, jbjPnki jiknξ∀  where jb  - the probability that the number 
of new firms in the n th year, the creation of which was connected with the 
existence of the i th firm among the firms existing from 1−k  years in the year 

1−n  is equal to j . It is clear that ∑
−
−

=

1
1

1
=

k
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i
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k
ng ξ . Let: B̂  - the generating function 

of the r.v.'s iknξ , k
nG  - the generating function of the r.v. k

ng . Then, the conditional 

generating function of the r.v. k
ng  given the event rf k

n =1
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−  is given by 
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conditioning, k
ng  is the sum of r  i.i.d. r.v.'s iknξ  with a common generating 

function B̂ . The derived formula for ( )rfxG k
n

k
n =| 1

1
−
−  implies that 

( ) ( ) ( ) ( )[ ] ( ) ( )( ),ˆ==ˆ===|= 1
1

0

1
1

0

1
1

1
1 xBFrfPxBrfPrfxGxG k

n
r

k
n

r

r

k
n

k
n

k
n

k
n

−
−

∞

=

−
−

∞

=

−
−

−
− ∑∑  (4) 

where 1
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−
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nF  - the generating function of 1
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nf . 
In view of (4) and the properties of generating functions in (1), we obtain 
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Our next task is to derive the formula for ( )nE ϕ . Observe that assuming 
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The relations in (3), (5) and (7) yield 
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Thus, in view of (2), in order to find the recursive formula for ( )nYE , we need to 

derive the recursive formula for ( )k
nfE , where 1≥k  Let us introduce the 

following notations: 
k
nh  - the number of firms that declared bankruptcy in the n th year, for which it 

was the k th year of activity, 1−kp  - the probability that the firm existing from 
1−k  years will declare bankruptcy in the k th year of its activity. 

Assuming that the probabilities of bankruptcy of the firms in the k th year of 
activity are identical for all these firms and the events of bankruptcy of the firms 
are independent, we may write that  
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By (2), (8) and (11), we conclude that 
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where ( ) ∑
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=0
==

j
jikn jbEb ξ  and α  is such as in (6). 

The recursive formula in (12), obtained with the use of (6), (9), establishes our 
model, which enables to estimate the expected number of firms in the n th year. 

In the next part of our paper, we will estimate (by the use of the data from 
Table 1) the parameters of the model in (12), as well as we will present the results 
of the predictions of the number of building firms in the Masovia Province for the 
years of 2008 and 2009. 

ESTIMATION OF THE MODEL PARAMETERS AND THE RESULTS 
OF FORECASTS 

The table below presents the numbers of firms registered in the KRS, which 
declared bankruptcy in the subsequent years: 
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Table 2. The numbers of firms, which declared bankruptcy 

The year of registration '01 '02 '03 '04 '05 '06 '07 '08 '09 
The year of bankruptcy          

'10 0 1 0 0 0 0 0 0 0 
'09 0 3 0 1 0 0 1 0 0 
'08 1 7 3 0 1 0 0 0 0 
'07 4 2 2 3 0 0 0 0 0 
'06 1 3 1 2 0 0 0 0 0 
'05 4 3 2 0 0 0 0 0 0 
'04 2 1 2 3 0 0 0 0 0 
'03 5 6 4 0 0 0 0 0 0 
'02 7 2 0 0 0 0 0 0 0 

As we have already mentioned, in order to estimate our model (12), we used 
as the historical data ( tn  0,1,...,= , t  is the current time) the data from the period 
2001-2007 (thus, 6=,0,...,= ttn ). After we had estimated the parameters of our 
model, we calculated the forecasts of the number of firms for the years 2008 and 
2009 ( )7,8=n . At the beginning, we put k

nf  for )( k
nfE  for our historical data. 

The values of k
nf  for our historical data ( )0,...,6=n  were as follows: 

Table 3. The values of k
nf  for the historical data from the period 2001-2007 

229=0
0f  - - - - - - 

278=0
1f  222=1

1f  - - - - - 

139=0
2f  272=1

2f  217=2
2f  - - - - 

150=0
3f  137=1

3f  271=2
3f  215=3

3f  - - - 

38=0
4f  150=1

4f  135=2
4f  268=3

4f  211=4
4f  - - 

24=0
5f  38=1

5f  148=2
5f  134=3

5f  265=4
5f  2105

5 =f  - 

46=0
6f  24=1

6f  38=2
6f  145=3

6f  132=4
6f  2635

6 =f  2066
6 =f  

We used the data in Table 3 to estimate 1−kp  - the probability that the firm 
existing from 1−k  years will declare bankruptcy in the kth year of its activity. 
Since, for any tki ,...,= ; 6=t , each quantity 1

1/ −
−
k

i
k
i fh  is (on the condition that 

the k th year of the firm activity is the i th year among the considered years) a 
natural estimate of 

1−kp , we put for 
1ˆ −kp  the average value of these quantities, i.e.,  

 ( )∑∑ =
−

−=
−

−− −
+−+−

6 1
1

6 1
11 /1

16
1=/

16
1=ˆ

ki
k

i
k

iki
k

i
k
ik ff

k
fh

k
p  (13) 

The values of 1ˆ −kp , obtained from (13) for k = 1,2,…,6, were as follows: 
0,01109; 0,01083; 0,01199; 0,01491; 0,00614; 0,01905, respectively. It is obvious that, if 
we estimate 1−kp  according to the scheme given above, we can estimate 1−kp  only 
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for tk ≤ , where 6=t  is the current time. There is no method, which enables to 
estimate 1−kp  for 1+≥ tk  only with the use of the historical data. For this reason, 
we assumed that the position of the firm existsting for 6=t  years is so stable that 
it seemed reasonable to make the additional condition tk pp ˆ=ˆ 1−  for 6=1 tk ≥− . 

Thus, in our considerations, we made the assumption 51 ˆ=ˆ ppk−  for 61 ≥−k . 
After we had estimated 1−kp , we estimated the parameters b , α  of the model 
(12). Observe that b , α  are also the parameters in the equation (8): 

( ) )(=)( 0
12

1
1

0
−=

−
− +∑ n

n

k
k

nn fEfEbfE α . Therefore, in order to estimate b  and α , we 

applied the following model of multiple regression 
 .= ,=   : where,= 0

12,2
1

11,2,1,
0

−=
−
−∑++ nn

n

k
k

nnnnnn fxfxxbxf εα  (14) 

By using of the historical data, we obtained the following input data for the 
estimation of the parameters b  and α  of the regression function (14) 

Table 4. The empirical data for estimation of the regression function (14) 

Rok 0
nf  ∑ =

−
−

n

k
k

nn fx
2

1
11, =  0

12, = −nn fx  

'03 2)=(n  0
2=139 f  1

1=222 f  0
1=278 f  

'04 3)=(n  0
3=150 f  2

2
1
2=489 ff +  0

2=139 f  

'05 4)=(n  0
4=38 f  3

3
2

3
1

3=623 fff ++  0
3=150 f  

'06 5)=(n  0
5=24 f  4

4
3

4
2

4
1
4=764 ffff +++  0

4=38 f  

'07 6)=(n  0
6=46 f  5

5
4

5
3

5
2

5
1

5=795 fffff ++++  0
5=24 f  

By applying of the data from Table 4, we obtained (by the method of least 
squares) the following estimates for the parameters b  and α  of the regression 
function in (14): 0,025=b̂ , 0,4986=α̂ , where the coefficient of determination 
and the adjusted coefficient of determination were equal to: 0,83=2R , 

0,72=2adjR . 
Thus, since 51 ˆ=ˆ ppk−  for 61≥−k , we obtained - by the model in (12) - the 
following predicted value of the number of firms in 2008 ( 7=n ) 

( ) ( ) ( ) .884,11=ˆ1ˆˆ1ˆ= 0
60

7

2
1

617 fpfpbYE
k

k
k −++−+∑ =

−
− α  

In order to estimate the number of firms in 2009 ( 8=n ), we needed to 
obtain the estimates for 0

7f . By (14), we calculated that 

43,2406=ˆˆ=ˆ 0
6

6

1 6
0

7 ffbf
k

k α+∑ =
. Next, we calculated 1

7̂f - 7
7̂f , from (11). The 

results were as follows: The values of kf7
ˆ  for k = 1,2,…,7 were: 45,49; 23,74; 
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37,54; 142,84; 131,18; 257,99; 202,08. By applying of the estimates for kf 7 , and 
the assumption 51 ˆ=ˆ ppk − , for 61 ≥−k , we received the following predicted 
values of the number of firms in the year 2009 ( 8=n ) 

( ) ( ) ( ) 912,84=ˆˆ1ˆˆˆ1ˆ= 0
70

8

2
1

718 fpfpbYE
k

k
k −++−+∑ =

−
− α . 

MODEL ASSESSMENT AND FINAL CONCLUSIONS 

Below, we present the predicted numbers of building firms from the 
Masovia Province, obtained with the use of our model and the five chosen time 
series models (the real numbers of firms are given in parantheses), together with 
the relative errors of all the forecasts (for the details concerning the chosen models 
see [Gajek and Kałuszka 1999] and [Harvey 1989]): 
Table 5. The predicted numbers of firms in 2008 and 2009 

Model Forecasts'08 and '09 Relative errors of forecasts  
The proposed model 884,11 (868), 912,84 (916) 1,86%, -0,34% 
Linear trend 1022,3 (868), 1129,4 (916) 17,78%, 23,3% 
Quadrating trend 793,89 (868), 729,19 (916) -8,54%, -20,39% 
Moving average of rank 2 804,5 (868), 814,75 (916) -7,32%, -11,05% 
Holt's model 920,63 (868), 1015,48 (916) 6,06%, 10,86% 
Structural TS model 866,88 (868), 908,76 (916) -0,13%, -0,79% 

We conclude that: 1) in the case of forecasts for the year 2008, the only 
model, for which the relative error of prediction was smaller than the relative error 
of forecast obtained with the use of the proposed model was the Structural TS 
model, 2) the results of forecasts for the year 2009 show that in this case, the 
relative error of forecast obtained with the use of our model was the smallest of all 
the calculated errors. The established model may be applied not only to forecast the 
number of firms. For example, if we add to our data concerning the firms, the 
informations on the numbers of employees or the paid tax amounts, we may 
construct models, which enable to forecast the rate of employment or the potential 
tax revenues to the budget. The results of our predictions seem to be promising and 
show that the models based on a certain generalization of branching processes may 
become an interesing alternative for the models so far applied in economic 
forecasting. 

REFERENCES 

Cieślak M. (2001) "Prognozowanie gospodarcze. Metody i zastosowanie", PWN. 
Chybalski F. "Tendencje rozwojowe sektora MSP w Polsce", available on Internet. 
Dawidowicz A. L., Kulczycki P., Tumidajowicz D. (1995) "A stochastic model of the 

development of alpine rhododendron", Univ. Iagellonicae Acta Math., XXXII, pp. 37-
55. 



80 M. Dudziński, K. Furmańczyk, M. Kociński, K. Twardowska 

 

Epps T. W. (1996) "Stock proces as branchimg processes", Commun. Statist. - Stochastic 
models, 12 (6), pp. 529-558. 

Gajek L., Kałuszka M. (1999) "Wnioskowanie statystyczne. Modele i metody", WNT. 
Haccou P., Jagers P, Vatutin V. A. (2005) "Branching Processes", Cambridge Studies in 

Adaptive Dynamics, 5, Cambridge. 
Harvey A. C. (1989) "Forecasting, Structural Time Series and the Kalman Filter", 

Cambridge University Press. 



QUANTITATIVE METHODS IN ECONOMICS 
Vol. XI, No. 1, 2010, pp. 81-89 

EXPECTED SHORTFALL AND HARELL-DAVIS ESTIMATORS 
OF VALUE-AT-RISK   

Leszek Gadomski 1, Vasile Glavan 1, 2 

1  Collegium Mazovia  in Siedlce; 
2  University of Natural Sciences and Humanities in Siedlce,  

Institute of Mathematics and Physics 
e-mails: Leszek.Gadomski@mazovia.edu.pl, vglavan@uph.edu.pl 

 

Abstract: The most widely used estimator for the Value-at-Risk is the 
corresponding order statistic. It relies on a single historic observation date, 
therefore it can exhibit high variability and provides little information about 
the distribution of losses  around the tail. In this paper we purpose to replace 
this estimator of VaR by an appropriately chosen estimator of the Expected 
Shortfall. We also consider the Harrel-Davis estimator of VaR and give some 
comparative analysis among these estimators.  

Key words: Risk management, tail loss, VaR, Expected Shortfall, Harrel-
Davis estimator  

INTRODUCTION 

Risk measures appeared as a response to the necessity of quantifying the risk 
of potential losses on some asset, or a portfolio of assets. Among them Value-at-
Risk (VaR) has become a standard risk measure for financial risk management due 
to its conceptual simplicity, easy of computation, and ready applications.  

Most banks calculate daily 99% confidence interval VaR figures. To do this 
they look at a discrete distribution of simulated revenues. VaR at the 99% 
confidence level is estimated, for example, by the 14th worst loss across 1305 daily  
observations from 5yr historical data. It relies on a single historic observation date 
and therefore can exhibit high variability. This both reduces its efficiency and 
provides little information about the distribution of losses around the tail.  

The process of risk management requires not only estimating the VaR but 
also examining the sensitivity of its positions comprising the portfolio. Taking a 
single order statistic such as the 14th worse loss may be inadequate for this 
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purpose. Computing a weighted average of the dates in the tail will produce more 
robust risk analysis. The use of quantile estimators ensures a more stable and 
accurate measure of tail losses and regulatory capital requirement.  

This paper offers a coherent estimate for VaR and makes no distributional 
assumptions whatsoever in doing so. One of the major limitations of VaR, and it 
has been severely criticized through the crisis for not being additive. Using HD as 
an estimator for Var solves this problem, while still managing to keep VaR as a risk 
measure, which is a hard requirement by regulations and Basel rules for capital 
calculations. In our opinion, using the HD estimator solves the problem of VaR not 
being coherent, while at the same time adheres to Basel rules by keeping VaR for 
capital calculation. 

VaR AS RISK MEASURE 

Current regulations from finance (Basle II) or insurance (Solvency II) 
business formulates risk and capital requirements in terms of quantile based 
measures (see, e.g., Dowd and Blake 2006). The upper quantile of the loss 
distribution is called Value-at-Risk (VaR). In other words, VaR is defined as the 
maximum potential loss in value of a portfolio over a given holding period within a 
fixed confidence level: the riskier the portfolio, the larger are the minimal losses  
during the holding period and for a certain probability level. 

More formally, given a random variable  Y  and a probability level )1,0(∈α  
denote by ),( αYQ the α -quantile , i.e.,  

)(})(,inf{),( 1 ααα −=>≤∈= YFyYPRyYQ , where “minus one” denotes the 
right-continuous generalized inverse of the cumulative distribution function F. 
Recall that in the Gaussian model σμασμ αuYQNY +=≈ ),(),,( 2 . 

For a confidence level )1,0(∈α  the Value-at-Risk at level α  for log-returns 
X is defined as  

),(),( αα XQXVaR −= . 
There are some conceptual problems with VaR , an important one is that the 

Value-at-Risk disregards any loss beyond the VaR level, also called the problem 
“of the tail risk”. As mentioned in [Artzner et al. 1999], VaR has major drawback 
by not being coherent. By a coherent risk measure [Artzner et al. 1999] mean any 
real-valued function ρ of real-valued random variables X, which models the losses, 
and with the following characteristics: 

• )()( YXYX ρρ ≤⇒≥ a.s.  (Monotonicity) 
• )()()( YXYX ρρρ +≤+  (Subadditivity) 
• )()( XX λρλρ =  (Positive homogeneity)   
• λρλρ −=+ )()( XX  (Translation equivariance). 



Expected Shortfall and Harell-Davis Estimators of Value at Risk 83 

 

The Value-at-Risk does not meet subadditivity in some cases. For a 
counter-example see, e.g., (Dowd and Blake 2006). 

In response to a coherent equivalent to VaR, a series of VaR-related risk measures 
were proposed. Among them the Expected Shortfall as an alternative to VaR is 
mentioned  [Rockafeller and Uryasev, 2000]. 

The Expected Shortfall [Acherbi and Tasche, 2002] at level α  is defined as  
)).,((),( αα XVaRXXEXES >−−=  

It equals the conditional expected loss given that it exceeds ),( αXVaR , and is also 
called Tail Value-at-Risk by [Artzner et al.1999], Conditional Tail Expectation 
[Wirch and Hardy, 1999], or Conditional Value-at-Risk [Rockafeller and Uryasev, 
2000]. An alternative definition of ES is the mean of the tail distribution of the VaR 
losses. 

EMPIRICAL ESTIMATORS FOR VaR AND ES   

Let )1()2(])([])1([)1()( ,,...,,...,, XXXXXX nnnn αα+−  denote the log-returns of a 
portfolio in the sample period arranged in increasing order. Then, for a sample 
large enough, the estimator of ),( αXVaR , at a given level of confidence will be 
the statistics ])1([ +αnX . Similarly,  

 

]1[
...

),( ]1[)2()1(

+
+++

= +

α
α α

n
XXX

XEstimateES n

. 

The estimator of ),( αXVaR , as the corresponding sample statistic, has the 
advantage of simplicity and no specific distributional assumption.  It is an unbiased 
estimator, but neither efficient, nor consistent. The above mentioned estimator for 
the Expected Shortfall, is an unbiased, efficient and consistent estimator. 

ESTIMATING VAR USING ES   

A different way to estimate the 99% percentile of the distribution is to use an 
Expected Shortfall approach. As we are not looking at 99% ES, but estimating the 
VaR percentile using ES, we need to determine the confidence level for which ES is 
equivalent to a 99% VaR. This approach has no closed solution and the equivalent 
confidence interval is dependent on the distribution assumptions of the underlying 
losses. 
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Assuming the losses are Normally Distributed 

Let: X ~ N(0,1) and  recall the corresponding cumulative distribution 
function, and density, respectively: 

( ) dyexF
x y

∫
∞−

−
= 2

2

2
1
π

 

2

2

2
1)(

x

exf
−

=
π

             ( ) )(1 pFXVaRp
−−=  

In this case the Expected Shortfall has the following form:   

[ ] [ ] ( )

( ) ( ) ( )p
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The problem is to find a probability p for which 99VaRES p = . Since this 

problem has no closed solution, we have to find a numerical one. The numerical 
solution p for a N(0,1) distribution is then applied to our discrete distribution, in 
order to find the number of the worst observations we need to use for the 

pES calculation. The numerical solution is  p = 94.72%. 13 
If the empirical distribution of our losses has fatter tails than that of the 

normal distribution, then the actual confidence interval for using ES as an estimate 
for VaR will be lower than the one used for the normal distribution. Hence the ES 
using the ‘actual’ confidence interval is lower than that calculated by using the 
Gaussian distribution, and hence empirical VaR(99%) is lower than ES(94.72%). 
Most studies show that financial time series exhibit fat tail, hence using the normal 
distribution confidence interval is conservative whenever we have a fat tail.  

Examples of other distributions: t-student distribution 

Under the assumption that the losses follow a t-student distribution, we have 
that the equivalent confidence interval x, (ES(x%) = VaR(99%)) is lower than 
94.72%, the confidence interval for the normal distribution. The confidence level x 
converges towards 94.72% as the degrees of freedom increase, as expected, 
because the t-student distribution converges in distribution to the Gaussian one as 
the degrees of freedom approach infinity.  
                                                 
13 Notation: Let N  be the total number of observations in our historical window. 
Number of worst historical observations to be used for ES calculation equals 1))1(int( +− pN . 
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Even though, the family of t-student distributions has fatter tails than normal 
distribution does, it would be unrealistic to assume that the loss distribution follows 
a t-student distribution. It is widely accepted that empirical loss distribution varies 
significantly depending on the positions in the portfolio and hence one cannot 
make reasonable assumptions that it follows a certain t-student distribution with a 
specific degree of freedom. 
 
Table 1. Confidence intervals vs. degrees of freedom for t-student distributions 

Degrees of freedom 
Confidence interval X such that 

ES(X%) = VaR(99%) 

1.1 86.1% 

1.5 94.2% 

2 96.0% 

3 96.7% 

4 96.9% 

5 97.0% 

8 97.2% 

15 97.3% 

50 97.4% 

200 97.4% 

1000 97.4% 

Source: own calculations 

ESTIMATING VAR USING THE HARELL-DAVIS ESTIMATOR  

The Harrel-Davis quantile estimator was proposed by [Harrell and Davis, 
1982]. It makes no assumptions about the underlying loss distribution (just that the 
observations are i.i.d). It is in general close to an ES measure, just that the weights 
are not a step function, but given by a beta function. The Harrel-Davis estimator is 
in essence the bootstrap estimator of the expected value of the (n+1)p-th order 
statistic, with p - the quantile and n the sample size. It is based on the fact that as 
the sample size increases, the expected value of the (n+1)p-th order statistic 
converges to the p quantile. Another advantage of using the HD estimator is that it 
gives confidence intervals regarding how good the VaR estimator is. The Harrel-
Davis estimators are defined as follows: 

∑
=

=
n

k
kky xwHD

1

  with 
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where )}1)(1(,)1{(/ pnpnI nk −++   is the incomplete beta function. 

Figure 1 plots the HD weights for estimating the 0.99 quantile from a sample 
of 1305 observations. Note that unlike the 14th worse loss estimator, which places 
the total weight on the 1292th order statistic in this case, the HD estimator 
distributes the weights among a range of order statistics. It is worth noting that the 
weights depend only on the sample size and on the quantile.  
 
Figure1.The weights of the HD estimator for p=0.99 and N=1305 
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Source: own calculations 
 

In what follows we calculate the VaR(99%) estimates for some major stock 
indices, using 1305 daily  observations from 5yr historical data  taken from 
Bloomberg data services. The estimates in Table 2 represent VaR numbers as a 
percentage loss of the entire portfolio if we are to hold it entirely in the respective 
stock / index. The estimates ES(94.7%) are the numbers using the ES as an 
estimate, the 14th worse loss represents the actual VaR number when we have 5 
years history of observations which is 1305 data points as relative returns, and in 
this case VaR(99%) is the 14th worse loss of the empirical distribution, while  HD is 
the VaR estimate using the Harell-Davis estimator.  
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Table 2. VaR(99%) estimates by ES(94.7%), 14th worse loss and HD  

ES (94.7%) -
5,17% 

-
5,03% 

-
5,91% 

-
4,42% 

-
5,47% 

-
2,50% 

-
4,57% 

-
4,36% 

-
5,34% 

-
5,93% 

-
4,75% 

-
5,00% 

-
3,20% 

14th worse loss -
5,12% 

-
5,37% 

-
5,35% 

-
4,31% 

-
5,19% 

-
2,36% 

-
4,72% 

-
3,73% 

-
4,89% 

-
5,61% 

-
4,58% 

-
4,75% 

-
3,32% 

HD Estimate -
5,14% 

-
5,34% 

-
5,75% 

-
4,45% 

-
5,39% 

-
2,43% 

-
4,74% 

-
3,96% 

-
5,16% 

-
6,06% 

-
4,76% 

-
4,93% 

-
3,35% 

Stock Indices AEX ATG ATX BFX BGLI BHSE BMV BSI BUX BVSP CAC CCSI CFG2
5 

Source: own calculations 
 
The stock indices in Table 2 have the following description: 
 

AEX  Amsterdam Exchanges Index  
ATG  Athens General Composite     
ATX  Austrian Traded Index  
BFX  BEL 20 Index  
BGLI  Bulgarian Index (WDR Sofia 30)     
BHSE  Bahrain All Share Index  
BMV  IPC General Index  
BSI  Beirut Stock Index  
BUX  Budapest S.E. Index  
BVSP  Bovespa Index  
CAC  CAC 40 Index  
CCSI  Egyptian Stock Index  
CFG25  Casablanca 25   

 
The following figure represents graphically table 2. Here ETL stands for 

Expected Tail Loss, another term for ES. From this diagram one can observe that, 
as was mentioned above, the 14th worse loss underestimates the Value-at-Risk , 
while ES(94.7%) and HD agree quite well as estimators, mainly due to sample size 
of observed data and to the asymptotic normality of the underlying statistics for 
calculating Expected Shortfall. 
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Figure 2. Graphical representation of Table 2 
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Source: own calculations 

CONCLUSIONS 

VaR as risk measure together with the corresponding sample statistic as 
empirical quantile estimator are widely used in the financial risk management, due 
to their conceptual simplicity, easy of computation and using no specific 
distributional assumption. At the same time, VaR suffers major drawback not 
taking into account the losses beyond the VaR level, on one hand, and not being 
coherent, on another hand. Also, taking a single order statistic as estimator, it can 
exhibit high variability. Expected Shortfall avoids these shortcomings and the 
(uniform) average of data in the tail gives a more stable and accurate estimate of 
the tail losses.  In this paper, for given α, we solve the equation αVaRES p =  to 
find the confidence level p with the aim to replace the [nα+1] sample statistic by 
the uniformly averaged data from the tail as estimator for VaR at the α confidence 
level. We also discuss the Harell-Davis estimators as beta-averaged data from the 
tail and give some comparative analysis of these three estimators. Using HD as an 
estimator for Var  solves the problem of VaR not being coherent, while at the same 
time adheres to Basel rules by keeping VaR for capital calculation. 
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Abstract: The work relates to changes of the eggs prices in European Union 
member states since 2004 to 2010. The analysis is based on annually, 
monthly and weekly average eggs prices. Correspondence analysis is applied 
to analyze the direction and structure of the changes with reference to all 
considered states. The unexpected and violent price changes are captured 
with respect to particular states. Moreover in the reference to chosen states, 
the model of structural time series analysis is applied to show the price 
changes in a more detail. 
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INTRODUCTION 

The work relates to changes of eggs prices in European Union Member 
States. The prices are collected since 2004 to 2010. The source of the data is the 
website of Ministry of Agriculture and Rural Development. The principal of the 
work is to reflect the structure of the price changes in the states.  

The problem is the observed price series is multidimensional, as we have 27 
states. If any stochastic statistical time series model had been used, the variance-
covariance matrix with over 300 various elements would have to be estimated. The 
length of the collected time series isn’t greater than 65 and the task is not feasible. 
Thus it seems reasonable to use one of the explanatory multidimensional technique 
and the correspondence analysis is applied in the work.  

The bottom line of the work is to compare relative prices, because the mean 
level of each price series strongly depends on the state. An example of annually 
averaged eggs prices in two states (in Belgium and Denmark) is given in table 1. 
The prices are given in EURO/100kg. 
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Table 1. Annually averaged prices in Denmark and in Belgium  
 Year 2004  2005  2006 2007 2008 2009 
Denmark 136 133 137 142 158 173 
Belgium 61 65 77 93 93 103 

 
The prices in Belgium are considerably less than in Denmark in the given 

consecutive years. The difference is influenced by many factors, which are difficult 
to capturing and thus the idea of relative prices raised.  

DYNAMICS OF ANNUAL CHANGES 

General insight in the dynamics of the eggs prices is given in the chapter. 
The clue is the form of the data given in table 2. The rows of the table consist of 
the distributions of eggs prices over a period of six years in European Union 
Member States. Such rows are called row profiles in correspondence analysis.  
 
Table 2. Relative eggs prices over a period of six years. 
 Year 2004 2005 2006 2007 2008 2009 
Belgium 12% 13% 16% 19% 19% 21% 
Czech Republic 15% 14% 15% 18% 20% 19% 
Denmark 15% 15% 16% 16% 18% 20% 
- - - - - - - - - - - - - - - - - - - - - 
EU 14% 14% 16% 18% 19% 20% 
Mean 15% 14% 15% 17% 19% 19% 

 
The mean profile consists of column averages. It’s close to European Union 

profile. Thus it represents the average eggs prices in Europe. The distance between 
two profiles is measured relatively to the mean profile. An example of the 
Belgium-Denmark distance is calculated as follows 
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The distance is a weighted Euclidean distance. It measures difference between two 
profiles relative to mean eggs prices in European Union. Large distance between 
the state profile and the mean profile represents dynamically changing eggs prices 
in the state. Relatively similar changes of eggs prices in two states imply small 
distance. The distances between all states can be represented graphically in so 
called symmetric map (figure 1).  
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Figure 1. Symmetric map for annually averaged eggs prices 

 
Source: own calculations 
 
The point which represents the European Union profile is close to the origin. The 
origin represents the mean profile. Arrangement of the points for Italy, 
Netherlands, Portugal and France suggests that its profiles, that is the distributions 
of annually averaged eggs prices are close to each other. But it's not the case of 
Latvia. It's point is far from the origin.  
 
Table 3. Relative eggs prices in Latvia 
  R2004 R2005 R2006 R2007 R2008 R2009 
Latvia 11% 12% 13% 18% 23% 23% 
Mean 15% 14% 15% 17% 19% 19% 

 
The values of Latvian profile are less then values in mean profile in 2004, 2005 and 
2006 an then they are greater (table 3). It means that it was a dynamic period of 
changes of eggs prices in Latvia in comparison with Italy, Netherlands, Portugal or 
France. The correspondence between the prices of the states can be easily found in 
figure 1. There are in the figure two clouds of points: the first one for states and the 
second one for years. The joint display indicates the correspondence between the 
clouds. Geometrically a particular row profile tends to a position which 
corresponds to the years which are prominent in that row profile. The purpose is to 
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give the management all the essentials facts in the most concise form, to show the 
increase or decrease in eggs prices in particular states and their relation to average 
price in Europe. 

Note that Latvia is close to the position of 2008 and 2009. The values in its 
profile are greater in the years than corresponding values in the mean profile. 

In conclusion let us briefly interpret the display: States which are positioned 
to the right: Austria, Slovenia, Great Britain, Ireland had relatively large prices in 
2004 and 2005 and small in 2008 and 2009. States which are to the left: Latvia, 
Lithuania, Spain and Belgium had relatively large prices in 2008 and 2009. Cyprus 
had relatively the largest prices in 2006 and 2005. Note that the Germane profile is 
rather close to the origin. 

DYNAMICS OF MONTH CHANGES 

Monthly averaged eggs prices provide additional reference to Germany, 
Austria, Netherlands and Estonia. Conclusion relates to changed arrangement of 
prices given in table 4. The row profile of the table denotes now price distribution 
across states in a particular time. Thus we can describe prices' proportion dynamics 
in a more detail.  
 
Table 4.Price distribution across states 

  Belgium Bulgaria Czech Republic - - - Denmark 
Jan 2008 3.2% 3.3% 3.7% - - - 4.5% 
Feb 2008 3.2% 3.3% 3.7% - - - 4.5% 
- - - - - - - - - - - - - - - - - - 
Feb 2010 3.2% 3.7% 3.2% - - - 5.0% 
Mean 3.0% 3.4% 3.2% - - - 5.0% 

Source: own calculations 
 
The profiles of the table 4 are represented by joined with a line points in 

figure 2. Solid line represents the year 2008, the dashed one the year 2009 and the 
dotted one the beginning of the year 2010. It reflects the very purpose of the graph. 
We can see clearly and instantly any upward or downward movement. In particular 
it allows of several price changes be demonstrated simultaneously in time. Thus we 
see the difference between the year 2008 and 2009. In the middle of 2008 we have 
relatively large eggs prices in Estonia, Sweden, Slovenia, Ireland and in Great 
Britain. Then the prices decreased in 2009.   

The most dramatic changes in eggs prices occurred in Germany, Austria, 
Netherlands and Estonia. It is seen that in Germany and Austria the prices 
increased at the end of the year 2009 and in Estonia in the middle of 2008. The 
lowest prices in Netherlands occurred in the middle of 2008 and 2009. 
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Figure 2. Symmetric map for monthly averaged prices  
 

 
 
The four States may be examined in a more detail. The figures 3 and 4 

reflect the changes. The time factor is shown in the bottom line of each figure and 
is given in weeks. The price of eggs in Germany and Austria increased over 40% 
with respect to the mean profile. 

 
Figure 3. Relative prices in Austria and 

Germany  
Figure 4. Relative prices in Estonia and 

Netherlands 

 
Source: own calculations  Source: own calculations 
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DYNAMICS OF WEEK CHANGES 

Weekly averaged prices are represented in figure 5. The solid line in figure 5 
represents changes in 2009. Relatively large prices occurred in Bulgaria and 
Estonia at the beginning of the year, in Cyprus, Greece, Lithuania and Sweden in 
the middle of the year and in Denmark and Great Britain in the end of the year. 
 
Figure 5. Symmetric map for weekly averaged prices  

 

 
Source: own calculations 

 
The dashed line represents changing prices in 2010. Considerably large 

changes in eggs prices occurred in Germany at the beginning of the year 2010. The 
prices were really unstable. The prices have been changing week by week. 

The length of weekly averaged price series is equal to 65. It’s over two times 
longer than in the previous case of annually and weekly averaged prices. Thus it 
gives possibility to construct a reasonable stochastic time series model for some of 
the series. The idea was to separate simultaneous changes in the series and simple 
correlations between all pairs of the series was calculated. The appropriate 
correlation matrix is graphically represented in figure 6.  
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Figure 6. Graphical correlation matrix representation 

 
Source: own calculations 

 
Thin ellipsis represents highly correlated price series. Negative correlation is 

represented by gray ellipsis and positive by white one. Let’s note that the majority 
of eggs prices in European states are positively correlated. Highly positively 
correlated price series are represented at the bottom of the dendrogram in figure 7. 
 
Figure 7. Dendrogram  

 
Source: own calculations 
 

Four groups, with simple correlation exceeding 0.85 within each group, were 
sepqareted. The first group consists of Denmark and Austria, the second: Romania, 
Latvia and Netherlands, the third: Czech Republic and Poland, and the forth: Italy, 
Belgium and Portugal.  
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The three groups of four can be analyzed with the use of structural time 
series model. The best fit of the model was obtained in the case of Poland and 
Czech Republic. Note that the eggs prices are highly correlated with the mean 
prices in Europe. The price series can be separated into deterministic simple trend 
and two stochastic cycles (figure 8). 
 
Figure 8. Average prices in Poland and Czech Republic 

 
Source: own calculations 
 

Slightly worse fit was obtained in the rest of the groups. In the case of 
Latvia, Netherlands an Romania the model consists of stochastic smooth trend and  
stochastic cycle (figure 9). The trends are similar.  

 
Figure 9. Average prices in Latvia, Netherlands and Romania 

 
Source: own calculations 
 



98 Stanisław Jaworski 

 

The fitted model is not adequately capturing the dynamic structure of the 
series and the normality assumption is disturbed. 

The same problem was found in the group of Italy, Belgium and Portugal. 
For the group it managed to separate simple trend and three cycles for each series 
(figure 10). Two of them have relatively high amplitude. Note that the cycles are 
similar with respect to considered states. 

 
Figure 10. Average prices in Italy, Belgium and Portugal 

 
Source: own calculations 

 
For the last group no model was done, because the series are almost parallel 

and steady with a one single joint change. Probably the prices are strictly 
controlled. 

THEORETICAL BACKGROUND AND TECHNICAL NOTE  

In the work theory of correspondence analysis is used, an approach that has 
become more used and appreciated over years. The formalization of the analysis 
can be found in Greenacre (1984) and in the framework of abstract linear algebra in 
Le Rouan and Rouanet (2004).  

Theory of structural time series is used (linear Gaussian form) to separate 
trends and cycles in the investigated price series. The theory from the standpoint of 
statistics an econometrics can be found in Harvey(1989) and in Durbin and 
Koopman (2005).  
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Necessary calculation are made with R (http://www.r-project.org/) and 
STAMP (http://stamp-software.com)  
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Abstract: The goal of the study is to prove the effectiveness of training 
programs directed to the unemployed on the local labor market in Poland. We 
estimate a semiparametric hazard model to assess the impact of training on 
the individual’s unemployment duration. To resolve the potential sample 
selection problem, the participation in a training program is instrumented 
using a probit model. The main question of this paper is whether the training 
significantly raises the transition rate from the unemployment into the 
employment state. 

Key words: program’s evaluation, instrumental variable method, hazard 
models 

INTRODUCTION 

In 2002, the government of Poland implemented a special program, whose 
main objective was the vocational activation of people belonging to risk groups in 
local job markets. The program is administered by the Polish Ministry of Labor and 
Social Policy and funded by the Labor Fund. The expenditure on the active labor 
market policy has increased, especially on trainings, apprenticeships and vocational 
training at the workplace. Program beneficiaries are selected from the unemployed 
workers who register in the state labor offices. 

As far as the impact of the active labor market policy in Poland is concerned, 
literature is modest. The effectiveness of the policy has been studied by the World 

                                                 
14 This work was supported by grant No. N N111 209436 from Polish Ministry of Science 
and Higher Education. 
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Bank in 1997, as part of a project covered by Czech Republic, Poland, Hungary 
and Turkey, and by Kluve, Lehmann and Schmidt [Kluve et al. 2000] and also by 
Puhani [Puhani 1998]. The recent program has been evaluated in 2008 by the 
Polish Ministry of Labor and Social Policy. The research indicated that only 
trainings and business incentives increased the chances of finding jobs, whereas 
programs such as intervention and public works were ineffective [Bukowski 2008]. 
The part of this research was a microeconometric analysis based on the logit model 
and propensity score matching. 

The selection bias problem, which is crucial for good evaluations of the 
training’s program, was considered by Landmesser [Landmesser 2010]. This 
evaluation employed matching methods to find a control group for the group of 
trainees, and it assessed the impact of the vocational training on the unemployment 
duration using a hazard model. A positive effect of training on reemployment 
probabilities was found. Although the study was carefully implemented, the 
method used to control for endogeneity was in this case rough and the matching 
was imprecise. For every treated one, only one untreated one, that resembled it as 
much as possible in terms of observable pre-training characteristics, was selected. 
As a result, too many individuals were excluded from the pooled sample and the 
method was not enough sufficient for evaluating the impact of the program. The 
matching methods are not robust against “hidden bias” arising from unobserved 
variables that simultaneously affect assignment to treatment. 

In this article we would like to use an alternative method for evaluating the 
impact of the vocational training on the duration of unemployment. The goal of the 
study is to prove the effectiveness of training programs directed to the unemployed 
on the local labor market in Poland. We identify the effectiveness with the impact 
of training on chances of finding jobs. To resolve the potential sample selection 
problem, the participation in a training program is instrumented using a probit 
model. Then, a semiparametric hazard model is estimated to assess the impact of 
training on the length of the employment search. We investigate whether the 
training significantly raises the transition rate from the unemployment into the 
employment state in the short- and the long-run. 

In our research study we try to analyze the situation on the local labor 
market. Therefore, the study is based on the data obtained from the District Labor 
Office in Słupsk in Poland from 2000 to 2007. 

METHODOLOGICAL CONSIDERATIONS 

The aim of the evaluation of training program effects is to assess the 
difference between the level of the outcome variable (i.e. duration of the 
unemployment period) at time t for a given participant having received training and 
the level of that variable at time t for the same individual without participation in 
the training program [Hujer et al. 1999]. Let 1

iY  be the unemployment duration 
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after training, and 0
iY  - the unemployment duration without training. The effect of 

training for individual i is then defined as 01
ii YY − . But it is impossible to observe 

individual treatment effect since we do not know the outcomes for untreated 
observations when it is under treatment, and for treated when it is not under 
treatment. We can only observe either 1

iY  or 0
iY , never both (compare with 

[Lalonde, 1986], [Dehejia, Wahba, 1999]). 
If the group of treated and the group of untreated are random samples from 

the population, the outcomes are independent of treatment: PYY ⊥10 , . In such a 
case, the average treatment effect could be obtained by comparing the expected 
level of the outcome for the two groups. 

For the non-experimental data sets like ours, the independence assumption is 
not valid and we have to cope with sample selection problem [Heckman, et al. 
1998]. The comparison between the outcomes of the two groups requires some 
assumptions. The conditional independence assumption states that conditional on 
the relevant covariates X , the outcomes are independent of treatment variable P : 

 
 XPYY ⊥10 ,  (1) 
 
Consider the simple linear model 
 
 uPXY Y ++= αβ  (2) 
 
The error term u embodies all omitted (observed and unobserved) factors 

that determine Y. If the assumption (1) is not fulfilled, there may be a correlation 
between the treatment variable P and u. The variable P is then endogenous and 
OLS gives biased estimates of parameters (selection bias). The solution to the 
problem, for instance, is to estimate simultaneously the equation for treatment and 
then the outcome equation. It is also possible, to use instrumental variable (IV) 
methods to handle endogenous treatment variable. In the IV approach, the 
participation is substituted with a variable IP (an instrument) that is correlated with 
participation P but not with error term u. If we denote ),(~ IPXZ Y=  and 

),(~ PXX Y=  the IV estimator for linear model equals YZXZ TT ~)~~( 1−  ([Bowden, 
Turkington 1984], [Bijwaard 2008]). 

To tackle the problem of sample selection in this study, we are substituting 
participation in the training program P with a variable that is correlated with 
participation but not with error term u. We implement probit regressions for men 
and women separately to analyze the determinants of participation in the training 
course. For individual i the past participation in the training program iP  is defined 
as: 
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The latent variable *
iP  is defined as a function of a vector of individual-level 

variables YiX , a vector of exogenous variables PiX  and an error component iv : 
 
 iPiYii vXXP ++= δγ*  (4) 
 
We propose the propensity to participate in a training course as a suitable 

instrumental variable. 
The outcome variable, we are interested in, is the duration of time an 

individual spends in the state of being unemployed. Therefore, in the next step we 
analyze the impact of training program on the length of the employment search. An 
appropriate approach, which considers right censoring of unemployment spells, 
and which controls characteristics of individuals that influence the unemployment 
duration, is the use of hazard models (see, e.g. [Kalbfleisch, Prentice, 1980], 
[Hosmer, Lemeshow, 1999], [Cameron, Trivedi, 2005]). 

In the terminology of survival analysis, the survivor function S(t) is the 
probability that the length of the unemployment after training exceeds a time point 
t and is defined by 

 [ ] )(Pr)( tFtTtS −=>= 1  (5) 

where T is a random variable, which represents the duration in the unemployment 
state with a density function f(t). 

Given S(t), the hazard function h(t) denoting the chance of leaving the 
unemployment state at time t among the individuals who were not yet employed at 
that time is 
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→0
 (6) 

In other words, the hazard function h(t) is the limit of the probability that the 
unemployment episode is completed during the interval [t, t+dt], given that it has 
not been completed before time t, for dt→0. The hazard rate – the value of hazard 
function – describes the intensity of transition from one state to another. 

The survivor curve can be specified as a function of individual 
characteristics for unemployed people and the program participation, so that 

),;( PXthh Y= . The widely applied semiparametric method of analyzing the effect 
of covariates on the hazard rate is the Cox’s proportional hazard model [Cox 1972]. 
In Cox model we have: 

 )exp()(),;( iYiiYi PXthPXth αβ += 0  (7) 
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Cox proposed a partial maximum likelihood estimation of this model. The 
model is estimated non-parametrically and there is no need to make assumptions 
about the baseline hazard )(th0 . It can be stated that in the Cox model the hazard 
functions for two individuals i and j are multiplicatively related, that is their ratio is 
constant. One subject’s hazard is a multiplicative replica of another one. If 
parameter α is positive, the individual receiving a training is likely to find 
employment before the individual who received no training. 

CHARACTERISTICS OF THE DATA SET 

The data used in our analysis concern the unemployed registered in the 
District Labor Office in Słupsk in Poland in the period from January 2000 to 
August 2007. The selected sample consists of 3513 persons, who were registered as 
unemployed at least for one day. On the basis of the history of events for each 
person registered in the labor office we can state the period of time a person was 
looking for a job or the period of time during which an unemployed is actually 
looking for a job (in days). The time spent in the unemployment state is called a 
spell. The spell is completed when the event occurs (finding a job). Otherwise, 
unemployment spells are treated as right censored. While our data basis contains 
multiple spells for 3513 persons we have got 6198 episodes. Descriptive statistics 
for the resulting spell data set can be found in Table 1. 
 
Table 1. Descriptive statistics for the data set 

number of: mean duration in days:
   individuals 3513  
   spells 6198   all spells 349,45 
   censored spells 870   censored spells 714,54 
   spells of trainees 625   spells of trainees 404,19 
   spells of non-trainees 5573   spells of non-trainees 343,31 

Source: own computations 
 

The participation in a vocational training seems to increase the 
unemployment duration. However, a simple comparison between the averages has 
to be done carefully since it is subject to potential selection effects. 

To model the participation in a vocational training the set of covariates for 
the hazard models includes dummy variables capturing the whole, the short-run 
and the long-run effect of the participation in the training: 
tr – participation in a vocational training during the last 3 years prior to the 
unemployment beginning, 
trs – participation in a vocational training during the last 12 months prior to the 
unemployment beginning, 
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trl – participation in a vocational training between 13 and 36 months prior to the 
unemployment beginning. 

EMPIRICAL RESULTS 

To tackle the problem of sample selection, we estimate probit regressions for 
the whole sample and for men and women separately to analyze the determinants 
of the participation in the training program. The empirical studies on training 
participation suggest that important determinants of training are: age, sex, caring 
for children, belonging to minority groups, educational degrees or occupational 
status (e.g. [Blundell et al. 1994], [Hujer et al. 1999]). Our empirical findings show 
that the only significant variables for the participation in training are: 
period – dummy variable: 1 for the time period 2004-2007 and 0 for the time 
period 2000-2003 (with this variable we prove the training course availability for 
the unemployed in the time span), 
edu1 – dummy variable: 1 if individual has incomplete primary, primary, lower 
secondary or basic vocational education level, 
edu2 – dummy variable: 1 if individual has general secondary, vocational 
secondary or post-secondary education level, 
edu3 – dummy variable: 1 if individual has tertiary education level, 
language – dummy variable: 1 if individual declares any foreign language skills. 
The hypothesis that age, sex or the marital status has influence on training 
participation could not be confirmed. The results of probit models estimation for 
men and women separately are given in Table 2. 

Individual participation in the vocational training is influenced by the 
variable period, which confirms that the variable could be a valid instrumental 
variable. Individuals who have primary or secondary education levels, in 
comparison with the tertiary education level, or individuals who declare any 
foreign language skills tend to participate more. 
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Table 2. Results of probit models estimation for participation in training during the last 3 
years (variable tr), last 12 months (trs) and between 13 and 36 last months (trl) 

Covariates Whole sample Men Women 
Coef. P>|z| Coef. P>|z| Coef. P>|z| 

Probit regression for variable tr 
period 0.329 0.000 0.333 0.000 0.339 0.000 
edu1 0.555 0.000 0.794 0.004 0.314 0.085 
edu2 0.470 0.001 0.519 0.066 0.462 0.006 
language 0.232 0.001 0.230 0.010 0.204 0.058 
cons -2.563 0.000 -2.727 0.000 -2.479 0.000 

No. of obs. = 6,198 
Pseudo R2 = 0.029 

No. of obs. = 3,247 
Pseudo R2 = 0.032 

No. of obs. = 2,951 
Pseudo R2 = 0.034 

Probit regression for variable trs 
period 0.272 0.002 0.233 0.056 0.330 0.011 
edu1 0.546 0.006 0.699 0.055 0.397 0.115 
edu2 0.421 0.033 0.205 0.598 0.504 0.030 
language 0.400 0.000 0.404 0.001 0.371 0.012 
cons -3.005 0.000 -3.092 0.000 -2.973 0.000 

No. of obs. = 6,198 
Pseudo R2 = 0.037 

No. of obs. = 3,247 
Pseudo R2 = 0.043 

No. of obs. = 2,951 
Pseudo R2 = 0.049 

Probit regression for variable trl 
period 0.314 0.000 0.344 0.000 0.284 0.014 
edu1 0.460 0.009 0.729 0.037 0.188 0.397 
edu2 0.420 0.017 0.616 0.084 0.335 0.103 
language 0.073 0.374 0.079 0.453 0.030 0.821 
cons -2.625 0.000 -2.830 0.000 -2.501 0.000 

No. of obs. = 6198 
Pseudo R2 = 0.021 

No. of obs. = 3247 
Pseudo R2 = 0.026 

No. of obs. = 2951 
Pseudo R2 = 0.019 

Source: own computations using Stata Statistical Software 
 
Now we consider the impact of training on the length of the unemployment 

duration. The estimated hazard models as a determinant for the probability of 
leaving the unemployment state will comprise usual socio-demographic 
characteristics of individuals and variables capturing the effect of participation in 
training. The additional new covariates are dummies: 
age 25 – with 1 if individual is 25 or younger, 
age 2640 – with 1 if individual is 26 or older, but younger than 41, 
age41 – with 1 if individual is 41 or older, 
marr – with 1 if individual is married, 
town – with 1 if the place of residence is town, 
disabled – with 1 if individual is disabled, 
benefit – with 1 if individual receives unemployment benefit. 

The results of Cox regressions are given in Table 3. We estimated two types 
of models: models A with the covariate tr for investigation of effects of any 
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training in the past, and models B with covariates trs and trl for investigation of 
effects of training in the short- and the long-run. 

 
Table 3. Results of Cox models estimation for participation in training 

Models A 

Covariates 
Naive Control 

Men Women Men Women 
HR P>|z| HR P>|z| HR P>|z| HR P>|z| 

age25 1,530 0,000 0,882 0,033 1,556 0,000 0,885 0,037 
age2640 1,190 0,000 0,984 0,769 1,224 0,000 0,985 0,772 
marr 1,316 0,000 0,910 0,035 1,352 0,000 0,914 0,048 
edu1 0,699 0,000 0,540 0,000 0,479 0,000 0,526 0,000 
edu2 0,844 0,046 0,704 0,000 0,646 0,000 0,662 0,000 
town 1,109 0,007 1,053 0,232 1,110 0,007 1,050 0,258 
disabled 0,548 0,000 0,788 0,039 0,552 0,000 0,786 0,037 
benefit 0,629 0,000 0,630 0,000 0,636 0,000 0,635 0,000 
tr, tr* 1,447 0,000 1,216 0,097 1,827 0,000 1,169 0,157 

No. of obs. = 3,247 
ln L  = -20,872.4 

No. of obs. = 2,951 
ln L  = -17,076.1 

No. of obs. = 3,247 
ln L  = -20,859.6 

No. of obs. = 2,951 
ln L  = -17,076.4 

Models B 

Covariates 
Naive Control 

Men Women Men Women 
HR P>|z| HR P>|z| HR P>|z| HR P>|z| 

age25 1,529 0,000 0,881 0,031 1,541 0,000 0,848 0,006 
age2640 1,190 0,000 0,982 0,734 1,219 0,000 0,980 0,713 
marr 1,315 0,000 0,910 0,036 1,351 0,000 0,919 0,063 
edu1 0,698 0,000 0,539 0,000 0,503 0,000 0,556 0,000 
edu2 0,844 0,045 0,702 0,000 0,711 0,005 0,710 0,000 
town 1,109 0,007 1,052 0,239 1,105 0,010 1,038 0,388 
disabled 0,546 0,000 0,786 0,038 0,553 0,000 0,801 0,056 
benefit 0,629 0,000 0,630 0,000 0,637 0,000 0,633 0,000 
trs, trs* 1,367 0,045 1,544 0,014 1,499 0,002 1,846 0,000 
trl, trl* 1,492 0,000 1,042 0,791 1,262 0,152 0,436 0,001 

No. of obs. = 3,247 
ln L  = -20,872.2 

No. of obs. = 2,951 
ln L  = -17,074.7 

No. of obs. = 3,247 
ln L  = -20,859.0 

No. of obs. = 2,951 
ln L  = -17,069.4 

Source: own computations using Stata Statistical Software; HR – hazard rates 
 
The first columns under the “Naive” heading were obtained by using the 

hazard function )exp()(),;( iYiiYi PXthPXth αβ += 0 , where iP  denotes the 
participation in the training program, and contains estimates for hazard rates. The 
columns under the “Control” heading were obtained by using instead 

)exp()(),;( iYiiYi IPXthPXth αβ += 0 , where instrument *
ii PIP =  denotes the index 

value obtained from the estimation (4) of the probit model. The index values are 
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the right-hand sides of probit equations less the residuals (not the expected 
probabilities computed using the normal distribution) [Wodon, Minowa 2001]. 

The age coefficients imply that men older than 41 are at a disadvantage to 
find a job. Married women are at the disadvantage at the job market, but for the 
married men the effect is the opposite. Primary or secondary education level has a 
significant negative effect on the opportunity to break unemployment. The disabled 
have a significant lower reemployment chance. There is a greater tendency to leave 
the unemployment state if the registered person receives no unemployment benefit. 

The naive estimates indicate that every training during the last three years 
reduces the length of unemployment. Training in the past has a positive effect on 
reemployment probabilities; the transition rate for men increases by about 45%, 
and for women increases by about 22%. There are positive impacts of training in 
the short-run for both men and women and in the long-run for men only. 

When we use the index values from probit models instead of variable tr (see 
estimates in models A under the “Control” heading), we can detect still positive 
impacts in the case of both men and woman. These effects are greater for men and 
are smaller for women (although for women not statistically significant). In the 
short-run we still observe strong positive impacts on employment for both men and 
women (see models B under the “Control” heading). The recent training seems to 
provide the unemployed with modern knowledge which positively distinguishes 
them from the other unemployed when searching for a job. Surprisingly, in the 
long-run this effect is statistically insignificant for men; for women the impact is 
significantly negative. 

CONCLUSIONS 

The goal of our study was to prove the effectiveness of training programs 
directed to the unemployed on the local labor market. We estimated hazard models 
to assess the impact of vocational training on the duration of unemployment spells. 
To resolve the potential sample selection problem, the participation in a training 
program was instrumented using a probit model. The IV procedure provides an 
answer to the question to what extent the effect of the training program was a result 
of the effectiveness of the program and to what extent it was due to the fact that 
program participants had different characteristics than other unemployed. The 
empirical results obtained confirm that training courses proved not fully effective. 

In particular, our results indicate that, mostly, there is a positive effect of the 
training in the past on reemployment probabilities. In the short-run this positive 
effect is much bigger and statistically significant for both men and women. 

Surprisingly, we detect a negative impact of training for women in the long 
run. Such an effect can be called the stigmatization effect. The long-run effect for 
men is statistically insignificant. Other results obtained for the whole sample - not 
presented in the article - also show the lack of training impact in the long-run. This 
is called a deadweight loss effect and it occurs when a training participant would 
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have reached the same result without participating in the program (it will be the 
case when company hires a subsidized employee but would also do so, if there is 
no subsidy) [Bukowski 2008]. 
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Abstract: A long-run trading strategy based on cointegration relationship 
between prices of two commodities is considered. A linear combination of 
the prices is assumed to be a stationary AR(1) process. In some range of 
parameters, AR(1) process is obtained by discrete sampling of Ornstein-
Uhlenbeck process. This allows to calculate approximate number of 
transactions in long run trade horizon and obtain approximate upper bound 
for possible gain. 
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INTRODUCTION 

The Engle-Granger [Engle, Granger 1987] idea of cointegration deepened 
understanding of two central properties of many economic time series – 
nonstationarity and time-varying volatility. Two nonstationary series may be 
related so that the values of one of them can not go (after appropriate scaling) too 
far from the values of the second. This relationship may often be observed for 
prices of two commodities (e.g. crude oil and heating oil). When we consider series 
of differences between appropriately scaled prices of such commodities, we 
observe that it reverts to its mean. In this paper we investigate trading strategy 
based on this phenomenon. We assume AR(1) structure of the series of differences. 
However, it often appears that it is much easier to investigate properties of discrete 
time series through their continuous counterparts - continuous-time stochastic 
processes. There already exists large literature concerning continuous time ARMA 
and GARCH processes, also driven by Levy processes and fractionally integrated 
(see for example [Brockwell, Marquardt 2005]). We will use this approach and find 
continuous counterpart for AR(1) process - an Ornstein-Uhlenbeck process. Since 
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statistical properties of Ornstein-Uhlenbeck process are subject of interest of many 
authors. we will be able to calculate all necessary quantities using their results.  

We will use results of Thomas [Thomas 1975] and Ricciardi & Sato 
[Riccardi, Sato 1988] concerning first hitting time of Ornstein-Uhlenbeck process 
(for more recent survey see [Alili et al 2005]).  

Author presumes that the used approach – investigation of properties of 
discrete time series through their continuous counterparts - may be very useful, 
since it is much easier to handle with continuous-time stochastic processes than 
with discrete-time ones. However, this approach shall be used with caution, since 
we always shall prove that the properties of continuous-time processes are good for 
approximation of the properties of discrete time series. As far as author knows, first 
step in this direction for the problem of approximating stopping times of crossing 
barriers by AR(1) discrete process with stopping times of hitting barriers by 
Ornstein-Uhlenbeck process was author’s paper [Łochowski 2007]. 

INTRODUCTION OF APPROXIMATE GROSS GAIN 

Let ( , 1)nP n ≥  and ( , 1)nQ n ≥  be two non-stationary time series 
representing evolution of the prices of futures contracts for two commodities  P   
and Q . We will assume that ( , 1)nP n ≥  and ( , 1)nQ n ≥  are cointegrated i.e. for 
some positive ,α β  the process n n nR P Qα β= −  is stationary. Moreover, we will 
assume that it is mean zero AR(1) process, i. e.  

 
1 ,n n nR R Zγ+ = +   (1) 

 
where ( , 1)nZ n ≥  is i.i.d. sequence, independent from 1R , with  

2
1 (0, )Z N σ∼ ( 2( , )N μ σ  denotes here normal distribution with mean μ  and 

variance 2σ ). An equivalent form of (1) is  
1 (1 ) ,n n nR Rγ σε+Δ = − − +   (2) 

 where  / , 1.n nZ nε σ= ≥   
It is easy to see that the stationarity of nR  holds iff ( 1;1).γ ∈ −   Stationarity 

implies that 2 2(0, /(1 ))nR N σ γ∼ −  and  2 2Cov( , ) /(1 ).h
n n hR R γ σ γ+ = −   

From stationarity of  nR   one may derive long-run trading strategy based on 
selling α  commodity P  contracts and buying β  commodity Q  contracts when  

nR   exceeds certain threshold value  a   and doing opposite, when  nR   goes below  
.a−  If we enter the market with α  contracts of commodity P  and are interested in 

leaving it with the same volume of commodity P  contracts after long time horizon 
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T  then the gross gain obtained from the strategy equals 2 ( ),a N a⋅  where ( )N a  
denotes the number of pairs of transactions: 

• when n n nR P Q aα β= − ≥  sell α  commodity P  contracts and 
simultaneously buy β  commodity Q  contracts, 

• when n n nR P Q aα β= − ≤ −  buy α  commodity P  contracts and 
simultaneously sell β  commodity Q  contracts. 

The problems which one faces deciding for the described strategy is the 
estimation of  ( )N a   and then the choice of an optimal threshold value  .a   

Firstly we will try to estimate  ( )N a   for large T  and positive, fixed (but 
not too small)  .a   Let  1 2,T T   be the following stopping times  

 

1 2 1inf{ : },  inf{ : }.n nT n R a T n T R a= ≥ = ≥ ≤ −  
 
Let us assume that the process nR  has small jumps (much smaller then  a ) 

and it is obtained by discrete sampling of a continuous-time process with 
continuous trajectories, ( , 0)tU t ≥ , i. e.  n nR U=   for  1,2,?.n =   Let 1 2,T T  be 

continuous counterparts to  1 2, ,T T   i. e.  
 

1 2 1inf{ : },  inf{ : }.t tT t U a T t T U a= ≥ = ≥ ≤ −  
 

In fact, from continuity of tU  we have 
 

 1 2 1inf{ : },  inf{ : }.t tT t U a T t T U a= = = ≥ = −  
 
Let us denote 2 1( ) ( ).T a E T T= −  From the assumption about nR  we get 

1 1 2 2,T T T T≈ ≈  (cf. [Łochowski 2007]). Now from theory of renewal processes (cf. 
[Rolski et al 1998]) and symmetry of the process nR  we may approximate number 

of transactions ( )N a  in long time horizon by ( )( )/ 2 .T T a  Thus the gross gain in 

long time horizon equals ( ) ( )2 / .a N a a T T a⋅ ≈ ⋅  Based on this reasoning let us 
define. 
 

Definition. Approximate gross gain, ( , ),AGG a T  for a threshold value  
0a >  and time horizon 0T >  is defined by the formula  
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( , ) .
( )

T aAGG a T
T a
⋅=  

 

ORNSTEIN-UHLENBECK PROCESS AS A CONTINUOUS VERSION 
OF AR(1) PROCESS  

The natural candidate for process tU  is Ornstein-Uhlenbeck process being a 
solution of the following stochastic differential equation - the continuous 
counterpart of (2) 

 
(1 ) ,t t tdU U dt dWγ σ= − − +   (3) 

 
where tW  denotes a standard Wiener process. 

Equation (3) has the following solution 
  

(1 ) (1 )( )
0 0

.
tt t s

t sU e U e dWγ γσ− − − − −= + ∫  

From bilinearity of covariance, independence of increments of Wiener process and 
then from isometry formula for stochastic integrals we have 
 

( )
( )
( ) ( )

( )

(1 )( ) (1 )( )
0 0

(1 )( ) (1 ) (1 )
0 0

2(1 )min ,min ,(1 )( ) 2(1 ) (1 )( )
0

,

,

1.
2 1

t ut s u s
s s

t ut u s s
s s

t ut ut u s t u

Cov e dW e dW

e Cov e dW e dW

ee e ds e

γ γ

γ γ γ

γ
γ γ γ

γ

− − − − − −

− − + − −

−
− − + − − − +

=

−= =
−

∫ ∫

∫ ∫

∫

 

 
Assuming that 0U  is independent from ( , 0)tW t ≥ , we get 

2(1 )
(1 )(2 ) 2 (1 )(2 )

0
1Cov( , ) Var( ) .

2(1 )

t
t h t h

t t h
eU U e U e

γ
γ γσ

γ

−
− − + − − +

+
−= +

−
 

If 2
0 (0, /(2(1 )))U N σ γ∼ −  then 2(0, /(2(1 )))tU N σ γ∼ −  and 

2 (1 )Cov( , ) /(2(1 )).h
t t hU U e γσ γ− −

+ = −   
Comparing the distribution of nU  with the distribution of nR  we see that 

they are different. But when (0;1),γ ∈  taking process ( , 0)tV t ≥  defined by the 
equation  
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2
2ln(1/ )ln(1/ )

1t t tdV V dt dWγγ σ
γ

= − +
−

 

with 2 2
0 (0, /(1 ))V N σ γ∼ −  independent from ( , 0),tW t ≥  we obtain such a 

process that for positive integers 1 2, ,?, kn n n  vector 
1 2

( , ,?, )
kn n nV V V  has the same 

distribution as vector 
1 2

( , ,?, ).
kn n nR R R  

Remark. Ornstein-Uhlenbeck process may also be introduced as a time-
space scaled Wiener process. Defining  

ln(1/ ) 2ln(1/ )
2

( )
1

t t
tV e W eγ γσ

γ
−=

−
 

we get a process with the same finite distributions as the process ( , 0).tV t ≥  

UPPER BOUND FOR APPROXIMATE GROSS GAIN 

Now we are ready to calculate ( ).T a  Let us denote 
 
 , 0: inf{ 0 : | }.b c tT t V c V b= ≥ = =    
 
From results of Thomas [Thomas 1975] and Ricciardi & Sato [Riccardi, Sato 

1988] as well as from scaling properties of tV  we have that for 0a >  

( )( )
2 2

21 / 2
,0 0

( ) 1 erf
2ln(1/ )

a t
aE T t e dt

γ σπ
γ

−
= +∫  

and  

( )( )
2 2

21 / 2
0, 0

( ) 1 erf ,
2ln(1/ )

a t
aE T t e dt

γ σπ
γ

−
= + −∫  

where erf ( )t  stands for error function defined as 
22

0erf ( ) .t st e ds
π

−= ∫  From strong 

Markov property of  tV   and since  erf ( ) erf ( ) 0t t+ − =  
 
 
 
 
 
 
 
 
 



On upper gain bound for trading strategy … 115 

 

we see that  
 

2 2
2

,0 0, ,0 0,

1 / 2

0

( ) ( ) ( ) ( ) ( )

.
ln(1/ )

a a a a

a t

T a E T E T E T E T

e dt
γ σπ

γ

−

−

= + = +

= ∫
 

 
Since  

2 2 2 1

0 00 0 ! (2 1) ! ,
k ku ut t u

k kk k ke dt dt +∞ ∞
= = + ⋅= =∑ ∑∫ ∫   we have  

2 1
2 1

0
( ) ,k

k
k

T a d a
∞

+
+

=
=∑  

where  
1/ 22

2 1 2
1 1 0,  for 0,1,?.

ln(1/ ) (2 1) ! 2

k

kd k
k k

π γ
γ σ

+

+
⎛ ⎞−= > =⎜ ⎟⎜ ⎟+ ⋅ ⎝ ⎠

 

 
Now we have 
 

3 2
1 3 1 3

1
( )
a a

T a d a d a d d a
= =

+ + + +
 

 
and we see that approximate gross gain, ( )( , ) ,T a

T aAGG a T ⋅=  is a decreasing 

function of .a  We also have  
 

2?00 1

1 2 ln(1/ )sup lim .
( ) ( ) 1aa

a a
T a T a d

γ σ
π γ>

= = =
−

 

 
The above calculations imply 
Theorem. If  (0;1)γ ∈   the approximate gross gain, ( , ),AGG a T  for any 

positive a  and T  is bounded from above by  1/ ,T d   i. e.  

2

2 ln(1/ )( , ) .
1

AGG a T Tγ σ
π γ

≤ ⋅
−

  (4) 

Moreover, there is no positive  a   for which the above value is attained. 
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FINAL REMARKS 

The results of the previous section are in some sense negative, since there is 
no optimal postive threshold value a  maximizing the approximate gross gain. 
Moreover, the smaller is 0,a >  the greater is ( , ).AGG a T  But for very small 
threshold values the relationships 1 1 2 2,T T T T≈ ≈  on which our reasoning was 
based, may fail. Moreover, when a  is small we have to change our positions very 
often which may be not technically possible and if we take into account transaction 
costs then it would appear that for small a  our trading startegy leads to loss.  

However, it seems that the formula for upper gain bound in our simple 
model has natural interpretation in terms of quantities appearing on the right side of 
(4). The maximal posible gain is proportional to the duration T  of the investment 
and to standard deviation σ  of the random term nZ . It is known phenomenon 
(used sometimes in so called volatility trading), that the bigger volatility, 
represented here by σ , the bigger profits in short term are possible. 

The more sophisticated seems to be the dependence of ( , )AGG a T  on 
parameter .γ  This parameter determines the speed of reverting AR(1) process to its 
mean value. The bigger γ  the longer time is needed for AR(1) process to revert to 
its mean. The dependence between γ  and ( , )AGG a T  is represented by the 

function ( )
2

ln 1/
.

1

γ
γ

γ−
 This is decreasing function on the interval ( )0;1  and its 

graph is presented below. 
 

Figure 1. Graph of the function 
( )

2

ln 1/
.

1

γ
γ

γ−
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Abstract: This paper aims at examining the bilateral linkage between daily 
stock market indices, in which the leading index of WSE (WIG20) is the 
reference. Thus, the study is limited to pairs including WIG20 and indices 
which are listed on the financial centers of WSE’s main foreign investors. 
The relationship between the markets is investigated throughout the 
cointegration theory. Further, the Granger causality is carried out in order to 
distinguish the directions of influence across the stock market environments. 
The obtained results shall explain the investor’s tendencies in portfolio 
diversification. 

Keywords: market stock exchange, stock exchange indices, WIG20, 
cointegration theory, Granger causality, portfolio diversification. 

INTRODUCTION 

The international portfolio diversification, as one of general techniques for 
reducing investment risk, has been among the most celebrated concepts in finance 
for more than half a century. Starting with the pioneering work in Modern Portfolio 
Theory presented by Markowitz [Markowitz 1952, 1959] together with later 
findings of Grubel [Grubel 1968], the concept of modern portfolio analysis was 
irrevocably extended from domestic to international capital markets. Since then 
there have been a numerous empirical studies which showed substantial advantages 
of international diversification.  

In spite of different methods applied, the conclusions of early empirical 
studies, namely [Levy et al., 1970], [Grubel et al., 1971], [Lessard, 1973] and 
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[Solnik, 1974], were consistent with both Markowitz’s and Grubel’s predictions 
[Markowitz, 1952, 1959], [Grubel, 1968]. In fact, each of these studies indicated 
that movements of stock prices within different countries are characterized by low 
correlation, hence are almost unrelated to each other. This leads to the conclusions 
that simultaneous capital investing across these countries can bring benefits.  

Nevertheless, it is worth mentioning that the studies cited above were written 
in times when the movement of capital between market exchanges was relatively 
limited by political and legal restrictions. Indeed, the relationship between the 
stock markets started to be visible when these restrictions were lifted with time. 

Recently, numerous studies focus on cointegration techniques to investigate 
the existence of long-run benefits from international diversification, for instance: 
[Gilmore et al. 2005] and [Voronkova, 2004]15. These researches examine both 
bilateral and multilateral cointegration properties. According to these studies, the 
equity markets move in the same direction in the long-run and therefore there is no 
advantage of international diversification. 

The U.S. market is found to be the dominant market in the financial world. 
What is interesting, it did not influence the market’s behaviour of “new EU 
members”16 before its EU enrolment [Gilmore et al. 2002]17, [Kanas, 1998]18. On 
the other hand, the long-run linkages between Central European markets19 and the 
developed markets in Western Europe and the U.S can be found after the EU 
accession [Rousova, 2009]. 

The aim of this paper is to investigate long-run benefits from international 
portfolio diversification for foreign investors who invest within Warsaw Stock 
Exchange (WSE). 

The question is whether the international investors present on WSE tend to 
exploit all benefits from portfolio diversification. Specifically, examined is the case 
of foreign investors who diversify portfolio by holding assets on both, WSE and on 
his/her home financial centre. The gains of portfolio diversification is investigated 
by bilateral relationship between Polish and other market. To achieve the goals, the 
framework of cointegration theory is adopted. 
                                                 
15 [Gilmore et al. 2005] and [Voronkova, 2004] show that process of integration of the 
Central and Eastern European countries into the EU resulted in their equity markets’ 
comovements with other major EU countries and even with USA stock market (in case of 
Varonkova). 
16 “new EU members” refer to Central and Eastern European countries which joined the EU 
on 1st May 2004, that is: Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, 
Slovakia, Slovenia and the Mediterranean islands of Malta and Cyprus. 
17 Paper shows that Czech Republic, Hungary and Poland were not cointegrated with the 
U.S equity market during the period from 1995 to 2001. 
18 The results for the period from 3rd January 1983 to 29th November 1996 show that the US 
market was not pairwise cointegrated with any of the European markets, namely the UK, 
Germany, France, Switzerland, Italy, and the Netherlands. 
19 that is specifically Czech Republic, Poland and Hungary. 
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In fact, integration among stock markets is not constant over time mainly 
due to unexpected events, such as financial crises, for instance. For this reason, the 
study distinguishes additional period after the financial crisis that started at the end 
of 2008. This division helps to find out the eventual effects of the financial crisis 
on cointegration relationship. In other words, the study tries to answer the question 
whether the crisis caused the contagion or contrary weaken the linkage between the 
stock markets.  

Additionally, the Granger causality is carried out in order to distinguish the 
directions of influence across the stock market environments.  

UNIT ROOT, COINTEGRATION AND GRANGER CAUSALITY 

The research on the relationship between the markets is performed with use 
of cointegration theory. Since the stationarity of time series is the precondition for 
cointegration analysis, the first step is to test the stationarity of each time series. 
The Augmented Dickey-Fuller test (ADF), as an extension of the Dickey and 
Fuller method, is used [Dickey and Fuller, 1979; 1981]. It tests for the presence of 
unit root, which alternative of stationarity of the series investigated. Additionally, 
for the cointegration analysis purposes, all the series must be integrated of the same 
order.  

The next step is application of cointegration analysis to test the presence of 
long-run equilibrium relationships. This paper uses Banerjee, Dolado and Mestre 
cointegration test [Banerjee et al., 1998]. Null hypothesis is that there is no 
cointegrating relationship among the variables. 

Additionally, the simple Granger causality test is performed in order to 
distinguish directions of influence across the stock market environments [Granger, 
1969]. Granger causality test allows to determine whether one index is useful in 
forecasting another. If the past values of the index A can be used to predict another 
index B more accurately than using just the past values of B index, it can be argued 
that A Granger-cause B. This means that if past values of A statistically improve 
the prediction of the B, then we can conclude that A Granger-causes B. The null 
hypothesis assumes no Granger causality and is verified by using F-tests. 

In this study, the Granger causality test and cointegration tests are proceeded 
pairwise with up to 10 lags tested. 

Confirming existence of Granger causality and cointegration can be 
considered as evidence against portfolio diversification opportunities. 

FOREIGN INVESTORS ON WSE 

In view of the fact that WSE is of particular interest for this paper analysis, 
the stock market indices of countries of its main foreign investors are investigated. 
Thus, the decision on countries chosen as investors’ origin was driven primarily by 
data availability to the researches conducted by WSE. In fact, these regular studies 
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provide information about the structure of its investors20. It is worth noticing that 
foreign investors are identified here with the brokerage houses. Although we 
realize that nationality of brokerage house’s customers does not necessarily 
coincide with placement of itself, it is the only source of data available. 

Over the past years, according to the data published by WSE, foreign 
investors had the highest share in equity trading, followed by domestic financial 
institutions and individual investors [see Figure 1]. 

 
Figure 1. Investor structure on WSE (% shares in equity trading) for period between 2004 

and 2009 (as of the end of the year) 
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Source: own investigation based on WSE data 
 
 

                                                 
20 The analyses are based on Warsaw Stock Exchange Fact Book 2009. Official publication 
of WSE can be found at www.wse.com.pl. 
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Figure 2. Foreign investors structure on WSE (% shares in equity trading) for period 
between 2005 and 2009 (as of the end of the year) 
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Source: own investigation based on WSE data 
 
What is more, there have been no changes in national origin of foreign 

brokers trading in shares [see Figure 2]. Indeed, brokers from Great Britain have 
been prevailing among foreign investors since the beginning of the period under 
investigation. The rest of shares in equity trading has been almost equally 
distributed among other foreign participants and when compared to Great Britain, 
gives a negligible contribution of these investors (less than 11% each). 

To sum up, during the period under consideration the main investors that 
were present on Polish market were from: United Kingdom, Czech Republic, 
Austria, France, Italy, Germany, Hungary and the USA, and are identified in this 
study with main foreign investors groups present on WSE. 

Therefore, in order to investigate the stock market linkage between WSE and 
home financial centres of its main foreign investors, daily closing quotes of WIG20 
and leading indices from seven corresponding market stock exchange is used 
[see Table 1]. 
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Table 1. Stock Market Indices 

Country Stock Market Exchange Webpage Index 
Austria Vienna Stock Exchange www.wienerborse.at/ ATX 
Czech Republic Prague Stock Exchange www.pse.cz/ PX 
France Euronext Paris www.euronext.com/ CAC40 
Germany Frankfurt Stock Exchange www.boerse-frankfurt.de/ DAX 
Hungary Budapest Stock Exchange www.bse.hu/ BUX 
Italy Borsa Italiana www.borsaitaliana.it FTSE MIB 
Poland Warsaw Stock Exchange www.wse.com.pl/ WIG 20 
United 
Kingdom London Stock Exchange www.londonstockexchange.com/ FTSE 100 

United States of 
America 

New York Stock 
Exchange www.nyse.com/ S&P 500 

Source: own Investigation based on official Stock Market Exchange webpages 

DATA DESCRIPTIONS 

All data used in the study was obtained from the same source, namely from 
the webpage: www.finance.yahoo.com. Study covers the period between 
1st January 2004 and 12th March 2010 (1575 observations for each stock market 
index). The additional subperiod covers the series between 12th March 2009 and 
12th March 2010 which represent the data after the financial turmoil that started by 
the end of 2008. 

The basic statistical characteristics of the sampled indices for the whole 
period under consideration and subperiod are presented respectively in Table 2 and 
Table 3.  

 
Table 2. Main descriptive statistics (1st January 2004 – 12th March 2010) 

Country AUSTRIA CZECH FRANCE GERMANY HUNGARY ITALY POLAND UK USA 

Index ATX PX CAC 40 DAX BUX FTSE 
MIB WIG20 FTSE 

100 SP500 

Mean 3 147.00 1 271.80 4 390.50 5 543.10 19 265.00 31 125.00 2 494.40 5 321.40 1 211.80 
Median 3 179.60 1 274.00 4 321.60 5 519.80 20 781.00 31 878.00 2 384.80 5 330.50 1 213.90 
Minimum 1 412.00 628.50 2 519.30 3 647.00 9 380.00 12 621.00 1 327.60 3 512.10 676.53 
Maximum 4 981.90 1 936.90 6 168.10 8 105.70 30 118.00 44 364.00 3 917.90 6 732.40 1 565.20 
Standard 
Deviation 1 027.30 349.81 874.74 1 233.50 5 251.10 7 447.80 680.30 771.98 185.95 

Skewness 0.08 -0.03 0.18 0.36 -0.28 -0.27 0.36 -0.05 -0.36 
Kurtosis 1.62 1.84 1.98 2.06 1.99 2.13 1.90 1.89 2.74 
Jarque-
Bera test 126.06 87.87 78.38 91.71 87.14 68.95 112.97 82.26 38.14 

Source: own calculations 
 

For the whole period measures for skewness and excess kurtosis show that 
PX, BUX, FTSE MIB and FTSE are negatively skewed, whereas ATX, CAC 40, 
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DAX, WIG20 are positively skewed. All series are leptokurtic and are not normally 
distributed.  

For the subperiod all indices have characteristics typical for financial series 
that is negative skewness, positive kurtosis and time series are not normally 
distributed. 
 
Table 3. Main descriptive statistics (12th March 2009 – 12th March 2010) 

Country AUSTRIA CZECH FRANCE GERMANY HUNGARY ITALY POLAND UK USA 

Index ATX PX CAC 40 DAX BUX FTSE 
MIB WIG20 FTSE 

100 SP500 

Mean 2 310.20 1 044.10 3 513.40 5 301.20 18 074.00 21 026.00 2 105.10 4 807.00 1 005.00 
Median 2 453.10 1 117.60 3 640.10 5 481.30 19 457.00 21 627.00 2 187.30 4 987.70 1 032.20 
Minimum 1 467.30 677.30 2 694.30 3 953.60 9 461.30 13 804.00 1 452.80 3 712.10 750.74 
Maximum 2 752.40 1 220.30 4 045.10 6 048.30 23 210.00 24 426.00 2 489.40 5 599.80 1 150.20 
Standard 
Deviation 312.07 140.00 349.71 535.11 3 597.60 2 340.10 269.96 518.81 105.35 

Skewness -0.75 -0.80 -0.52 -0.73 -0.63 -0.97 -0.58 -0.36 -0.52 
Kurtosis 2.47 2.31 2.09 2.56 2.15 3.45 2.25 1.78 2.08 
Jarque-
Bera test 26.74 32.33 20.39 24.88 24.42 42.13 20.29 21.02 20.63 

Source: own calculations 

RESULTS 

As first step, the ADF test was applied both to the levels and first differences 
of each series [see Table 4]. Appropriate number of lags for the ADF test was 
selected according to the Schwarz information criterion. For the levels, the results 
show that the null hypothesis of a unit root cannot be rejected at 5% significance 
level. The first-differenced series rejects the null hypothesis, indicating that time 
series are stationary. Consequently, all series are integrated I(1). 

Given that the first differences are integrated of the same order (1), hence 
stationary, the Granger causality tests are performed [see Table 5]. WIG20 
Granger-causes DAX (null hypothesis rejection for all 10 lags), PX (null 
hypothesis rejection for lags from 2 to 10), BUX (null hypothesis rejected for lags 
from 4 to 10), ATX (null hypothesis rejected for lags 7 and 8) and S&P 500 (null 
hypothesis rejection for all 10 lags). 

WIG20 is Granger-caused by CAC (null hypothesis rejected for lags 3 and 
from 7 to 10), PX (for all 10 lags), BUX (for all 10 lags), ATX (for all 10 lags), 
FTSE (for lags from 8 to 10) and FTSE MIB (for lags 3, 4 and from 7 to 10). 

Results indicate that WIG20 is influenced by strong and developed markets 
in Germany, UK and Italy. Moreover, WIG20 influences and is simultaneously 
influenced by stock markets of Central and Eastern Europe (Austria, Hungary and 
Czech Republic). In other words changes in the CEE indexes cause changes in 
WIG20 index with up to 10 days lags. The reverse situation is also true with less 
WIG20’s lags. Granger-causing S&P500 by WIG20 doesn’t necessarily indicative. 
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In chosen subperiod some important changes occurred and significantly less 
dependency can be observed [see Table 5]. There are no causalities between 
WIG20 and CAC, FTSE, FTSE MIB. There is also a decrease in number of lags in 
WIG20’s influence on DAX or ATX and an increase in WIG20’s influence on PX. 
A decrease in influence on WIG20 is noted for BUX and ATX.  

 
Table 4. ADF Test results (1st January 2004 – 12th March 2010) 

Country Index levels21 First difference Conclusion 
Austria ATX -1,316 -14,1099 I(1) 
Czech Republic PX -1,551 -13,9403 I(1) 
France CAC 40 -1,327 -14,3275 I(1) 
Germany DAX -1,302 -14,6469 I(1) 
Hungary BUX -1,719 -13,4408 I(1) 
Italy FTSE MIB -1,269 -14,0153 I(1) 
Poland WIG20 -1,301 -14,6806 I(1) 
United Kingdom FTSE 100 -1,551 -14,2512 I(1) 
United States of America SP500 -1,372 -14,5581 I(1) 

Source: own calculations 
 
Table 5. Granger Test results 

Index 
1st January 2004 – 12th March 2010 12th March 2009 – 12th March 2010 

WIG20 Granger 
causes… 

…Granger 
causes WIG20 

WIG20 Granger 
causes… 

…Granger 
causes WIG20 

CAC x 3, from 7 lags x x 
DAX to 10 lags x to 2 x 
PX from 2 lags to 10 lags 3,from 5 to 10 to 10 
BUX from 4 lags to 10 lags x from 1 to 4, 6, 9 
ATX from 7 to 8 lags to 10 lags 7 from 1 to 4 
SP500 to 10 lags x to 10 x 
FTSE x from 8 lags x x 
FTSE MIB 3 3-4, from 7 lags x x 

Source: own calculations 
 

Cointegration tests results are shown in Table 6. In period 2004-2010 
WIG20 is cointegrated with PX (null hypothesis rejected for lags 1 and 2), ATX 

                                                 
21 The critical values of the ADF t-statistic as reported by STATA, the econometric 
software used for performing the unit root test, are -2.329, -1.646, -1.282 at the 1%, 5% and 
10% levels of significance, respectively. 
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(for lags 1 and 2) and FTSE (null hypothesis rejection for all 10 lags). In subperiod 
2009-2010 WIG20 is cointegrated with CAC (for lags from 1 to 8), DAX (for all 
10 lags), BUX (for lags from 1 to 5 and for 7th lag), S&P500 (for all 10 lags) and 
FTSE (for lags from 1 to 5 and for 7th lag). No cointegration with FTSE MIB was 
observed. Therefore stronger cointegration WIG20 with most of the indices 
considered in our study can be observed.  

In some cases, the results for the cointegration and Granger causality test 
seem to be in conflict with each other. The explanation is based on the 
consideration that the Granger causality test explores the short-term relationships 
among variables whereas cointegration tests are used to examine long-term 
relationship. 
Table 6 Cointegration Relationships 

 1st January 2004 – 12th March 2010 12th March 2009 – 12th March 2010 
CAC 1 from 1 to 8 
DAX x from 1 to 10 
PX from 1 to 2 x 

BUX x from 1 to 5 and 7 
ATX from 1 to 2 x 

SP500 x from 1 to 10 
FTSE from 1 to 10 from 1 to 5 and 7 

FTSE MIB x x 

Source: own calculations 

CONCLUSION 

The aim of this paper was to investigate possible interactions between 
Warsaw Stock Exchange index - WIG20 - and indices of home country financial 
centres of WSE’s main foreign investors. 

The results suggest that since the year of Polish accession to the European 
Union, Polish market has shown particularly strong relationships with stock 
markets from the CEE region. The influence is two-sided and is visible in short and 
long horizon, which was proved by the results of the Granger and cointegration 
test, respectively. These findings seem to be in line with the previous studies 
conducted by [Gilmore et al. 2005] and [Voronkova, 2004]  

Furthermore, the findings reveal that every stock market were sensitive to 
financial turmoil which started at the end of 2008. In fact, in the short term strength 
of relationship between WIG20 and other markets seem to decrease. WIG20 is 
Granger-caused by indices of neighbouring stock markets of the CEE region. 
However in the long-run the Polish market reacts strongly at signals from the most 
matured and developed markets, that is the USA, United Kingdom, Germany and 
France. 
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Finally, taking into account that comovement can be found for Polish market 
and other European markets (especially LSE and all CEE stock markets), 
increasing integration among these financial markets gradually reduces benefits 
derived from international diversification in the long term perspective. However, 
the US investors can still benefit from investing in emerging markets, like WSE, 
both in short and long time horizon. 

In conclusion incentives for investing on WSE are not connected with 
portfolio diversification due to strong dependencies between analysed stock 
markets. 
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Abstract: The main goal of this paper is to examine the influence of factor 
orthogonalization in modified versions of classic market-timing models with 
the Fama and French spread variables SMB and HML, which have been 
introduced in [Olbryś 2010]. We construct the orthogonal market factors 
using the Busse procedure [Busse 1999]. The market-timing and selectivity 
abilities of 15 equity open-end mutual funds have been evaluated for the 
period January 2003 – December 2009 based on the panel data estimation 
using the SUR method. We compare the regression results of the models with 
common and orthogonal market factors and investigate their statistical 
properties. 

Keywords: mutual fund, multifactor market-timing model, orthogonalized 
factor, SUR method  

THREE-FACTOR MARKET-TIMING MODELS WITH FAMA AND 
FRENCH SPREAD VARIABLES 

E. Fama was the first to propose a formalized theoretical methodology for 
the decomposition of total return into the components of timing and selectivity 
[Fama 1972]. Treynor and Mazuy develop a procedure for detecting timing ability 
that is based on a regression analysis of the managed portfolio’s realized returns, 
which includes a quadratic term [Treynor & Mazuy 1966]. Henriksson and Merton 
propose a theoretical structure that allows for the formal distinction of managers’ 
forecasting skills into timing and selectivity [Henriksson & Merton 1981]. By 
assuming that the market timer’s forecasts take two possible predictions: either 

                                                 
22 Financial support in 2009 – 2011 from the Polish Committee for Scientific Research 
within the grant No. N N113 173237 is gratefully acknowledged 
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stocks will outperform bonds or bonds will outperform stocks, Merton derives an 
equilibrium theory that shows that the return patterns resulting from a market-
timing strategy are similar to the return pattern of an option strategy (of the put-
protective type) [Merton 1981]. Based on this model, Henriksson and Merton 
develop statistical procedures to investigate market-timing abilities of portfolios’ 
managers. Fama and French find that two variables, the market value ( MV ) and 
the ratio of book value to market value ( MVBV / ) capture much of the cross – 
section of average stock returns [Fama & French 1993]. They form portfolios 
meant to mimic the underlying risk factors in returns related to size and book-to-
market equity. These mimicking portfolios (SMB and HML) have been introduced 
as explanatory variables into regressions of Polish equity mutual funds’ portfolios 
excess returns in [Olbryś 2010]. The size (SMB) and book-to-market (HML) 
mimicking portfolios on the Polish market have been constructed using the Fama 
and French procedure. The market-timing and selectivity abilities of the funds’ 
managers have been evaluated for the period January 2003 – December 2009, 
based on the modified three-factor market-timing models, using Newey-West 
robust HAC estimators or the SUR method, respectively. 

In [Olbryś 2010] the modified three-factor Treynor - Mazuy model with 
Fama and French spread variables (T-M-FF model) has been expressed as: 
 tPtMPtHMLPtSMBPtMPPtP rrrrr ,

2
,,2,1,, )( εγδδβα +⋅+⋅+⋅+⋅+=  (1) 

where: 
tFtPtP RRr ,,, −=  is the excess return of the portfolio P  in the period t , 

tFtMtM RRr ,,, −=  is the excess return of the portfolio M in the period t , 

tPR ,  is the one-period return of the portfolio P , 

tMR ,  is the one-period return of the market portfolio M , 

tFR ,  is the one-period return of riskless securities, 
Jensen’s Pα  measures selectivity skills of the portfolio’s P  manager [Jensen 
1968], 

Pβ  is the systematic risk measure of the portfolio P , 

Pγ  measures market-timing skills of the portfolio’s P  manager [Henriksson & 
Merton 1981], 

tP,ε  is a residual term, with the following standard CAPM conditions: 

0)( , =tPE ε , 0)( 1,, =−tPtPE εε . 

tFtSMBtSMB RRr ,,, −= is the excess return of the portfolio SMB, 

tFtHMLtHML RRr ,,, −= is the excess return of the portfolio HML, 

P1δ  is a sensitive measure of the portfolio P  returns due to the changes in the SMB 
factor returns, 
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P2δ  is a sensitive measure of the portfolio P  returns due to the changes in the 
HML factor returns. 

In a way analogous to (2), Olbryś expressed the modified three-factor 
Henriksson - Merton model with Fama and French spread variables (H-M-FF 
model) as: 
 tPtMPtHMLPtSMBPtMPPtP yrrrr ,,,2,1,, εγδδβα +⋅+⋅+⋅+⋅+=  (2) 
where: 

tPr ,  , tMr , , tSMBr , , tHMLr , , Pα , Pβ , Pγ , P1δ , P2δ , tP,ε  are as in the equation (1), 
},0max{},0max{ ,,,, tMtMtFtM rRRy −=−= . 

ORTHOGONALIZED FACTORS IN MARKET-TIMING MODELS 

We orthogonalize the SMB and HML indices to maintain consistency with 
the theoretical and practical development that there is a correlation between the 
market factor M and mimicking portfolios SMB or HML ([Busse 1999], [Fama & 
French 1993]).  

We take the orthogonal SMB factor (call it SMBO) to be the intercept plus 
the SMB factor regression residuals on the simple excess returns of the main index 
of Warsaw Stock Exchange companies, given as: 
 ttMSMBSMBtSMB rr εβα +⋅+= ,,  (3) 
The sum of the intercept and the residuals in (3): 
 tSMBtSMBOr εα +=,  (4) 
 is uncorrelated with the explanatory market variable in (3). 

 Similarly, we take the orthogonal HML factor (call it HMLO) to be the 
intercept plus the HML factor regression residuals on the simple excess returns of 
the main index of Warsaw Stock Exchange companies and the orthogonal SMBO 
factor, which is expressed as: 
 ttSMBOHMLtMHMLHMLtHML errr +⋅+⋅+= ,,, γβα  (5) 
The sum of the intercept and the residuals in (5): 
 tHMLtHMLO er +=α,  (6) 
 is uncorrelated with the explanatory variables in (5). 

Then the three-factor T-M-FF model (1), with the orthogonalized SMBO and 
HMLO factors can be expressed as: 
 tPtMPtHMLOPtSMBOPtMPPtP rrrrr ,

2
,,2,1,, )( εγδδβα +⋅+⋅+⋅+⋅+=  (7) 

where the notations are as in the equation (1) but the explanatory variables tSMBOr ,  

and tHMLOr ,  are given by the equations (4) or (6), respectively. 
Similarly, the three-factor H-M-FF model (2) with the orthogonalized SMBO 

and HMLO factors can be given as: 
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 tPtMPtHMLOPtSMBOPtMPPtP yrrrr ,,,2,1,, εγδδβα +⋅+⋅+⋅+⋅+=  (8) 

where the notations are as in the equation (2) but the explanatory variables tSMBOr ,  

and tHMLOr ,  are given by the equations (4) or (6). 

Fig. 1 and Fig. 2 present the exogenous variables tSMBOr ,  (4) and tHMLOr , (6) 
in the form of charts, respectively. We have detected (based on Dickey – Fuller 
test) that the analysed series are stationary. 

 
Figure 1. The exogenous variable tSMBOr ,  from Jan 2003 to Dec 2009 

 
Source: author’s calculations 

 
Figure 2. The exogenous variable tHMLOr ,  from Jan 2003 to Dec 2009 

 
Source: author’s calculations 
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ESTIMATION METHOD AND EMPIRICAL RESULTS 

The SUR (seemingly unrelated regression) method was described by Zellner 
[Zellner 1962]. SUR is a way of estimating panel data models that are long (large 
T) but not wide (small N). The assumptions underlying the SUR model are the 
following [Marshall & Young 2003]: 

1) All disturbances have a zero mean; 
2) In a given cross-sectional unit, the disturbance variance is constant over 

time, but each cross-sectional unit can have a different variance; 
3) Two disturbances in different cross-sectional units but corresponding to the 

same time period are correlated (contemporaneous correlation); 
4) Disturbances in different time periods, whether they are in the same cross-

sectional unit or not, are uncorrelated (autocorrelation does not exist). 
In the basic SUR model, the errors are assumed to be homoskedastic and 

linearly independent within each equation. Each equation is correlated with the 
others in the same time period. This assumption is called contemporaneous 
correlation, and it is this property that sets SUR apart from other models [Adkins 
2009]. Given that it is very likely that equity funds’ portfolios from the same 
market are contemporaneously correlated, the SUR model seems to be appropriate 
for this case. If contemporaneous correlation does not exist, the LSR method 
applied separately to each equation (fund’s portfolio) is quite efficient. 

We use daily data following evidence that daily data provide better 
inferences than monthly data regarding timing ability [Bollen & Busse 2001]. This 
evidence has been examined in the case of Polish equity mutual funds in [Olbryś 
2008b]. We examine the performance of 15 selected equity open-end mutual funds. 
We study daily simple excess returns from Jan 2003 to Dec 2009. Daily returns on 
the main index of Warsaw Stock Exchange companies are used as the returns on 
the market portfolio. The average daily returns on 52-week Treasury bills are used 
as the riskless asset returns. Daily return rates on spread factors SMB and HML are 
used as the values of the additional exogenous variables in the T-M-FF (1) and H-
M-FF (2) models. In the data panel the number of funds is equal to N=15 and the 
number of time periods is T=1760. 

Tables 1 and 2 provide details on the estimated T-M-FF (1) and H-M-FF (2) 
market-timing models, respectively. The SUR method has been used to consider 
the contemporaneous correlation effects. In all of the tables: * denotes coefficients 
that are significantly different from zero at the ten percent level; ** denote 
coefficients that are significantly different from zero at the five percent level and 
*** denote coefficients that are significantly different from zero at the one percent 
level. 
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Table 1. Three-factor T-M-FF model (1) (Jan 2, 2003 - Dec 31, 2009) 

 Equity funds 
Pα̂  Pβ̂  P1̂δ  P2̂δ  Pγ̂  2R  

1 Arka BZ WBK Akcji 
FIO 0.0006*** 0.730*** 0.070*** 0.046*** -2.03*** 0.623 

2 Aviva Investors FIO 
Polskich Akcji 0.0005*** 0.751*** -0.002 0.021* -1.92*** 0.691 

3 BPH FIO Akcji  0.0001 0.716*** 0.011 0.031*** -0.96*** 0.716 
4 DWS Polska FIO Top 

25 Małych Spółek 0.0002 0.445*** 0.216*** 0.070*** -1.54*** 0.297 

5 DWS Polska FIO Akcji 0.0002 0.630*** 0.033 0.017 -1.30** 0.373 
6 DWS Polska FIO Akcji 

Plus 0.0002 0.555*** 0.092*** 0.025 -1.27** 0.355 

7 ING FIO Akcji 0.0001 0.746*** 0.009 0.027** -0.92** 0.695 
8 Legg Mason Akcji FIO 0.0003* 0.698*** 0.017 0.035*** -1.05*** 0.700 
9 Millennium FIO Akcji 0.0000 0.683*** 0.033*** 0.050*** -1.07*** 0.673 
10 Pioneer Akcji Polskich 

FIO 0.0000 0.814*** -0.001 0.035*** -1.52*** 0.698 

11 PKO/CREDIT SUISSE 
Akcji FIO 0.0003 0.559*** 0.029* 0.028* -2.20*** 0.422 

12 PZU FIO Akcji 
KRAKOWIAK 0.0001 0.702*** -0.003 0.035*** -1.39*** 0.689 

13 SEB 3 – Akcji FIO 0.0004 0.522*** 0.085*** 0.017 -1.64*** 0.315 
14 Skarbiec – Akcja FIO 0.0003 0.457*** 0.068*** 0.013 -0.52 0.279 
15 UniKorona Akcja FIO 0.0004 0.519*** 0.091*** 0.019 -1.06* 0.309 
Source: author’s calculations (using Gretl 1.8.5) 
Table 2. Three-factor H-M-FF model (2) (Jan 2, 2003 - Dec 31, 2009) 
 Equity funds 

Pα̂  Pβ̂  P1̂δ  P2̂δ  Pγ̂  2R  
1 Arka BZ WBK Akcji 

FIO 0.0010*** 0.650*** 0.071*** 0.046*** -0.17*** 0.623 

2 Aviva Investors FIO 
Polskich Akcji 0.0010*** 0.672*** -0.002 0.021* -0.17*** 0.690 

3 BPH FIO Akcji  0.0004* 0.673*** 0.011 0.031*** -0.09*** 0.716 
4 DWS Polska FIO Top 

25 Małych Spółek 0.0005 0.387*** 0.217*** 0.071*** -0.12** 0.297 

5 DWS Polska FIO Akcji 0.0005 0.579*** 0.034 0.017 -0.11* 0.373 
6 DWS Polska FIO Akcji 

Plus 0.0005 0.501*** 0.092*** 0.025 -0.11** 0.355 

7 ING FIO Akcji 0.0004 0.702*** 0.008 0.026** -0.09*** 0.695 
8 Legg Mason Akcji FIO 0.0006** 0.651*** 0.016 0.035*** -0.10*** 0.700 
9 Millennium FIO Akcji 0.0004* 0.631*** 0.032*** 0.049*** -0.11*** 0.674 
10 Pioneer Akcji Polskich 

FIO 0.0005* 0.746*** -0.001 0.034*** -0.14*** 0.698 

11 PKO/CREDIT SUISSE 
Akcji FIO 0.0008** 0.467*** 0.029* 0.028* -0.19*** 0.422 
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12 PZU FIO Akcji 
KRAKOWIAK 0.0005** 0.640*** -0.003 0.035*** -0.13*** 0.689 

13 SEB 3 – Akcji FIO 0.0007* 0.462*** 0.085*** 0.017 -0.13** 0.314 
14 Skarbiec – Akcja FIO 0.0005 0.429*** 0.067*** 0.012 -0.06 0.279 
15 UniKorona Akcja FIO 0.0007* 0.475*** 0.091*** 0.019 -0.09* 0.309 

Source: author’s calculations (using Gretl 1.8.5) 
 
Tables 1-2 include the estimation results of the three-factor T-M-FF (1) and 

H-M-FF (2) models. Results of the T-M-FF tests (Table 1) show that the estimates 
of Jensen’s measure of performance ( Pα̂ ) are positive, but not significant in the 
case of twelve funds. We can observe that in the case of H-M-FF models (Table 2) 
ten out of fifteen funds present a significant positive estimate of selectivity. 
According to Jensen’s interpretation of the Pα̂  value, this measure could be 
positive for two reasons: (1) the extra returns actually earned on the portfolio due 
to the manager’s ability, and (2) the positive bias in the estimate of Pα̂  resulting 
from the negative bias in the Pβ̂ estimate [Jensen 1968, pp. 396]. The systematic 
risk levels ( Pβ̂ ) are significantly positive (Tables 1-2). Unfortunately, the 
empirical results show no statistical evidence that Polish equity funds’ managers 
have outguessed the market. Almost all of the funds (except Skarbiec – Akcja FIO 
in Tables 1-2) present significantly negative estimates of market-timing skills 
( 0ˆ <Pγ ). We find evidence of negative market-timing. Significant negative 
estimates of market-timing indicate that, contrary to what would be expected of 
rational investors, the managers increase the exposition of their portfolios to the 
market in down markets and act inversely in up markets [Romacho & Cortez 
2006]. There is a statistically significant negative relationship between selectivity 
( Pα̂ ) and timing ( Pγ̂ ). As for the sensitive measure of the fund’s portfolio P  
returns due to the changes in the SMB factor returns, only eight out of fifteen funds 
(in Tables 1-2) exhibit positive and statistically significant coefficients P1̂δ . The 
spread variable HML is positive and statistically significant in the case of ten out of 
fifteen funds (coefficients P2̂δ  in Tables 1-2).  

Tables 3-4 include the estimation results of the three-factor T-M-FF (7) and 
H-M-FF (8) models with the orthogonalized SMBO (4) and HMLO (6) factors as 
the explanatory variables. 
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Table 3. Three-factor T-M-FF model (7) with the orthogonalized SMBO and HMLO factors 
(Jan 2, 2003 - Dec 31, 2009) 

 Equity funds 
Pα̂  Pβ̂  P1̂δ  P2̂δ  Pγ̂  2R  

1 Arka BZ WBK Akcji 
FIO 0.0006*** 0.712*** 0.049*** 0.046*** -2.03*** 0.623 

2 Aviva Investors FIO 
Polskich Akcji 0.0005*** 0.748*** -0.011 0.021* -1.92*** 0.691 

3 BPH FIO Akcji  0.0001 0.709*** -0.003 0.031*** -0.96*** 0.716 
4 DWS Polska FIO Top 

25 Małych Spółek 0.0002 0.399*** 0.184*** 0.070*** -1.54*** 0.297 

5 DWS Polska FIO Akcji 0.0002 0.622*** 0.026 0.017 -1.30** 0.373 
6 DWS Polska FIO Akcji 

Plus 0.0002 0.535*** 0.081*** 0.025 -1.27** 0.355 

7 ING FIO Akcji 0.0001 0.741*** -0.003 0.027** -0.92** 0.695 
8 Legg Mason Akcji FIO 0.0003* 0.690*** 0.0009 0.035*** -1.05*** 0.700 
9 Millennium FIO Akcji 0.0000 0.671*** 0.010 0.050*** -1.07*** 0.673 
10 Pioneer Akcji Polskich 

FIO 0.0000 0.809*** -0.016 0.035*** -1.52*** 0.698 

11 PKO/CREDIT SUISSE 
Akcji FIO 0.0003 0.550*** 0.017 0.028* -2.20*** 0.422 

12 PZU FIO Akcji 
KRAKOWIAK 0.0001 0.698*** -0.018* 0.035*** -1.39*** 0.689 

13 SEB 3 – Akcji FIO 0.0004 0.505*** 0.077*** 0.017 -1.64*** 0.315 
14 Skarbiec – Akcja FIO 0.0003 0.444*** 0.062*** 0.013 -0.52 0.279 
15 UniKorona Akcja FIO 0.0004 0.500*** 0.082*** 0.019 -1.06* 0.309 
Source: author’s calculations (using Gretl 1.8.5) 
Table 4. Three-factor H-M-FF model (8) with the orthogonalized SMBO and HMLO factors  

(Jan 2, 2003 - Dec 31, 2009) 
 Equity funds 

Pα̂  Pβ̂  P1̂δ  P2̂δ  Pγ̂  2R  
1 Arka BZ WBK Akcji 

FIO 0.0010*** 0.631*** 0.050*** 0.046*** -0.17*** 0.623 

2 Aviva Investors FIO 
Polskich Akcji 0.0010*** 0.669*** -0.011 0.021* -0.17*** 0.690 

3 BPH FIO Akcji  0.0004* 0.667*** -0.003 0.031*** -0.09*** 0.716 
4 DWS Polska FIO Top 

25 Małych Spółek 0.0005 0.340*** 0.185*** 0.071*** -0.12** 0.297 

5 DWS Polska FIO Akcji 0.0005 0.571*** 0.026 0.017 -0.11* 0.373 
6 DWS Polska FIO Akcji 

Plus 0.0005 0.482*** 0.081*** 0.025 -0.11** 0.355 

7 ING FIO Akcji 0.0004 0.697*** -0.003 0.026** -0.09*** 0.695 
8 Legg Mason Akcji FIO 0.0006** 0.643*** 0.0006 0.035*** -0.10*** 0.700 
9 Millennium FIO Akcji 0.0004* 0.618*** 0.098 0.049*** -0.11*** 0.674 
10 Pioneer Akcji Polskich 

FIO 0.0005* 0.742*** -0.017 0.034*** -0.14*** 0.698 
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11 PKO/CREDIT SUISSE 
Akcji FIO 0.0008** 0.458*** 0.017 0.028* -0.19*** 0.422 

12 PZU FIO Akcji 
KRAKOWIAK 0.0005** 0.636*** -0.019* 0.035*** -0.13*** 0.689 

13 SEB 3 – Akcji FIO 0.0007* 0.445*** 0.078*** 0.017 -0.13** 0.314 
14 Skarbiec – Akcja FIO 0.0005 0.416*** 0.062*** 0.012 -0.06 0.279 
15 UniKorona Akcja FIO 0.0007* 0.457*** 0.082*** 0.019 -0.09* 0.309 

Source: author’s calculations (using Gretl 1.8.5) 
 
It can be observed that our initial conclusions concerning Pα̂  and Pγ̂  remain 

unaltered. The levels of the systematic risk Pβ̂  in Tables 3-4 down somewhat 
relative to the values in Tables 1-2, respectively. However, the two sets of 
regressions produce the same R-squared values. As for the sensitive measure of the 
fund’s portfolio P  returns due to the changes in the SMBO factor returns, only 
seven out of fifteen funds (in Tables 3-4) exhibit positive and statistically 
significant coefficients P1̂δ . The evidence is that the values of P1̂δ  coefficients in 
Tables 3-4 significantly differ from these in Tables 1-2. On the other hand, in the 
case of all models and all funds, we have received the same estimator values of 

P2̂δ  coefficients in Tables 1, 3 and Tables 2, 4, respectively. 
The three-factor T-M-FF (7) and H-M-FF (8) models with the 

orthogonalized SMBO (4) and HMLO (6) factors as the explanatory variables have 
also been estimated using logarithmic excess returns. A logarithmic excess return is 
given by the equation:  

logarithmic rate=ln(1+simple rate) 
Table 5 reports the estimation results of T-M-FF (7) market-timing models 

using logarithmic excess returns. It can be observed that in the case of all funds, we 
have received almost the same estimator values as when using simple excess 
returns (see Table 3). The R-squared values in Table 5 up somewhat relative to the 
values in Table 3. We have received similar regression effects of H-M-FF (8) 
market-timing models using logarithmic excess returns but due to the space 
restriction, we do not report full results. 
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Table 5. Three-factor T-M-FF model (7) with the orthogonalized SMBO and HMLO factors 
(logarithmic excess returns from Jan 2, 2003 to Dec 31, 2009) 

 Equity funds Pα̂  Pβ̂  P1̂δ  P2̂δ  Pγ̂  2R  
1 Arka BZ WBK Akcji 

FIO 0.0006*** 0.713*** 0.049*** 0.049*** -2.06*** 0.626 

2 Aviva Investors FIO 
Polskich Akcji 0.0005*** 0.749*** -0.011 0.023** -1.96*** 0.693 

3 BPH FIO Akcji  0.0001 0.710*** -0.002 0.031*** -0.95*** 0.718 
4 DWS Polska FIO Top 

25 Małych Spółek 0.0002 0.400*** 0.182*** 0.077*** -1.45*** 0.299 

5 DWS Polska FIO Akcji 0.0002 0.623*** 0.025 0.018 -1.34** 0.374 
6 DWS Polska FIO Akcji 

Plus 0.0002 0.537*** 0.080*** 0.027 -1.22** 0.356 

7 ING FIO Akcji 0.0001 0.741*** -0.002 0.028** -0.89** 0.697 
8 Legg Mason Akcji FIO 0.0003 0.690*** 0.0009 0.036*** -1.02*** 0.702 
9 Millennium FIO Akcji 0.0000 0.671*** 0.011 0.051*** -1.05*** 0.675 
10 Pioneer Akcji Polskich 

FIO 0.0000 0.810*** -0.015 0.035*** -1.61*** 0.701 

11 PKO/CREDIT SUISSE 
Akcji FIO 0.0003 0.552*** 0.017 0.029* -2.23*** 0.424 

12 PZU FIO Akcji 
KRAKOWIAK 0.0001 0.699*** -0.018 0.036*** -1.38*** 0.690 

13 SEB 3 – Akcji FIO 0.0003 0.506*** 0.075*** 0.019 -1.64*** 0.316 
14 Skarbiec – Akcja FIO 0.0003 0.444*** 0.060*** 0.014 -0.43 0.279 
15 UniKorona Akcja FIO 0.0004 0.501*** 0.080*** 0.021 -1.01* 0.310 
Source: author’s calculations (using Gretl 1.8.5) 

 

Table 5 reports the estimation results of T-M-FF (7) market-timing models 
using logarithmic excess returns. It can be observed that in the case of all funds, we 
have received almost the same estimator values as when using simple excess 
returns (see Table 3). The R-squared values in Table 5 up somewhat relative to the 
values in Table 3. We have received similar regression effects of H-M-FF (8) 
market-timing models using logarithmic excess returns but due to the space 
restriction, we do not report full results. 

CONCLUSION 

In this paper we have examined the usefulness of the orthogonalized SMBO 
and HMLO factors as explanatory variables in market-timing models for the 
investment managers’ performance evaluation. We have confirmed that the quality 
increase of the models is rather small. To summarize, basing on the empirical 
analysis it can be concluded that there is no clear reason to prefer the three-factor 
T-M-FF (7) and H-M-FF (8) models over those given by the equations (1) and (2). 
This evidence is consistent with the literature, for example [Fama & French 1993, 
pp. 31]. 
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Abstract: We present an intraday volatility model for equally spaced data 
and apply it for the WIG Index- a broad market index of the Warsaw Stock 
Exchange.  The current study is an application and extension of the model 
proposed by Engle and Sokalska [2010]. We decompose the conditional 
variance of intraday returns into components that have a natural interpretation 
and can be easily estimated. 

Keywords: Volatility, ARCH, Intra-day Returns. 

INTRODUCTION 

As recent developments on world’s stocks markets have shown, intraday 
asset price movements can be very dramatic.  During the crisis of 2008-2009, it 
was not unusual to observe spectacular stock market rallies and sudden plunges of 
Dow Jones Industrial Index worth several hundred of points on a single day.  
Therefore there is great value in being able to forecast volatility on intraday basis.  
A paper by Andersen and Bollerslev [1997] documents that an application of 
standard ARCH-type volatility models [Engle, 1982] to intraday data gives 
unsatisfactory results.  This is because there are pronounced periodic patterns in 
volatility throughout a day.   

A number of papers have presented work on intraday returns related the 
current study.   Andersen and Bollerslev [1997, 1998] propose models for 5-minute 
returns on Deutschemark-dollar exchange rate and the S&P500 index.  They build 
a multiplicative model of daily and diurnal volatility. Andersen and Bollerslev 
[1998] add an additional component which takes account of the influence of 
macro-economic announcements on the foreign exchange volatility.  For most of 
their models, the intra-daily volatility components are deterministic.  The model 
applied in this paper contains stochastic intraday variance component. 
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THE MODEL 

Our paper uses the volatility model for high frequency intraday financial 
returns proposed by Engle and Sokalska [2010].  We employ the following 
notation. Days in the sample are indexed by t (t =1,…, T).  Each day is divided into 
10 minute intervals referred to as bins and indexed by i (i =1,…, N).  The current 
period is {t,i}.  Price of an asset at day t and bin i is denoted by Pt,i. The 
continuously compounded return rt,i is modeled as: 
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. In our model, the conditional variance is a multiplicative product 

of daily, diurnal and stochastic intraday variance components.  Intraday equity 
returns are described by the following process: 

 , , ,t i t i t i t ir h s q ε=  and    , ~ (0,1)t i Nε  (1) 

where: 
ht is the daily variance component, 
si is the diurnal (periodic) variance pattern, 
qt,i is the intraday volatility component,  and 
εt,i is an error term.  
The model is estimated in several steps.  Similarly to Andersen and 

Bollerslev [1997, 1998], daily variance component will be estimated from a daily 
ARCH –type specification for a longer sample, going back a number of years.   

Empirical analysis indicates that GARCH (1,1) process [Bollerslev, 1986] 
proved to be the most successful daily volatility model. 
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Where tζ  is an error term for daily returns rt, whereas w0, αd and βd  are 
parameters of the variance equation. 

The diurnal component is calculated as the variance of returns in each bin 
after deflating by the daily variance component.   

 ( )
2
,

,
i t

i i t i
t

r
E s E q s

h
⎛ ⎞

= =⎜ ⎟⎜ ⎟
⎝ ⎠

 (3) 

 
 
 
 



Intraday Volatility Modeling: The Example of…  141 

 

Then we model the residual volatility as a GARCH(1,1) process 23: 
 2

{ , } { , 1} 1 { , 1}( / )t i t i t i t iq r h s qω α β− − −= + +  (4) 

Engle and Sokalska [2010] show that this multistep estimator is consistent 
and asymptotically normal.  

EMPIRICAL ANALYSIS 

Our data consists of 10 minute logarithmic returns on the WIG index for the 
period 4 January 2010 – 31 May 2010.  We estimated daily variance component 
using daily data on the WIG index between October 1994 and May 2010.  Both 
intraday and daily series come from the Bloomberg database.  

We exclude overnight returns from our analysis. Figure 1 and 2 depict 
intraday logarithmic returns of WIG including and excluding overnight returns, 
respectively. As can be seen from Figure 1 intraday returns are dominated by 
substantially negative and positive overnight changes; all of the returns that exceed 
+/- 1% are in fact overnight.  Although the inclusion of overnight returns could 
yield a more complete analysis, it would require a far more complex model.  Such 
a complete model would need to concentrate more on economic or global factors 
and this approach was not followed in this paper.  

 
Figure 1. Intraday WIG 10-min logarithmic returns 
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Labels of the horizontal axis denote observation number.  
Source: own calculations 
 

                                                 
23 Higher order GARCH models were fitted as part of the specification search for scaled 
intraday returns but GARCH(1,1) performed best.  
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Figure 2. Intraday WIG 10-min logarithmic returns excluding the overnight period 
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Labels of the horizontal axis denote observation number. 
Source: own calculations 

 
Table 1 presents estimation results of the daily GARCH (1,1) model (2). 

Attempts to fit higher order models yielded statistically insignificant coefficients 
for the respective parameters.  The sum of coefficients αd+βd (0.9896) is close to 
but smaller than one.  This is indicates high persistence (high degree of volatility 
clustering).  

 
Table 1. GARCH Results for Daily Data  

GARCH Results for Daily WIG Index  
 Coefficient Std. Error t-Statistic 
ωd 3.52E-06 5.09E-07   6.925 
αd 0.0845 0.00498  16.984 
βd 0.9051 0.00479 188.941 
    

Notes: This table presents estimation results for GARCH(1,1) model for the WIG index. 
Sample period for daily data: October 1994 -May 2010. Symbols αd , βd and ωd 
denote GARCH parameters from the variance equation (2).  

Source: own calculation 
 

Figure 3 depicts the estimates of diurnal variance component (3).  We may 
observe a typical U-shaped pattern in volatility - an increased variability at the 
beginning of the day followed by a calm period in the middle and then a rise in 
variation at the close of the session.  A small spike around 14.30 coincides with the 
time of macroeconomic announcements in the US. The volatility of the overnight 
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period, which is excluded from our analysis, would actually much exceed the 
volatility at the close.  
 

Figure 3.  Diurnal Variance Component Throughout a Day (Excluding Overnight Period) 
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Source: own calculations 
 

Finally Table 2 presents results of estimation of the parameters of the 
stochastic intraday variance component (4).  The persistence measure, α+β, equals 
to 0.8884 and is smaller than αd+βd (0.9896) obtained for the daily component.  
The degree of volatility clustering for the intraday component is smaller than for 
the daily component because we estimated the intraday GARCH on scaled returns 
(compare equation (4)).  In other words we have already taken account of some of 
the volatility persistence present in the data by scaling squared returns by the daily 
and diurnal variance components. 

 
Table 2. GARCH Results for Intraday Data  

GARCH Results for Intraday Daily WIG Index  
 Coefficient Std. Error t-Statistic 
ω 1.61E-07 9.16E-09 17.555 
α 0.1984 0.0108 18.354 
β 0.6900 0.0136 50.886 
    

Notes: This table presents estimation results for GARCH(1,1) model for WIG returns that 
have been previously scaled by the squared root of the daily and diurnal variance 
components. Sample period January-May 2010. Symbols α , β and ω denote 
GARCH parameters from the variance equation (4).  

Source: own calculation 
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CONCLUSION 

We have estimated an intraday volatility model for equally spaced 
logarithmic returns on the WIG index.  In our specification, the conditional 
variance is a multiplicative product of daily, diurnal and stochastic intraday 
variance components. As the next step of our analysis, we plan to conduct forecasts 
comparison between our model and a selection of alternative benchmarks. 
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Abstract: This study extends earlier analysis, in which behavior of daily 
exchange rates during the global crisis was compared to that before crisis. 
We repeat similar comparison for data set extended until the end of April 
2010, use ARMA/ARMAX and GARCH models with stock indices as 
additional regressors, for volatility and returns of EURPLN, EURUSD,  
USDPLN exchange rates. Marked increase in volatility during crisis, 
negatively affected quality of models. After crisis volatility and returns seem 
to stabilize, hence exchange rate risk seems to decline gradually. There is 
a slight improvement in quality of models after the crisis.  

Key words: Exchange rates, stock indices, crisis, risk, autoregressive and 
conditional heteroskedasticity models, Granger causality.  

INTRODUCTION  

The aim of research presented is to study the effects of the current crisis on 
exchange rate behavior, and on quality of exchange rate models. We use daily data 
of exchange rates USDPLN, EURPLN and EURUSD, and stock indices S&P500 
and WIG20, since 4th January 2000 until 30th April 2010. We note stabilization of 
exchange rate behavior since spring 2009 in comparison to previous period (2007-
2008), and assume that this may ease exchange rate modeling and improve quality 
of models.  

We study the behavior of variance and volatility of models, test Granger-
causality from stock indices towards exchange rate variances and returns. Next we 
estimate ARMA and ARMAX models for exchange rate volatility, and ARMA and 
GARCH models for logarithmic returns. We use S&P500 and WIG20 volatility or 
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returns as additional variables in models describing respectively volatility or 
returns of the exchange rates.24  

In [Syczewska 2010] we compared behavior of rates and quality of modeling 
for two subperiods: before (up to September 2008) and during crisis (up to end of 
July 2009). We have shown that25  

• Volatility of returns, hence errors of forecasts from the ARMA and 
GARCH models of returns, hugely increased during the crisis.  

• Introduction of corresponding stock indices returns led to a slight 
improvement of models and forecast performance.  

There are several symptoms showing improvement of economic 
performance in current period. The Polish economy in particular during the crisis 
did well in comparison to other European economies. Whether the crisis ended can 
of course be argued, but let us treat the year (Spring 2009 – Spring 2010) as period 
“after crisis” and check if behavior of series modeled had stabilized enough to 
improve the quality of models.  

QUALITATIVE DESCRIPTION OF THE DATA  

We use daily data from 4th January 2000 until 30th April 2010 for the 
indices and exchange rates.26 The typical measure of returns is: 
(1) )ln(ln*100 1−−= ttt yyz  
where ty   – closing values of an instrument; we use also logarithm of proportion 
of daily maximum and minimum 
(2)  )/ln( min,max,

2
ttt yy=σ    

as a measure of variance/volatility (see [Brooks 2008]). Fig. 1 shows a typical 
behavior of stock index returns, an increase of volatility during both 2001 dotcom 
crisis and even higher increase during the last crisis. Fig. 2 shows a similar picture 
for exchange rate returns. Fig. 3 shows volatility defined by equation (2) for the 
corresponding exchange rate.  
 We compare both the whole sample and two equal subsamples: 16.10.2007 
– 23.01.2009 as “crisis period” and 27.01.2009 – 30.04.2010 as “post-crisis period” 
(each consists of 312 observations). Choice of “crisis” period is to some extent 
arbitrary, but we follow [Reinhart and Rogoff 2008] as to characteristic symptoms 
of crisis.  

                                                 
24 This was suggested by specification of models for daily returns of Norwegian krona 
[Bauwens, Rime and Succarat 2008]. 
25 [Syczewska 2010] paper was presented at the International Conference “Zagadnienia 
aktuarialne – teoria i praktyka” in Warsaw, 2nd-4th September 2009.  
26 http://stooq.pl database, opening, closing, minimum and maximum daily quotes. We use 
only the dates, for which all quotes (Polish and American) were available.  
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Table 1. Comparison of variance in the two samples 

Variable Quote 
Mean Variance Proportion  

of variance 
2nd to 1st 

1st sample 2nd sample 1st sample 2nd sample 

S&P500 open  1244.6 1000.8 45552.4 17524.5 38.5% 
max 1257.7 1145.5 43986.7 16848.0 38.3% 
min 1227.3 1117.7 47624.3 18068.7 37.9% 
close 1242.2 1131.6 45817.4 17540.4 38.3% 

WIG20 open  2695.8 2413.1 396358.4 117889.2 29.7% 
max 2723.8 2440.6 394610.1 115613.6 29.3% 
min 2657.3 2378.3 395741.6 119639.9 30.2% 
close 2690.0 2409.0 393756.3 117703.9 29.9% 

USDPLN open  2.4547 2.7100 0.09736 0.07607 78.1% 
max 2.4786 2.7390 0.10827 0.08185 75.6% 
min 2.4370 2.6860 0.09174 0.06955 75.8% 
close 2.4582 2.7120 0.10051 0.07587 75.5% 

EURUSD open  1.4608 1.4270 0.00953 0.00435 45.7% 
max 1.4697 1.4360 0.00909 0.00421 46.3% 
min 1.4519 1.4180 0.00999 0.00444 44.4% 
close 1.2970 1.4270 0.00959 0.00435 45.3% 

Source: stooq.pl  
 

Table 1 shows decreases in variances of the indices (between 30–40 
percent) and exchange rates (between 75–80 percent for USD, approximately 45% 
for EURO); in contrast to comparison of “crisis” and “pre-crisis period” 
[Syczewska 2010] when it increased 2.6 times for S&P500, 2 times for WIG20, 2.8 
times for USDPLN exchange rate, 1.7 times for EURUSD.  

Volatility defined as in (2), i.e., log difference between maximum and 
minimum daily quotes for both stock indices has decreased to 70-90% of previous 
value, for USD exchange rate increased by 14 percent, for EURUSD – decreased to 
89% of “crisis” volatility. For USDPLN, EURUSD exchange rates and for both 
stock indices difference in means is significant.  
Table 2. Comparison of volatility during and after the crisis 
 USDPLN EURUSD EURPLN SP500 WIG20 
Mean during crisis .01598 .01248 .02846 .02674 .0264597 
Mean after crisis .01815 .01114 .02929 .01799 .0235659 
Proportion 1.14 0.89 1.03 0.67 0.89 
t statistic for difference in the means -2.63 2.74 -0.67 6.66 2.53 
Median during crisis .01086 .01016 .02101 .01955 .02265 
Median after crisis .01630 .01038 0.02716 .01514 .02051 
Proportion 1.50 1.02 1.29 0.77 0.91 

Source: computations based on stooq.pl data. 
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GRANGER CAUSALITY TESTS  

Variable x is defined as Granger-cause for another variable y, if lagged 
values of x used as additional regressors in a model describing y can improve 
quality of modeling/forecasting. There are several tests of this property. The 
Granger test of Granger causality is performed in the following way: we estimate 
VAR – type equation and check joint significance of lagged x parameters: 
(3) tktkttktktt xbxbxbyayay ε+++++++= −−−−− 12121111111 ......   

The null H0: 0... 11211 ==== kbbb  means that the x does not Granger-
cause the y variable. This test is reported to work well for stationary variables, for 
non-stationary series, it should be used with caution. The Augmented Dickey-
Fuller (in short, ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests show 
stationarity of logarithmic returns for the whole sample. Results for subsamples 
(“crisis”, “after crisis”) are slightly different (see Table 3).  

 
Table 3. The ADF test results for returns and volatility of variables 

ADF  S&P500  WIG20 USDPLN  EURUSD  
Returns -12.22 (.00) -21.11 (.00)  -9.89 (.00)  -10.72 (.00) 

Volatility 
whole sample -4.48  (.0001) -3.4889 (.008) -4.9505 (.00) -3.4384 (.0097) 
- crisis -3.1005 (.03) -2.6481 (.08) -0.8928 (.79) -1.3654 (.60) 
- after crisis  -2.4920 (.12) -2.5312 (.11) -2.0222 (.28) -3.0360 (.03) 

Source: own computations; bold denotes insignificant values.  

To check whether stock indices volatility/returns Granger-cause respective 
measures for the exchange rates, we estimate VAR(5) models.27 For bilateral 
USDPLN exchange rate we check whether stock indices of respective economies, 
i.e. American and Polish indices, Granger-cause the exchange rate. Joint 
significance test statistic for lagged values of S&P500 index volatility F(5,2508) = 
3.8661 with p-value 0.0017. Hence we reject the null of lack of causality: the US 
stock index Granger-causes volatility in USDPLN exchange rate, as expected. 
There is no causality from the exchange rate towards volatility of index. Full 
results of the Granger test of Granger causality are given in Table 4.  

                                                 
27 Number of lags chosen by reduction of insignificant lags. 
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Table 4. Granger-causality tests from stock indices towards exchange rates 

Causal relationship Whole sample Crisis After crisis 
WIG20 USDPLN 2.3771 [.0367] 2.1216 [.0628] 1.5200 [.1833] 
SP500 USDPLN 3.8661 [.0017] 1.8947 [.0951] 1.8937 [.0952] 
WIG20 EURUSD 303.41 [.0000] 2.0457 [.0722] 1.0351 [.3970] 
SP500 EURUSD 7.1983 [.0000] 40.887 [.0000] 4.4195 [.0007] 

Source: own computations; p-values in brackets, greater than 0.05 marked in bold. 
 

FRACTIONAL INTEGRATION, PERSISTENCY AND LONG MEMORY 
MEASURES 

As shown by the ADF test for the whole sample, log returns of exchange 
rates are stationary. Fractional integration parameter is perhaps more accurate 
indicator of time series behavior, either stationary or nonstationary. It generalizes 
the Engle and Granger [1987] definition of integrated series (Hosking [1981], 
Granger and Joyeux [1980]), it can take any real values (not only integer, as in the 
ADF test), and is defined with use of binomial series expansion or the Gamma 
function. The fractional integration parameter is often estimated with periodogram 
regression (one of the variants was introduced by [Geweke and Porter-Hudak 
1983]). Another, semiparametric, method is the Whittle local estimator, introduced 
by [Künsch 1987] and [Robinson 1995] (see e.g. [Phillips and Shimotsu 2000]).  

Classification of d values shows whether series in question is stationary or 
not, but more accurately, if it is persistent or antipersistent, whether results of 
external shocks diminish in time etc.  

• For 1=d  a series is nonstationary, with infinite variance.  
• For d≤1  variance is infinite, moreover results of a shock increase with 

time;  
• If 15.0 <≤ d , the process is nonstationary, but in a long-term reverts to 

its mean [Hosking 1981];  
• For 5.00 << d , the process is stationary, with finite variance, and is mean 

reverting;  
• For 0=d  it is mean-reverting in the short term, has finite variance and 

effects of shocks diminishes quickly;  
• For 05.0 <<− d  it is stationary, but mean-averting (antipersistent).  

 
Quite similar classification can be done with use of the Hurst exponent 

[Hurst 1951]: if H=0.5 we have a random walk, if H is in (0; 0.5) – a mean-
reverting process; for H in (0.5; 1) – mean-averting process with a trend.  
 



150 Ewa M. Syczewska  

 

Table 5. Hurst exponents for logarithmic returns 

 Hurst exponent 
Logarithmic  
returns of: SP500 WIG20 USDPLN EURUSD EURPLN 
Whole  
sample  

0,553 [3,10] 0,578 [4,84] 0,574 [10,89] 0,567 [9,24] 0,547 [3,77] 

First  
subsample 

0,513 [0,75] 0,547 [1,69] 0,636 [2,93] 0,608 [4,69] 0,544 [0,62] 

Second  
subsample 

0,578 [5,15] 0,520 [1,99] 0,511 [0,28] 0,609 [3,06] 0,459 [-3,22] 

Source: own computations; t statistics in brackets 

The Hurst exponent value of 0.5 corresponds to a white noise process, values 
greater than 0.5 but less than 1 suggest persistency and stationarity of a series. 
Table 5 shows computed values of the Hurst exponent for logarithmic returns of 
stock indices and exchange rates, computed for the whole sample and for two 
subsamples – during crisis and after crisis. Critical value of the Student t statistics 
is 2.44 for the whole sample, 2.22 for both shorter subsamples. We test the null of 
H = 0.5. Computed values of the t statistics show that the null cannot be rejected 
for stock indices and the log returns of EURPLN exchange rate in the first sample, 
and for WIG20 and USDPLN in the second sample. In other cases H is slightly 
greater than 0.5. Hence the Hurst exponents suggest stationarity and persistency of 
all logarithmic returns. 
Table 6. Estimates of fractional integration parameter for logarithmic returns28 

Returns of: Method: Whole 
sample 

Subsample 
 

First Second 

SP500 GPH 0,0013 [0,98] -0,0374 [0,76] 0,1222 [0,69] 
Whittle -0,0118 [0,81] -0,0603 [0,51] 0,0913 [0,94] 

WIG20 GPH 0,1208 [0,07] 0,0976 [0,49] 0,1393 [0,48] 
Whittle 0,0499 [0,30] -0,0871 [0,34] 0,0913 [0,08] 

USDPLN GPH 0,0636 [0,32] 0,0396 [0,80] 0,1557 [0,79] 
Whittle 0,0861 [0,07] 0,0014 [0,99] 0,0913 [0,40] 

EURUSD GPH 0,0493 [0,42] 0,2026 [0,16] 0,1390 [0,73] 
Whittle 0,0560 [0,24] 0,0886 [0,33] 0,0913 [0,51] 

EURPLN GPH 0,0754 [0,23] -0,2265 [0,06] 0,1170 [0,25] 
Whittle 0,0611 [0,20] -0,0398 [0,66] 0,0913 [0,05] 

Source: own computations 

                                                 
28 In brackets there are p-values of t statistics in case of Geweke and Porter-Hudak method, 
z statistics in case of the Whittle estimator, both for a null of insignificance.  
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More accurate are results of the GPH and Whittle methods, allowing for tests 
of significance of the fractional integration parameter. Results presented in table 6, 
with p-values of statistics for null of d =0 in brackets, show that all returns series 
are stationary. Estimates of the fractional integration parameter are in most cases 
insignificant, as shown by the t or z-statistics p-values. Only in few cases the null 
of insignificance is rejected – note in particular difference between results for 
EURPLN, with positive insignificant values for the whole sample, negative 
significant value for the first subsample, suggesting stationary antipersistent 
behavior, and positive significant value for the second subsample, suggesting 
persistent stationary behavior. For stationary series and ARMA model with finite 
number of parameters can be estimated.   

 

FRACTIONAL INTEGRATION PARAMETERS FOR VOLATILITY 

We estimate in a similar way fractional integration parameters for volatility 
defined as in (2). The results are as follows (see table 7); estimates of the fractional 
integration parameter are in interval (0.5; 1), suggesting nonstationarity of a series. 
The Hurst exponents, H, are close to 1. These may pose problems with the choice 
of number of lags for the ARMA model. Fig. 4 and 5 show periodogram for log 
returns and for volatility (2) for the USDPLN exchange rate. The first is similar to 
spectrum of a stationary series, the second has relatively high values for lower 
frequencies, which is closer to a behavior for nonstationary series.  

We test whether H =1 and whether the fractional integration parameter, d is 
equal first, to 0.5 and second, to 1.29 The null hypothesis H = 1 is rejected for 
WIG20 and USDPLN. The null hypothesis d=0.5 cannot be rejected for WIG20 
and EURUSD in case of the GPH estimation, and for WIG20, USDPLN and 
EURUSD in case of the Whittle method. The null hypothesis d=1 is rejected in all 
cases. Hence volatility is in all cases at least mean-reverting in long term, 
nonstationary if d >0.5, stationary if d = 0.5.  
Table 7. Hurst exponents, the Geweke-Porter-Hudak and Whittle estimators of fractional 
integration parameter for volatility 

  SP500  WIG20  USDPLN  EURUSD  EURPLN  
Hurst exponent  .9702 (.020) .8845 (.015) .9405 (.025) .9741 (.038) .9702(.031) 
GPH estimator  .7031 (.058) .4904 (.066) .6248 (.050) .5809 (.059) .6894 (.055) 
Whittle estimator  .6548 (.048) .5240 (.048) .5867 (.048) .5878 (.048) .6333(.048) 

Source: own computations; standard errors in parentheses   

                                                 
29 The Hurst exponent was estimated with use of R/S regression with 9 degrees of freedom, 
hence critical value t* = 2.26. The GPH and Whittle estimators are based on regressions 
with 109 degrees of freedom, hence critical value t* = 1.98.  
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ARMA/ARMAX MODEL  

We expect that stock indices can improve quality of ARMA models for 
volatility (2). We apply ARMA formulation, with 4 lags as starting point, then try 
and reduce the model on the basis of significance tests and Schwarz Bayesian 
Information Criterion (procedure of reduction if similar, e.g., to [Matuszewska, 
Witkowska 2007], albeit their starting point is an autoregressive distributed lags 
model).  

Model estimated for pre-crisis period has been reduced to ARMA(1,1) 
[Syczewska 2010]. For USDPLN exchange rate volatility 3rd lags are significant. 
We use S&P500 and WIG20 volatility (2) as additional regressors; both are 
significant. Similar results are obtained for other exchange rates. The roots of AR 
and MA polynomials have absolute values greater than 1, hence all 
ARMA/ARMAX models estimated are stable. For all exchange rates models with 
the stock indices variables have lower values of Akaike, Schwartz and Hannan-
Quinn information criteria.  

GARCH MODELS FOR LOGARITHMIC RETURNS  

We estimate next the ARMA and ARMAX models for the logarithmic 
returns of exchange rates, starting first with an ARMA(4,4,) model, and then 
adding logarithmic returns of both indices. The added variable parameters prove to 
be significant. For both models we could not reject the ARCH effect:  
The Engle test of the ARCH effect is based on the regression 

 tktkttt ueeee +++++= −−−
22

22
2

110
2 ... αααα  

where e are error terms of the model in question. We check whether lagged error 
squares are jointly significant: the null 0...: 210 ==== kH ααα  corresponds to 
lack of the ARCH effect. Under the null, the test statistic is asymptotically 
distributed as )(2 kχ .  

For USDPLN, computed values of the test statistics in case of ARMA and 
ARMAX models estimated for the whole sample, are equal respectively to 2TR  = 
396.238 and 322.041, respectively. Hence the null hypothesis of no ARCH effect is 
rejected.  

As a result we estimate GARCH model for logarithmic returns of exchange 
rates, with and without log returns of stock indices as additional variables: starting 
with the GARCH model with 10 lags in autoregressive equation of mean value of 
the USDPLN log returns, and reducing insignificant lags, we reduce this model to 
one with AR(6) equation for expected value and GARCH(1,1) for variance.30  

                                                 
30 GARCH(1,1) is in most cases well suited for stock indices and exchange rates modeling, 
see e.g. [Brzeszczyński, Kelm 2002].   
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Starting with the GARCH model, 10 lags in autoregressive equation for the 
mean and log returns of the S&P500 and the WIG20 indices as additional 
variables, we reduce the model to only AR(1) with SP500 and WIG20 as additional 
variables, and GARCH(1,1) for conditional variance.  

To compare results of forecasting exercise for both versions (with and 
without additional variables), we decide to use one lag for expected value equation. 
We reestimate the models for shorter sample, up to 2009/01/26, and compute 
forecasts for end of the whole sample (up to the end of April 2010). Forecasts 
quality is still not impressive, according to mean absolute error MAE, mean 
squared error MSE, mean absolute percentage error MAPE, and the Theil U 
indicator, given by 
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(where p
tt yy ,  denote observation of the series and value of forecast in period t, 

and m denotes forecast horizon).31 Models with additional regressors perform 
slightly better.   

CONCLUSIONS 

We perform analysis for logarithmic returns and for volatility (defined as log 
difference between maximum and minimum of daily quotes) for daily values of 
exchange rates. We compare their behavior in period 2007-2010 (during crisis) and 
since January 2009 until April 2010. We note that the series have slightly 
stabilized, although volatility is still quite high in comparison to the period before 
the crisis.  

Long memory of the series and values of the fractional integration parameter 
indicating nonstationarity for the crisis period result in greater number of lags in 
the ARMA model in comparison to the earlier period (where the ARMA model 
specification has been chosen using significance tests and information criteria).  

Granger-causality tests show that the corresponding measures of stock 
indices Granger-cause returns or volatility of exchange rates. The Engle test shows 
presence of ARCH effect.  

Indeed, results of estimation and of in-sample forecasting exercise, show that 
S&P500 and WIG20 stock indices measures used as additional regressors in mean 
equation, improve slightly the quality of ARMAX and GARCH models for either 

                                                 
31 See M. Gruszczyński and M. Podgórska (eds.), „Ekonometria”, Warsaw School of 
Economics, Warsaw 2004,  p. 117.   
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returns or volatility of the exchange rates. The volatility of exchange rates until the 
end of April 2010 is quite high, hence to improve quality of modeling we should 
wait for hopefully further stabilization of the series and work towards improvement 
of specification of the estimated econometric models.  
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Figure 1. Logarithmic daily returns of S&P500 index for Jan. 2000–April 2010 

 
Source: http://stooq.pl 
 

Figure 2. Logarithmic daily returns of USDPLN exchange rate for Jan. 2000–April 2010 

 
Source: http://stooq.pl 
 



156 Ewa M. Syczewska  

 

Figure 3. Same day max-min volatility of USDPLN exchange rate for Jan. 2000–April 2010 

 
Source: own computations  
 

 

Figure 4. Periodogram for logarithmic returns of USDPLN exchange rate for Jan. 2000–
April 2010  
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Figure 5. Periodogram for volatility of USDPLN exchange rate for Jan. 2000–April 2010  
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Abstract. In statistical quality control objects are alternatively rated. It is of 
interest to estimate a fraction of negatively rated objects. One of such 
applications is a quality control provided by Supreme Chamber of Control 
(NIK) to find out a percentage of abnormalities in the work among others of 
tax offices. Mathematical details of experimental designs for alternatively 
rated phenomena are given in Karliński (2003). There are given requirements 
for sample sizes, numbers of negative rates, accuracy of estimation and error 
risks. In the paper, some statistical properties of given plans are investigated. 

Key words: statistical quality control, alternative rating, experimental design 

One of the problem of the statistical quality control is the problem of the 
estimation of the fraction of defective products. Generally speaking, the products 
are alternatively rating and one is interested in estimation of a fraction of 
negatively rated objects. In this approach, the binomial statistical model is applied, 
i.e. if ξ  is a random variable counting negative rated in a sample of size n , then ξ  
is binomially distributed 

 { } (1 ) , 0,1, , ,x n xn
P x x n

xθ ξ θ θ −⎛ ⎞
= = − = …⎜ ⎟

⎝ ⎠
 

where (0,1)θ ∈  is a probability of drawing a defective product. The aim of the 
statistical quality control is to estimate θ . 

In many norms and books devoted to different applications there are given 
exacts designs of experiments, i.e. requirements for ample sizes, number of 
negative rates in the sample, accuracy of estimation and error risks. One of such 
applications are quality controls provided by Supreme Chamber of Control, the 
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goal of which is finding abnormalities in tax offices. Karliński (2003) gives 
mathematical details of such controls. There are given methods of providing 
experiments and rules of statistical inference. In what follows, statistical properties 
of given experimental designs are investigated. 

The aim of a control is the interval estimation of a percentage of the 
defective objects. NIK guidelines are based on approximate solutions. There is 
given a method of calculating a minimal sample size: 

 
2

2 2

(1 ) ,
( 1) (1 )

Nun
N u

α

α

θ θ
ε θ θ

−=
− + −

 

where N  is the size of the population, uα  is the critical value of the standard 
normal distribution for 1 α−  confidence level, ε  is the given accuracy of 
estimation and θ  is the real (assumed in control) theoretical percentage of 
defective objects. Let the number of observed defective objects in a sample be 
m .Then  

 
ˆ ˆ(1 )

1
N ne u

n Nα
θ θ− −=

−
 

and an interval is obtained 
 ( )ˆ ˆ, .e eθ θ− +  

The interval is considered as a confidence interval for the fraction of failures. 
Let us investigate the statistical properties of the above method. In what 

follows it is assumed that the population is infinite. Under the assumption the given 
formulae take on the form 
 

 
2

2

ˆ ˆ(1 ) (1 )and .un e u
n

α
α

θ θ θ θ
ε
− −= =  

 
The formulae are derived from asymptotic approximations of e Binomial 

distribution. Central Limit Theorem states that for large n  we have 

 { } ,
(1 )

nP k
nθ
ξ θξ
θ θ

⎛ ⎞−≤ ≈ Φ ⎜ ⎟⎜ ⎟−⎝ ⎠
 

where (·)Φ  denote the cumulative distribution function of the standard normal 

distribution (0,1)N . Hence, it assumed that ˆ ˆ( ) / (1 )n nξ θ θ θ− −  is 
asymptotically normal (0,1)N , it means that  
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ˆ ˆ(1 )

P n uθ α
θ θ α
θ θ

⎧ ⎫−⎪ ⎪≤ ≈ −⎨ ⎬
−⎪ ⎪⎩ ⎭

 

From the above we obtain given earlier interval. 
 

Taking 1 0.95α− = , 0.05ε =  and 0.05θ =  we obtain 
 0.05 1.96, 73, 0.0499967.u n e= = =  

The number of failures in the sample is a random variable ξ  distributed as 
Binomial (73,0.05)B . Numerical results which demonstrate statistical properties 
of the above confidence are given In the Table 1. 
 

Table 1. 

m  ( )ˆ ˆ,e eθ θ− +   0.05{ }P mξ =  

0 (-0.049997,0.049997) 0 0.0236 

1 (-0.036298,0.063695) 1 0.0909 

2 (-0.022599,0.077394) 1 0.1722 

3 (-0.008901,0.091093) 1 0.2144 

4 (0.004798,0.104791) 1 0.1975 

5 (0.018496,0.118490) 1 0.1435 

6 (0.032195,0.132188) 1 0.0856 

7 (0.045894,0.145887) 1 0.0431 

8 (0.059592,0.159586) 0 0.0187 

9 (0.073291,0.173284) 0 0.0071 

10 (0.086990,0.186983) 0 0.0024 

    
 

In the column before last one denotes that the obtained interval covers the 
estimated value 0.05. Note that, for small values of m  the left end of the interval is 
a negative number. Moreover, multiplying the last columns the real confidence 
level is obtained: 0.9471. This is smaller value than nominal 0.95. In consequence, 
by the application of the above method more correct populations are considered as 
wrong ones. Note that the expected length is 0.1 and equals given accuracy ε  of 
estimation. 
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Clopper and Pearson (1934) give the confidence interval for θ , based on the 
exact distribution of ξ . Because 
 

 { } ( , 1;1 ) and { } ( , 1; ),P x n x x P x x n xθ θξ β θ ξ β θ≤ = − + − ≥ = − +  
 

where ( , ;·)a bβ  denotes the CDF of Beta distribution with parameters ( , )a b , 
hence the confidence interval has the form ( )( ), ( )L Ux xθ θ , where 
 

 1 1( ) , 1; , ( ) 1, ;1 .
2 2L Ux x n x x x n xα αθ β θ β− −⎛ ⎞ ⎛ ⎞= − + = + − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

For 0x =  we take (0) 0Lθ = , and for x n=  is taken ( ) 1U nθ = . 
Here 1( , ;·)a bβ −  denotes the quantile of the Beta distribution with 

parameters ( , )a b . 
 

In the Table 2 there are given analogous results as in the Table 1, but for 
Clopper—Pearson confidence interval. 

Table 2. 

m (left, right)  0.05{ }P mξ =  

0 (0.0000,0.0493) 0 0.0236 
1 (0.0003,0.0740) 1 0.0909 
2 (0.0033,0.0955) 1 0.1722 
3 (0.0086,0.1154) 1 0.2144 
4 (0.0151,0.1344) 1 0.1975 
5 (0.0226,0.1526) 1 0.1435 
6 (0.0308,0.1704) 1 0.0856 
7 (0.0394,0.1876) 1 0.0431 
8 (0.0485,0.2046) 1 0.0187 
9 (0.0580,0.2212) 0 0.0071 

10 (0.0677,0.2375) 0 0.0024 

    

True confidence level of the classical confidence interval equals 0.9659, so it 
is higher than nominal 0.95. Unfortunately expected length of the confidence 
interval is 0.1119 and is bigger than postulated precision 2 0.1ε = . To gain the 
accuracy, the sample size should be enlarged. It is easy to calculate that minimal 
sample size is 90n = . The results of calculations for that sample size are given in 
the Table 3. 
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Table 3. 

m (left, right)  0.05{ }P mξ =  

0 (0.0000,0.0402) 0 0.0099 

1 (0.0003,0.0604) 1 0.0468 

2 (0.0027,0.0780) 1 0.1097 

3 (0.0069,0.0943) 1 0.1694 

4 (0.0122,0.1099) 1 0.1939 

5 (0.0183,0.1249) 1 0.1755 

6 (0.0249,0.1395) 1 0.1309 

7 (0.0318,0.1537) 1 0.0827 

8 (0.0392,0.1677) 1 0.0451 

9 (0.0468,0.1814) 1 0.0216 

10 (0.0546,0.1949) 0 0.0092 

11 (0.0626,0.2082) 0 0.0035 

    
 

The true confidence level equals 0.9756, and its expected length is 0.0998. It 
is seen that expected length is smaller than required. For the sample of the size 

89n =  expected length of the confidence interval equals 0.1004, which is a little 
bigger that assumed. To obtain precision exactly 2ε , the randomization should be 
applied in the following way 

 
89, with probability 0.3461
90, with probability 0.6539

n
⎧

= ⎨
⎩

 

Expected length equals now 
 0.0998·0.3461 0.1004·0.6539 0.1.+ =  

Of course, drawing sample size should be done before realization of the 
proper experiment. Any random number generator may be applied, for example the 
one in Excel. 

In both cases, i.e. for sample size 89 and 90, the real confidence level is 
greater than nominal one. This inconvenience may be suppressed by second 
randomization. This randomization is applied in the construction of the confidence 
interval. If the number of observed failures is m  two random numbers 1u , 2u  from 
uniform distribution (0,1)U  are drawn and ends of the confidence interval are 
obtained by solving two equations: 
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1 1

2 2

( 1, 2; ) (1 ) ( , 1; ) 0.025, ( )
( 1, ; ) (1 ) ( 2, 1; ) 0.975. ( )

left u m n m u m n m L
right u m n m u m n m R

β θ β θ
β θ β θ

− − + + − − + =
+ − + − + − − =

 

In that way, obtained confidence interval has the confidence level exactly 0.95. 
In practice, the above method may be realized as follows. In the spreedsheet Excel 

three numbers are drawn according to the uniform (0,1)U  distribution: 
 0 1 20.3820, 0.1006, 0.5964.u u u= = =  
Number 0u  is used to drawing a sample size: because 0u  is greater than 0.3461, 
hence the sample size is 90n = . 

In the experiment 10m =  defective objects were observed. The two 
following equations are solved (Addin Solver in Excelu may be used): 
 

 
(9,82; ) 0.8994 (10,81; ) 0.025, ( )

0.5964 (11,80; ) 0.4036 (12,79; ) 0.975.
0 006

( )
.1left L

right R
β θ β θ
β θ β θ

+ =
+ =

 

 
The interval is obtained  
 (0.0535,0.2012).  
 
Drawn numbers 0u , 1u  and 2u  should be added to the report.  
As it was mentioned, all calculations may be done in Excel. There are following 
useful functions. 
BETADISTRIBUTION(x;alfa;beta;A;B): where alfa and beta are the parameters of 
the distribution. The function gives a values of CDF at point x. Numbers A and B 
defines a support of the distribution: default values are 0 and 1. 
 
BETAINV(probability;alpha;beta;A;B): where alfa and beta are parameters of the 
distribution. The function gives the probability quantile of the Beta distribution. 
Numbers A and B defines a support of the distribution: default values are 0 and 1. 

The confidence interval in the binomial model may be calculated in the 
following way. 

 A B 
1 100 Sample size 
2 10 Number of succeses 
3 0.95 Confidence level 
4 =IF(A2=0;0;BETAINV((1-A3)/2;A2;A1-A2+1)) Left end 
5 =IF(A2=A1;1;BETAINV((1+A3)/2;A2+1;A1-A2)) Wright end 

In cells A4 and A5 the values of the left and the right end of the interval are 
obtained. 
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The worksheet calculating a randomized confidence interval is a little bit 
complicated. 

 A B 
1 100 Sample size 
2 10 Number of succeses 
3 0.95 Confidence level 
4 0.1006 u1 
5 0.5964 u2 
6 0.1 Left end 

7 =A4* BETAINV (A6;A2-1;A1-A2+2) 
+(1-A4)* BETAINV (A6;A2;A1-A2+1)-(1-A3)/2 equation (L) 

8 0.1 Right end 

9 
=A5* BETAINV (A8;A2+1;A1-A2) 
+(1-A5)* BETAINV (A8;A2+2;A1-A2-1)-
(1+A3)/2 

equation (R) 

To obtain the randomized confidence interval the Addin Solver should be 
used twice. Firstly, the goal is cell A7 by changing A6, secondly the goal is the cell 
A9 by changing A8. In cells A6 and A8 ends of randomized confidence  interval 
are calculated. Numbers in A4 and A5 are obtained from a random number 
generator (Addis DataAnalysis in Excel). 
 

More information on the confidence level may be fund in Zieliński (2009), 
and on randomized confidence intervals in Bartoszewicz (1996). 
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Abstract: A class of two person nonzero-sum nonsymmetric stochastic games of
capital accumulation/resource extraction is considered. It is shown that the Nash
equilibrium in the discounted games has a limit when the discount factor tends
to 1. Moreover, this limit is an epsilon-equilibrium in the discounted game with
sufficiently large discount factor.
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Introduction

Nonzero-sum dynamic games of capital accumulation (or resource extraction) studied
in this paper belong to a class of stochastic games with uncountable state space.
Unlike in the games with a countable state space (see [9]), the question of the existence
of stationary Nash equilibria in such games has a positive answer only in some special
cases of interest. For a survey of the existing literature on this topic the reader is
referred to [1, 2, 7, 12, 13, 14] and [16]. The special case of these games is a class
of concave games of resource extraction or capital accumulation. The pioneering
work on this field is [10]. Similar class is studied in [1, 2, 3, 4, 12, 14] and [16].
Our main assumption on the transition probability function in the game says that it
is a combination of finitely many probability measures on the state space with the
coefficients depending on the investment. Similar form of it we can find in [2] and in
[16].

In our model, we restrict our assumptions to two person game. Asymptotic prop-
erties of Nash equilibria in the discounted stochastic game, with respect to discount
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factor tending to 1, are the main results of this paper. We accept the assumptions,
from the model considering in [14]. There is proven existence of Nash equilibria in fi-
nite and infinite horizon game. Moreover, there is also proven the uniform convergence
of equilibria payoffs with respect to horizon of the game. The limit is an equilibrium
payoff in infinite horizon game. The convergence of Nash equilibria is proven as well,
but there is only pointwise convergence. In this paper we can complete those results
and prove uniform convergence. This also leads us to uniform convergence of Nash
equilibria and adequate equilibria payoffs with respect the discount factor tending to
1 in finite and in infinite horizon game. These limits it is shown to be Nash equilib-
rium and adequate equilibrium payoff in the undiscounted model. Similar problems
are often described in the literature. However, unlike in [8, 11] and [17] we also obtain
further results. Uniform convergence yields us more properties. Taking an arbitary
small ε, the Nash equilibrium in the undiscounted model is ε - equilibrium in the
discounted games with sufficiently large discount factor. The results obtained in this
paper would be useful in the discounted model, if we do not know exact value of the
discount factor. Then we could approximate Nash equilibria in discounted models by
the Nash equilibrium in the undiscounted model.

This paper is organized in a following way: in the next section is presented a
model with main assumptions. In the third section the model of auxillary one shot
game and some properties of it are described. This model is a special case of that
from Section 3 in [3]. The main results are discreibed in the fourth and fifth section.
Fourth section is about finite horizon game and fifth about infinite horizon game. At
the end of the last section there is an example in which the results obtained in this
paper would be useful.

The model and basic assumptions

Consider an two-person nonzero-sum nonsymmetric stochastic game in which:

(i) S ⊂ R+ := [0,∞) is a compact interval containing zero called the state space
or the set of all possible stocks of a resource. Denote S := [0, s̄], for some strictly
positive constant s̄.

(ii) Ai(s) ⊂ S, Ai(s) := [0, ai(s)] is the space of actions available to player i in the
state s ∈ S, where ai(·) is called capacity function. Assume that ai(·) is nonnegative,
nondecreasing and continous function such that a1(s) + a2(s) ≤ s. For x̄ := (x1, x2)
let

X(s) := A1(s) ×A2(s) and D = {(s, x̄) : s ∈ S, x̄ ∈ X(s)} .

(iii) ui : S → R+ is a bounded instantaneous utility function for player i.

(iv) q is a Borel measurable transition probability from D to S, called the law
of motion among states. If s is a state (resource stock) at some stage of the game
and the players select an x̄ = (x1, x2) ∈ X(s), then q(·|s, x1, x2) is the probability
distribution of the next stock.
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Our further assumptions are:

C1: The utility function for player i ui : S → R+ is a strictly concave twice
continuously differentiable and increasing function such that ui(0) = 0.

C2: The transition probability is of the form

q(·|s, x̄) =

L
∑

l=1

gl (s− x1 − x2)λl(·|s) + g0(s− x1 − x2)δ0(·),

where

(a) δ0 is the Dirac measure concentrated at 0,

(b) λl is a Borel measurable transition probability from S to S. Moreover,

• assume additionally that there exists a probability measure µ such that, µ
stochasticaly dominates λl(·|s) for all s ∈ S, l = 1, ..., L, and holds

∫

S

g0(s)µ(ds) > 0,

or equivalentely
∫

S

L
∑

l=1

gl(s)µ(ds) < 1.

• for each l = 1, ..., L and for each Borel measurable and bounded function v(·)
the function s →

∫

S

v(s′)λl(ds
′|s) is continous. Clearly λl is a stochasticaly

continous measure.

(c) g0(0) = 1 and for l = 1 . . . , L gl : S → [0, 1] is strictly concave, increasing and

twice continuously differentiable. Obviously
L
∑

l=0

gl ≡ 1.

Remark. By assumption C2 it follows that 0 is an absorbing state since

q({0}|0, 0, 0) = g0(0)δ0({0}) +
L
∑

l=1

gl(0)λl({0}|0) = δ0({0}) = 1.

Remark. Note that assumption C2 it satisfied when

L
∑

l=1

gl(s̄) < 1.

Then as µ we can take a Dirac measure concentrated at s̄.
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Remark. Typical examples of the functions gl are:

gl(y) := α(1 − e−y) or gl(y) := α
√
y, y = s− x1 − x2,

where α > 0 are small enough, S is bounded from above.

Remark. Typical example of the collection of measures λl are

λl(A|s) :=

∫

A

ρl(s, s
′)νl(ds

′),

where νl(·) is some probability measure on S and ρl(s, ·) is a density for each s ∈ S.
Moreover, for each s′ ∈ S ρl(·, s′) is a continous function.

The game is played in discrete time with past history as common knowledge for all
the players. A strategy for a player is a Borel mapping which associates with each
given history an action available to him. For i = 1, 2 let Fi be set of Borel measurable
functions fi : S → R+ such that fi(s) ∈ Ai(s) for each s ∈ S. A Markov strategy for
player i is a sequence πi = (fi,1, fi,2, . . . , ) where each fi,n belongs to Fi. A stationary
strategy for player i is a constant sequence πi where each fi,n = fi for some fi ∈ Fi.
Let F := F1 × F2 be a set of all profiles. In the sequence, a stationary strategy
(fi, fi, ...) of player i will be identified with fi.

Let H∞ := D ×D × . . . by the set of all possibles histories of the game endowed
with the product σ-field. For any profile of strategies π = (π1, π2), and every initial
state s ∈ S, a probability measure P πs and a stochastic proces {sn, x̄n} are defined on
H∞ in the canonical way, where the random variables sn and x̄n = (xn1, xn2) ∈ X(sn)
describe the state and the actions chosen by the players, respectively, on the n-th stage
of the game (see Chapter 7 in Bertsekas and Shreve (1978)). Thus, for each profile π
of strategies and any initial state s, one can define the operator of the expected value
Eπs with respect to the probability measure P πs . In the n-stage β - discounted model
the total expected utility for player i is

γβi,n(π)(s) = Eπs

(

n
∑

k=1

βk−1ui(xki)

)

.

The value β ∈ (0, 1] is said to be a discount factor. If β = 1 then we have undiscounted
model. Let us denote γi,n(π)(s) := γ1i,n(π)(s). The total expected utility for player i
in the infinite horizon game is

γβi (π)(s) = Eπs

(

∞
∑

k=1

βk−1ui(xki)

)

= lim
n→∞

γβi,n(π)(s).

In the undiscounted model, the total expected utility for player i is

γi(π)(s) = Eπs

(

∞
∑

k=1

ui(xki)

)

.
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Remark. This criterion above makes a sens, because as shows Corollary 12, the series
under the expected value are convergents are limited by a common value.

Let π = (π1, π2) and σi be a strategy for player i. Then, as usual, (π−i, σi) is the
strategy profile π with πi replaced by σi.

Definition 1. A strategy profile π⋆ = (π⋆1 , π
⋆
2) is called a Nash equilibrium in the

β - discounted stochastic game if and only if no unilateral deviations from it are
profitable, that is, for every player i, his strategy σi and s ∈ S,

γβi (π⋆)(s) ≥ γβi (π⋆−i, σi)(s).

Similarly, Nash equilibria are defined in the finite horizon case and in the undiscounted
case. Obviously, a strategy for player i in a n-step game consists of n components
only.

Definition 2. Fix ε > 0. A strategy profile πε = (πε1, π
ε
2) is called an ε - equilibrium

in the β - discounted stochastic game if and only if for every player i, his strategy σi
and s ∈ S,

ε+ γβi (πε)(s) ≥ γβi (πε−i, σi)(s).

Similarly we define ε - equilibrium in the finite horizon game. It is easy to see that
unilateral deviation from ε - equilibrium can take the profit but no greater then ε.
Notation: If ρ is arbitrary game, then by NE ρ we denote the set of Nash equilibria
in this game.

Auxilliary one shot game

In this section we introduce an auxilliary one shot model G(s, η) of two person game.
The payoff function for player i (i = 1, 2) is

wi(ηi, s, x1, x2) = ui(xi) +

L
∑

l=1

ηi,l(s)gl (s− x1 − x2) , (1)

for s ∈ S, xi ∈ Ai(s), where each ηi,l : S → R+ is a continous function, ηi :=
(ηi,1, ..., ηi,L) and η is a matrix with the rows η1 and η2. Let xη(s) := (xη1(s), xη2(s))
be a Nash equilibrium in G(s, η). By Proposition 1 in [3] follows that this definition
is well.

Lemma 3. For each continous η, the function xηi (·) is continous.

Proof. Let sn → s0. Then by definition of xη we have

w1(η1, sn, x
η
1(sn), xη2(sn)) ≥ w1(η1, sn, x1, x

η
2(sn)), (2)

w2(η2, sn, x
η
1(sn), xη2(sn)) ≥ w2(η2, sn, x

η
1(sn), x2).
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for arbitrary (x1, x2) ∈ X(s). Let x∗ := (x∗1, x
∗
2) be an arbitrary cumulation point of

(xη(sn)). Consider subsequence of sn which leads (xη(sn)) to x∗. By Assumption C1

and C2 and definition of wi, taking a limit in (2) we obtain

w1(η1, s0, x
∗
1, x

∗
2) ≥ w1(η1, s0, x1, x

∗
2),

w2(η2, s0, x
∗
1, x

∗
2) ≥ w2(η2, s0, x

∗
1, x2).

This implies that x∗ is a Nash equilibrium in G(s0, η). As we have mentioned before
this game has unique Nash equilibrium xη(s0), hence x∗ = xη(s0). �

Lemma 4. For all i = 1, 2 and l = 1, ..., L, let ηni,l(·) be a sequence of continous
function on S and

lim
n→∞

ηni,l(·) = ηi,l(·)

in sup - norm on S. Then

lim
n→∞

xη
n

i (s) = xηi (s), (3)

and

lim
n→∞

wi

(

ηni , s, x
ηn

1 (s), xη
n

2 (s)
)

= wi (ηi, s, x
η
1(s), xη2(s)) , (4)

in sup - norm on S.

Proof. Step 1 First we prove uniformly convergence in (3). We show that there
is exactly one cumulation point of the set of couples K :=

{

(sn, x
ηn(sn)) : n ∈ N

}

,
where (s1, s2, ...) is a sequence such that

sup
s∈S

∣

∣

∣xη
n

(s) − xη(s)
∣

∣

∣ =
∣

∣

∣xη
n

(sn) − xη(sn)
∣

∣

∣ .

This sequence exists by Lemma 3. Let (s∗, x∗) be an arbitrary cumulation point of
the set K. Then there exisists a sequence containing in K such that

x∗ := lim
k→∞

xη
k

(sk) and s∗ = lim
k→∞

sk.

Note that in this equation above, we denote xη
k

instead xη
n
k and sk instead snk

for
simplify the notation. Note that

w1

(

ηk1 , sk, x
ηk

1 (sk), xη
k

2 (sk)
)

≥ w1

(

ηk1 , sk, x1, x
ηk

2 (sk)
)

,

w2

(

ηk2 , sk, x
ηk

1 (sk), xη
k

2 (sk)
)

≥ w2

(

ηk2 , sk, x
ηk

1 (sk), x2

)

,

(5)

when xi ∈ Ai(sk) is arbitrary. Since the sequence ηk uniformely converges to η, and
η is continous, hence ηk(sk) → η(s∗). By continouity of wi and by (5) we obtain

w1 (η1, s
∗, x∗1, x

∗
2) ≥ w1 (η1, s

∗, x1, x
∗
2) ,

w2 (η2, s
∗, x∗1, x

∗
2) ≥ w2 (η2, s

∗, x∗1, x2) ,
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which means that x∗ is Nash equilibrium in the game G(s0, η). By Proposition 1 in
[3] there is exactly one Nash equilibrium in this game. Hence each cumulation point
of the set K is in a form (s∗, xη(s∗)) i.e. is on the graph of xη(·). Hence and by
Lemma 3, we immediately obtain that the unique cumulation point of the sequence

∣

∣

∣xη
n

(sn) − xη(sn)
∣

∣

∣

is 0. This implies that xηn(·) is uniformely convergent to xη(·).
Step 2. The uniform convergence in (4) follows directly from uniform convergence

of the sequences xη
n

(·) and ηni,l(·), and uniform continouity of the functions ui and
gl. �

In [14] it is proven following lemma.

Lemma 5. For i = 1, 2 Xi = [0, di] be an action spaces. Let

• ui satysfy condition C1,

• the functions ξi : [0, d1 + d2] → R+ and ζi : [0, d1 + d2] → R+ are twice
continously differentables, strictly concave and decreasing,

• for t ∈ [0, d1 + d2] we have ξi(t) ≤ ζi(t) and ξ′i(t) ≥ ζ′i(t).

Consider two games: ρ1 in which the payoff function for player i is on the form

W 1
i (x1, x2) = ui(xi) + ξi(x1 + x2),

and ρ2 with the payoff function

W 2
i (x1, x2) = ui(xi) + ζi(x1 + x2)

for (x1, x2) ∈ X1 × X2. Then there exists Nash equilibrium in the game ρ1 say
x∗ := (x∗1, x

∗
2) and Nash equilibrium in the game ρ2 say y∗ := (y∗1 , y

∗
2) such that

W 1
i (x∗1, x

∗
2) ≤W 2

i (y∗1 , y
∗
2).

By Lemma 5 we immediately obtain following lemma:

Lemma 6. If for each l = 1, ..., L, and s ∈ S holds η1i,l(s) ≤ η2i,l(s), then

wi

(

η1i , s, x
η1

1 (s), xη
1

2 (s)
)

≤ wi

(

η2i , s, x
η2

1 (s), xη
2

2 (s)
)

.

Proof. Fix s ∈ S. Note that the games G(s, ηj) j = 1, 2 can be described as ρi where

W 1
i (x1, x2) := wi(η

1
i , s, x1, x2) = ui(xi) + ξi(x1 + x2)

with

ξi(t) :=

L
∑

l=1

η1i,l(s)gl (s− t) ,
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and
W 2
i (x1, x2) := wi(η

2
i , s, x1, x2) = ui(xi) + ζi(x1 + x2)

with

ζi(t) :=

L
∑

l=1

η2i,l(s)gl (s− t) , t := x1 + x2.

Clearly ui, ξi, ζi are strictly concave, twice continously differentable and strictly mono-
tone (ui is increasing ξi and ζi are decreasing). Since η1i,l(s) ≤ η2i,l(s) for all l = 1, ..., L,
hence ξ(t) ≤ ζ(t) for all t ∈ [0, d1 + d2]. Note that

ξ′i(t) = −
L
∑

l=1

η1i,l(s)g
′
l (s− t) ≥ −

L
∑

l=1

η2i,l(s)gl (s− t) = ζ′i(t).

Therefore conditions of Lemma 5 are satisfied. By Proposition 3 in [3] Nash equilibria
in both ρi are unique, hence the proof is complete. �

Asymptotic Nash equilibria in the n - step model

In this section we consider finite horizon game. Define B0(S) := {v : S → R+ : v(0) = 0}.
For every (v1, v2) ∈ B0(S) × B0(S), s ∈ S, β ∈ (0, 1], we define auxiliary two person
one shot game Γ(β, v1, v2, s), in which the payoff function for each player i is

ki(β, vi, s, x) = ui(xi) + β

∫

S+

vi(s
′)q(ds′|s, x),

where x = (x1, x2) ∈ X(s). Since vi ≥ 0, by the assumptions C1 and C2 the payoff
function this game has the same form as in section 3 in [3]. Hence by Proposition 1
in [3] we can conclude that for every s ∈ S, this game have an unique proper Nash
equilibrium NEΓ(β, v1, v2, s).
Obviously NEΓ(β, v1, v2, s) = (0, 0) for s = 0.

Let β ∈ (0, 1] be a discount factor, and n be a horizon of the finite step game. For

i = 1, 2 i s ∈ S let fβi,1(s) := ai(s), and

vβi,1(s) := max
ai∈Ai(s)

ui(ai) = ui(f
β
i,1(s)).

Clearly vβi,1 ∈ B0(S). If vβi,0(s) := 0 for arbitrary s ∈ S, then

f̄β1 := (fβ1,1(s), fβ2,1(s)) = NEΓ(β, vβ1,0, v
β
2,0, s).

Therefore f̄β1 is a Nash equilibrium in the one-step game, vβi,1 is an equilibrium function

for the player i and vβi,1 = ki(β, vi,0, s, (a1(s), a2(s))). Analogously as in [14] and in

section 4 in [2], we can define fβi,2, ..., f
β
i,n ∈ Fi and vβi,2, ..., v

β
i,n ∈ B0(S) in the following

way

f̄βk := (fβ1,k, f
β
2,k) := NEΓ(β, vβ1,k−1, v

β
2,k−1, s) and

vβi,k(s) := ki(β, v
β
i,k−1(s), s, f̄βk (s)),
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where s ∈ S and k = 2, ..., n. By Proposition 1 in [3], these definitions above are well.

Let π
(n),β
i be a n-step strategy for the player i which is defined as

π
(n),β
i = (fβ∗i,1 , f

β∗
i,2 , ..., f

β∗
i,n) := (fβi,n, f

β
i,n−1, ..., f

β
i,1).

(Clearly, fβi,k = fβ∗i,n−k+1.) Let π(n),β :=
(

π
(n),β
1 , π

(n),β
2

)

. We denote f⋆i,n := fβi,n,

v⋆i,n := vβi,n, and π(n) :=
(

π
(n)
1 , π

(n)
2

)

:=
(

π
(n),β
1 , π

(n),β
2

)

when β = 1.

By the construction above and Bellman equations in the dynamic programming in
the finite horizon game (see [5, 6] or [15]), it follows that π(n),β is a Nash equilibrium
in the n - step β-discounted game.

Main Theorem 7. For each n ∈ N and i = 1, 2 hold

lim
β→1

fβi,n(·) = f⋆i,n(·), (6)

and

lim
β→1

vβi,n(·) = v⋆i,n(·). (7)

Both convergences are uniform on S (i.e. in sup - norm on S).

Proof. Clearly, the hypothesis is true for n = 1. Suppose that for some n ∈ N the
hipothesis is satisfied i.e. if β → 1 then hold

fβi,n(·) → f⋆i,n(·)

and

vβi,n(·) → v⋆i,n(·)

uniformely on S. By Bellman equations (see [5, 15] or [15]) and conditions C2, we
conclude that n+ 1 step game is on the form G(s, ηβ) with

ηβi,l(s) := β

∫

S

vβi,nλl(ds
′|s). (8)

Let ηi,l(·) := η1i,l(·). By induction hipothesis we obtain sup
s∈S

∣

∣

∣v
β
i,n(s) − v⋆i,n(s)

∣

∣

∣→ 0, as



176  Lukasz Balbus

n→ ∞. Hence

sup
s∈S

∣

∣

∣η
β
i,l(s) − ηi,l(s)

∣

∣

∣ ≤ sup
s∈S







∫

S

∣

∣

∣v
β
i,n(s′) − v⋆i,n(s′)

∣

∣

∣λl(ds
′|s)







+ (1 − β) sup
s∈S







∫

S

v⋆i,n(s′)λl(ds
′|s)







(9)

≤ sup
s∈S

∣

∣

∣v
β
i,n(s) − v⋆i,n(s)

∣

∣

∣+ (1 − β)n ||ui||∞ → 0 as β → 1.

The thesis for n+ 1 follows directly from (10) and Lemma 4. Hence uniform conver-
gences in (6) and (7) hold. �

Remark. If we additionaly assumed that the capacity functions ai(·) are Lipshitz -
continous with a constant 1 and that no measures λl(·|s) depends on s (i.e. λl(·|s) =
λl(·) for each l), then the transition probability would be a special case of that from
Amir (1996). Then we immediately would obtain that the Nash equilibria are Lipshitz
continous with a constant 1, and uniform continouity in Main Theorem 7 and further
in Main Theorem 15 would be satisfied immediately.

Lemma 8. For arbitrary n ∈ N let

ψ
(n),β
i := (φ

(n),β
i , φ

(n−1),β
i , ..., φ

(1),β
i )

be a certain collection of Markov strategies for player i depending on β ∈ (0, 1].
Moreover, assume that there exists a limit

ψ
(n)
i := lim

β→1
ψ
(n),β
i . (10)

If the convergence in (10) is uniform, then

lim
β→1

(

sup
s∈S

∣

∣

∣γ
β
i,n(ψ

(n),β
1 , ψ

(n),β
2 )(s) − γβi,n(ψ

(n)
1 , ψ

(n)
2 )(s)

∣

∣

∣

)

= 0. (11)

Remark. Since Markov strategy for player i in n - step game can be treaten as n
- element vector from the space Fni , uniform convergence of Markov strategy means
uniform convergence of each component.

Proof. Clearly for n = 1 the hypothesis is true. Suppose that (11) holds for some n,
and this convergence is uniform. Note that by Bellman equations for finite horizon
game (see [5, 6] or [15]) we have

∣

∣

∣
γβi,n+1

(

ψ
(n+1),β
1 , ψ

(n+1),β
2

)

(s) − γβi,n+1

(

ψ
(n+1)
1 , ψ

(n+1)
2

)

(s)
∣

∣

∣
≤

∣

∣

∣ui(φ
(n+1),β
i (s)) − ui(φ

(n+1)
i (s))

∣

∣

∣+ β∆β(s), (12)

where
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∆β(s) :=
∣

∣

∣ω
β
1 (s) − ωβ2 (s)

∣

∣

∣ ,

ωβ1 (s) =

∫

S

γβi,n

(

ψ
(n),β
1 , ψ

(n),β
2

)

(s′)q(ds′|s, φ(n+1),β
1 (s), φ

(n+1),β
2 (s))

and

ωβ2 (s) =

∫

S

γβi,n

(

ψ
(n)
1 , ψ

(n)
2

)

(s′)q(ds′|s, φ(n+1)
1 (s), φ

(n+1)
2 (s)).

By uniform convergence in (10) and uniform continuity of the function ui we know
that the first part of (12) uniformely converges to 0. It is sufficient to prove that
∣

∣

∣

∣∆β(·)
∣

∣

∣

∣

∞
converge do 0, when β → 1. Note that by condition C2, we obtain

ωβ1 (s) =

L
∑

l=1





∫

S

γβi,n

(

ψ
(n),β
1 , ψ

(n),β
2

)

(s′)λl(ds
′|s)gl

(

s− φ
(n+1),β
1 (s) − φ

(n+1),β
2 (s))

)



 ,

and

ωβ2 (s) =
L
∑

l=1





∫

S

γβi,n

(

ψ
(n)
1 , ψ

(n)
2

)

(s′)λl(ds
′|s)gl

(

s− φ
(n+1)
1 (s) − φ

(n+1)
2 (s))

)





Hence we have

sup
s∈S

∣

∣∆β(s)
∣

∣ ≤ sup
s∈S

∣

∣

∣γ
β
i,n

(

ψ
(n),β
1 , ψ

(n),β
2

)

(s) − γβi,n

(

ψ
(n)
1 , ψ

(n)
2

)

(s)
∣

∣

∣

+ sup
s∈S

∣

∣

∣

∣

∣

∣

L
∑

l=1

∫

S

γβi,n

(

ψ
(n)
1 , ψ

(n)
2

)

(s′)λl(ds
′|s)

∣

∣

∣g̃
β
l (s) − g̃l(s)

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ sup
s∈S

∣

∣

∣γ
β
i,n

(

ψ
(n),β
1 , ψ

(n),β
2

)

(s) − γβi,n

(

ψ
(n)
1 , ψ

(n)
2

)

(s)
∣

∣

∣

+ n ||ui||∞
L
∑

l=1

sup
s∈S

∣

∣

∣g̃
β
l (s) − g̃l(s)

∣

∣

∣

with
g̃βl (s) := gl

(

s− φ
(n+1),β
1 (s) − φ

(n+1),β
2 (s))

)

and
g̃l(s) := gl

(

s− φ
(n+1)
1 (s) − φ

(n+1)
2 (s))

)

.

Clearly, by induction hypothesis it is sufficient to show that g̃βl (·) → g̃l(·) uniformly on
S. But it is also clear, because of uniform continouity of gl and uniform convergence
of φβi . �

Denote Mn
i as a set of all Markow strategies for player i in n step game.
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Lemma 9. Let

T β
i,n := sup

ψ(n)∈Mn

i

sup
s∈S

∣

∣

∣γ
β
i,n(π

(n,β)
−i , ψ(n))(s) − γβi,n(π

(n)
−i , ψ

(n)))(s)
∣

∣

∣ .

Then we have
lim
β→1

T β
i,n = 0.

Proof. Denote ψ(n) := (φ(n+1), φ(n), ..., φ(1)). We prove this theorem by induction.
Clearly this hipothesis is satisfied for n = 1. Suppose that the thesis of the theorem
is satisfied for some n ∈ N . We have

T β
i,n+1 = sup

ψ(n)∈Mn

i

sup
s∈S

∣

∣

∣
γβi,n+1(π

(n+1,β)
−i , ψ(n+1))(s) − γβi,n+1(π

(n+1)
−i , ψ(n+1)))(s)

∣

∣

∣

= β sup
ψ(n)∈Mn

i

sup
s∈S

∣

∣

∣

∣

∣

∣

L
∑

l=1

∫

S

γβi,n(π
(n,β)
−i , ψ(n))(s′)λl(ds

′|s)gl
(

s− fβi,n+1(s) − φ(n+1)(s)
)

−
L
∑

l=1

∫

S

γβi,n(π
(n)
−i , ψ

(n))(s′)λl(ds
′|s)gl

(

s− f⋆i,n+1(s) − φ(n+1)(s)
)

∣

∣

∣

∣

∣

∣

≤ T β
i,n

+ n ||u||∞
L
∑

l=1

sup
φi∈Fi

sup
s∈S

∣

∣

∣gl

(

s− fβi,n+1(s) − φi(s)
)

− gl
(

s− f⋆i,n+1(s) − φi(s)
)

∣

∣

∣

By indyction hypothesis T β
i,n → 0 when β → 1. By Main Theorem 7 and uniform

continouity of gl(·), the second term of the right side of the inequality above tends to
0 when β → 1.

�

Main Theorem 10. For arbitrary ε there exist a constant β0 such that if β > β0,

the profile
(

π
(n)
1 , π

(n)
2

)

is ε- equilibrium in the β - discounted n - step game.

Proof. Fix n ∈ N . From Main Theorem 7 it follows that, for each n ∈ N π(n),β

is uniformly convergent to π(n) (when β → 1). Let j 6= i and (i, j = 1, 2). Denote
σi as an arbitrary Markov strategy for player i. Let ǫ be also arbitrary. From Main
Theorem 7 and Lemma 8 we conclude the existence of β1, such that for β > β1 holds

γβi,n

(

π(n)
)

(s) ≥ γβi,n

(

π(n),β
)

(s) − ǫ

2
. (13)

Since π(n),β is the Nash equilibrium in n step game we obtain

γβi,n

(

π(n),β
)

(s) ≥ γβi,n

(

π
(n),β
−i , σi

)

(s). (14)

By Lemma 9 we conclude the existing a constant β2 > β1 such that for each β > β2
we have

γβi,n

(

π
(n),β
−i , σi

)

(s) ≥ γβi,n

(

π
(n)
−i , σi

)

(s) − ǫ

2
. (15)
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Combining (13), (14) and (15) we obtain

γβi,n

(

π(n)
)

(s) ≥ γβi,n

(

π
(n)
−i , σi

)

(s) − ǫ.

�

Asymptotic Nash equilibria in infinite step model

For player i let Si be a set of all stationary strategies. Let S := S1 × S2. Note
that there is one to one correspondence between Si and the set of the functions
Fi. Hence if the stationary multi - strategy ψ we can describe as ψ = (φ, φ, ...) for

some borel function φ ∈ F , we denote γβi (φ)(s) := γβi (ψ)(s). Similarly we can define

γβi,n(φ)(s) := γβi,n(ψ)(s), when the profile ψ is used in n step model.

Lemma 11. Let ψ := (ψ1, ψ2) ∈ S be arbitrary. Let ψ = (φ, φ, ...). Then

sup
φ∈S

sup
β∈(0,1]

sup
s∈S

∣

∣

∣γ
β
i,n (φ) (s) − γβi (φ) (s)

∣

∣

∣→ 0, when n→ ∞. (16)

Moreover, for each stationary strategy φ holds

γβi (φ) (s) ≤ ||u||∞
C

1 − C
(17)

with

C =

∫

S

(

L
∑

l=1

gl(s
′)

)

µ(ds′).

Proof. Let φ ∈ F . Define (s0, s1, ..., st, ...) as a sequence of the states generated by
the stationary strategy profile φ. Let s0 = s. It is easy to see that

γβi (φ)(s) =
∞
∑

t=1

Eφs
(

ui (φi(st)) β
t−1
)

. (18)

From the assumption C2 for t > 1 holds

zβ,φt (s) := Eφs
(

ui(φi(st))β
t−1
)

=
L
∑

l=1

βt−1Eφs





∫

S

ui(φi(st−1))λl(ds
′|st−1)gl (st−1 − φ1(st−1) − φ2(st−1))





≤ ||u||∞
L
∑

l=1

Eφs (gl(st−1)) = ||u||∞ hβt−1(s), (19)

where

hβt (s) := Eφs

(

L
∑

l=1

gl(st)

)
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for t > 1 and

hβ0 (s) :=
L
∑

l=1

gl(s).

To prove this lemma we just need to show that the series zβ,φt (s) are uniformely

convergent in (β, φ, s). Clearly 0 ≤ hβ0 (·) ≤ 1. Let t > 0 From assumption C2 we
have

hβt (s) =

L
∑

l=1

Eφs





∫

S

L
∑

l=1

gl(s
′)λl(ds

′|st−1)gl (st−1 − φ1(st−1) − φ2(st−1))





≤
∫

S

(

L
∑

l=1

gl(s
′)

)

µ(ds′)Eψs

(

L
∑

l=1

gl(st−1)

)

= Chβt−1(s).

Hence we have

hβt (s) ≤ C ∗ hβt−1(s) ≤ ... ≤ Ct−1hβ1 (s) ≤ Ct, (20)

By Assumption C2 0 < C < 1. Obviously C is a constant independent on s, φ and
β. Combining (19) and (20) we obtain

zβ,φt (s) ≤ ||u||∞ hβt−1(s) ≤ ||u||∞ Ct−1. (21)

Hence by Weierstrass criterion the series zβ,φt (s) are uniformly convergent in (s, β, φ),
which complete the proof that the condition in (16) is satisfied. Condition (17) follows
from (18), (19), (20) and (21). �

Corollary 12. By Lemma 11 is easy to see that γi(π)(s) < ∞ for arbitrary profile
π. Moreover, repeating the reasoning in the proof of Lemma 11 we can obtain (17)
for arbitrary profile π.

Lemma 13. For arbitrary β ∈ (0, 1] let
(

ψβ1 , ψ
β
2

)

∈ S be stationary multi - strategy.

If for player i holds

lim
β→1

sup
s∈S

∣

∣

∣ψ
β
i (s) − ψi(s)

∣

∣

∣ = 0, (22)

then

lim
β→1

sup
s∈S

∣

∣

∣γ
β
i

(

ψβ1 , ψ
β
2

)

(s) − γβi (ψ1, ψ2) (s)
∣

∣

∣ = 0.

Proof. Let ǫ > 0 be arbitrary. By Lemma 11 there exists n0 such that for n > n0

we have
∣

∣

∣
γβi

(

ψβ1 , ψ
β
2

)

(s) − γβi (ψ1, ψ2) (s)
∣

∣

∣
≤
∣

∣

∣
γβi,n

(

ψβ1 , ψ
β
2

)

(s) − γβi,n (ψ1, ψ2) (s)
∣

∣

∣
+ ǫ. (23)
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Fix n > n0. By (22) and Lemma 8 if we take a limit with β → 1, we obtain

lim
β→1

(

sup
s∈S

∣

∣

∣γ
β
i,n

(

ψβ1 , ψ
β
2

)

(s) − γβi,n (ψ1, ψ2) (s)
∣

∣

∣

)

= 0.

Hence and by (23) we have

lim sup
β→1

(

sup
s∈S

∣

∣

∣γ
β
i

(

ψβ1 , ψ
β
2

)

(s) − γβi (ψ1, ψ2) (s)
∣

∣

∣

)

≤ ǫ.

Since ǫ is arbitrary this proof is complete. �

By the main results in [14] we can conclude uniform convergence of equilibria payoffs
in the finite horizon β - discounted game to the stationary equilibrium payoff in the
infinite horizon β - discounted game, when the horizon tends to infinity. Moreover,
we also know pointwise convergence of Nash equilibria adequates to these equilibria
payoffs. This theorem bellow shows that convergence of Nash euilibria is uniform as
well.

Theorem 14. For arbitrary i = 1, 2, and β ∈ (0, 1) there exist a limits

fβi (s) := lim
n→∞

fβi,n(s), (24)

and

vβi (s) := lim
n→∞

vβi,n(s), (25)

Moreover, these convergences above are uniform on S (i.e. in sup-norm).

Further, the stationary multi-strategy πβ := (πβ1 , π
β
2 ), πβi :=

(

fβi , f
β
i , . . .

)

is a Nash

equilibrium in β - discounted infinie horizon game and vβi is equilibrium payoff ade-

quate to fβ :=
(

fβ1 , f
β
2

)

.

Proof. Fix β. In [14] it is prooven uniform covergence lim
n→∞

vβi,n(·) = vβi (·). We

also know that pointwise convergence in (24) holds, and fβ :=
(

fβ1 , f
β
2

)

is Nash

equilibrium and vβi (s) = γi
(

fβ
)

(s). We just need to show that the convergence in
(24) is uniform.

From Bellman equations for finite horizon game ([5, 6] and [15]) we conclude that
n+ 1 horizon β - discounted game can be described as G(s, ηβ,n) with

ηβ,ni,l (s) := β

L
∑

l=1

∫

S

vβi,n(s′)λl(ds
′|s).
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and infinite horizon game reduce to G(s, ηβ) with

ηβi,l(s) := β

L
∑

l=1

∫

S

vβi (s′)λl(ds
′|s).

Note that

sup
s∈S

∣

∣

∣η
β,n
i,l (s) − ηβi,l(s)

∣

∣

∣ ≤
L
∑

l=1

∫

S

∣

∣

∣v
β
i,n(s′) − vβi (s′)

∣

∣

∣λl(ds
′|s)

≤ sup
s∈S

∣

∣

∣v
β
i,n(s′) − vβi (s′)

∣

∣

∣→ 0 as β → 1.

Hence and by Lemma 4 we obtain uniform convergence in (24). �

Remark. Problem of convergence of Nash equilibria and adequates equilibria payoffs
with horizon tending to ∞ is also solved for symmetric m - person games in [2]. Hence,
repeating the reasoning in the proof of Theorem 14 we would also obtain the same
results for m - person symmetric game.

Main Theorem 15. For i = 1, 2 hold

lim
β→1

fβi (·) = f⋆i (·) (26)

and

lim
β→1

vβi (·) = v⋆i (·). (27)

and these convergences above are uniform on S (i.e. in sup-norm on S). Moreover,
f⋆ := (f⋆1 , f

⋆
2 ) is a Nash equilibrium in the undiscounted game and v⋆i is an equilibrium

payoff adequates to f⋆.

Proof. First we show that the function β → vβi,n(s) is nondecreasing. For n = 1

this hipothesis is clear. Assume that for some n ∈ N the function β → vβi,n(s) is

nondecreasing. Consider the game G(s, ηβ,n) with

ηβ,ni,l (s) := β

∫

S

vβi,n(s′)λl(ds
′|s).

Clearly ηβ,n is nondecreasing in β. Note that by Bellman equations for finite horizon

game ([5, 6] or [15])
(

fβ1,n+1(s), fβ2,n+1(s)
)

= NEG(s, ηβ,n). Hence and by Lemma 6

we immediately obtain that vβi,n+1 is nondecreasing in β as well.

Since by Theorem 14 vβi (s) = lim
n→∞

vβi,n(s), hence vβi (s) is nondecreasing in β as

a limit of nondecreasing functions. By Lemma 11 vβi (s) ≤ ||u|| C
1−C . Hence there
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exists a limit, say v⋆i (s) := lim
β→1

vβi (s). We show that v⋆i (·) is a payoff equilibrium in

undiscounted infinite horizon game. By Bellman equations ([5, 6] or [15]) for j 6= i
we have

vβi (s) = ui(f
β
i (s)) + β

L
∑

l=1

∫

S

vβi (s′)λl(ds
′|s)gl

(

s− fβ1 (s) − fβ2 (s)
)

≥ ui(xi) + β

L
∑

l=1

∫

S

vβi (s′)λl(ds
′|s)gl

(

s− fβj (s) − xi

)

. (28)

Fix s ∈ S. Suppose that x∗ := (x∗1, x
∗
2) is a cumulation point of fβ(s) :=

(

fβ1 (s), fβ2 (s)
)

.

Suppose that βk → 1 is such sequence for which lim
k→1

fβk = x∗. Let (x1, x2) ∈ X(s)

be arbitrary. Now, if we put β := βk in (28), and take a limit with k → ∞, then we
obtain

v⋆i (s) = ui(x
∗
i (s)) +

L
∑

l=1

∫

S

v⋆i (s′)λl(ds
′|s)gl (s− x∗1(s) − x∗2(s))

≥ ui(xi) +

L
∑

l=1

∫

S

v⋆i (s′)λl(ds
′|s)gl

(

s− x∗j (s) − xi
)

. (29)

Hence we obtain that (x∗1(s), x∗2(s)) = NEΓ(s, v⋆1 , v
⋆
2 , 1). Proposition 1 in [3] guarantes

that this definition is well. Hence for each s ∈ S, there exists a limit, say f⋆i (s) :=

lim
β→1

fβi (s). By Corrolary 12 and then by Bellman equations (see [5, 6] or [15]) we

conclude that f⋆ is a Nash equilibrium in undiscounted infinite horizon game, and
v⋆i (s) = γi (f⋆) (s).
Now we show that f⋆i (·) is continous. Note that by Assumption C2 the function
s→

∫

S

v⋆i (s′)λl(ds
′|s) is continous. Let sn → s0. By (29) we have

ui(f
⋆
i (sn)) +

L
∑

l=1

∫

S

v⋆i (s′)λl(ds
′|sn)gl (sn − f⋆1 (sn) − f⋆2 (sn))

≥ ui(xi) +

L
∑

l=1

∫

S

v⋆i (s′)λl(ds
′|sn)gl

(

sn − f⋆j (sn) − xi
)

. (30)

Let x0 := (x01, x
0
2) be a cumulation point of the sequence f⋆(sn) := (f⋆1 (sn), f⋆2 (sn)).

Let sk be a subsequence of the sequence sn (again we denote sk instead snk
for simplify

the notation), such that x0 = lim
k→∞

f⋆(sk). Hence, if we put sn := sk in (30) and take

a limit with k → ∞ we have
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ui(x
0
i ) +

L
∑

l=1

∫

S

v⋆i (s′)λl(ds
′|s0)gl

(

s0 − x01 − x02
)

≥ ui(xi) +

L
∑

l=1

∫

S

v⋆i (s′)λl(ds
′|s0)gl

(

s0 − x0j (s) − xi
)

.

It means that (x01, x
0
2) = NEΓ(s0, v

⋆
1 , v

⋆
2 , 1). Hence and by uniquness of Nash equilib-

rium in Γ(s0, v
⋆
1 , v

⋆
2 , 1) we obtain that the cumulation point of the sequence (f⋆1 (sn), f⋆2 (sn))

is unique and is equal (f⋆1 (s0), f⋆2 (s0)). Hence we obtain continouity of f⋆i (·) and hence

also v⋆i (·). Hence, because β → vβi (s) is monotone and v⋆i (·) is continous as well, by

Dini Theorem it follows that vβi (·) → v⋆i (·) as β → 1 uniformely which ends proof of
the uniform convergence in (27) . Consider a game G(s, ηβ) with

ηβi,l := β

∫

S

vβi (s′)λl(ds
′|s),

and game G(s, η) with

ηi,l :=

∫

S

v⋆i (s′)λl(ds
′|s).

Clearly by Bellman equations (see [5, 6] or [15]) fβ(s) = NEG(s, ηβ) and f⋆(s) =
NEG(s, η). We show that

ηβi,l(·) → ηi,l(·) (β → 1).

uniformly on S. By Lemma 11 we know that v⋆i (·) ≤ C
1−C ||ui||∞. Hence we have

sup
s∈S

∣

∣

∣η
β
i,l(s) − ηi,l(s)

∣

∣

∣ ≤ sup
s∈S







∫

S

∣

∣

∣v
β
i (s′) − v⋆i (s′)

∣

∣

∣λl(ds
′|s)







+ (1 − β) sup
s∈S







∫

S

v⋆i (s′)λl(ds
′|s)







≤ sup
s∈S

∣

∣

∣v
β
i (s) − v⋆i (s)

∣

∣

∣ + (1 − β)
C

1 − C
||ui||∞ → 0 as β → 1.

Hence and by Lemma 4 we obtain that fβi (·) → f⋆i (·) uniformely on S, hence the part
(26) is proven. �

For i = 1, 2 define π⋆i := (f⋆i , f
⋆
i , . . .).

Main Theorem 16. For arbitrary ε and there exist β0 such that if β > β0, stationary
multi - strategy (π⋆1 , π

⋆
2) is ε- equilibrium in β - discounted infinite horizon game.
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Proof. Fix arbitrary ε > 0 and σi ∈ S〉. By Lemma 13 and Main Theorem 15 we
conclude existence of β1 such that for β > β1 we have

γβi (f⋆)(s) ≥ γβi (fβ)(s) − ǫ

3
. (31)

Since fβ is a Nash equilibrium in the β discounted game, hence we obtain

γβi (fβ)(s) ≥ γβi (fβ−i, σi)(s), (32)

By Lemma 11 there exists n0 such that for all n > n0 holds

γβi (fβ−i, σi)(s) ≥ γβi,n(fβ−i, σi)(s) −
ǫ

3
. (33)

From Lemma 8 and Main Theorem 15 there exists β2 > β1 such that for β > β2 we
have

γβi,n(fβ−i, σi)(s) ≥ γβi,n(f∗
−i, σi)(s) −

ǫ

3
. (34)

Combining (31), (32), (33), (34) we obtain

γβi (f⋆)(s) ≥ γβi,n(f⋆−i, σi)(s) − ǫ, (35)

for arbitrary β > β2 and n > n0. By Lemma 9 if we take a limit with n→ ∞ in (35)
we obtain

γβi (f⋆)(s) ≥ γβi (f⋆−i, σi)(s) − ǫ. (36)

To see that (36) is satisfied when σi is arbitrary strategy, we first note that for each

β, there exists a stationary optimal policy on f⋆i (say σβi ) in the β - discounted game.

If we put σi := σβi in (36) we immediately obtain (36) with arbitrary σi. To complete
the proof we can take β0 := β2. �

Example 17. Let us consider two person game in which S = [0, 1], a1(s) = a2(s) =
s/2, u1(s) = u2(s) =

√
s, and the transition probability is of the form

q (· |s, x) =
√
s− x1 − x2λ(·) +

(

1 −
√
s− x1 − x2

)

δ0(·),

where λ a uniform distribution on [0, 1]. By [2] and Theorem 2 [3] there exists an
unique Nash equilibrium in the β discounted finite horizon game. We see that

fβ1,1(s) = fβ2,1(s) = s/2,

and
vβ1,1(s) = vβ2,1(s) =

√

s/2.

For i = 1, 2 and n ≥ 1 we obtain π
(n),β
i = fβi,n for

fβi,n(s) =
s

2 + c2n
,
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and equilibria functions

vβi,n(s) =
1 + βc2n
√

c2n + 2

√
s,

when cn is define in the following way: c1 = 0 and for n ≥ 1

cn+1 =
2

3

1 + βc2n
√

c2n + 2
.

If we take a limit n→ ∞, we obtain

cβ =

√

√

(18 − 8β)2 + 16(9 + 4β2) − (18 − 8β)

2(18 − 8β)
.

From Theorem 14 we immediately conclude that

fβi (s) =
s

2 + (cβ)
2 ,

and πβ :=
(

fβ1 , f
β
2

)

is a stationary Nash equilibrium in the β - discounted infinite

horizon game and

vβi (s) =
1 + β

(

cβ
)2

√

(cβ)
2

+ 2

√
s

is the equilibrium function. By Main Theorem 15, taking a limit β → 1 we obtain

f⋆i (s) =
20

30 +
√

192
s,

and

v⋆i (s) =

√
192 + 10

√

20
√

192 + 600

√
s.

By Main Theorem 16 it follows that the stationary strategy π⋆ = (f⋆1 , f
⋆
2 ) is a

Nash equilibrium in the undiscounted stochastic game with limiting average crite-
rion. Moreover, this strategy is ε equilibrium in β - discounted infinite horizon game
for sufficiently large β.
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Abstract: In the paper the optimal design of forecasting contracts in principal-
agent setting is investigated. It is assumed that the principal pays the agent (the
forecaster) based on an announced forecast and an event that materializes next.
Such a contract is called incentive compatible if the agent maximizes her payoff
when she announces her true beliefs. This paper relaxes the assumption present
in earlier works on this subject that agent’s beliefs are deterministic by allowing
them to be random (i.e. stemming from estimation). It is shown that for binary or
nominal events the principal can learn only expected values of agent’s predictions
in an incentive compatible way independent of agent’s signal space. Additionally
it is proven that incentive compatible payment schemes give the agent a strictly
positive incentive to improve the precision of her estimates.

Key words: contract design, forecasting, scoring rules

Introduction

The demand for reliable forecasts is omnipresent in private, business and academic
applications. People watch weather forecasts, listen to GDP growth predictions given
by central banks and are lively interested in expected rate of ozone layer depletion.
The process of forecast preparation is often difficult and requires much effort and skill.
Therefore it is not unusual that someone who demands a forecast relies on expert help.
Proffessional approach to such delegated activity calls for probabilistic assessments
of future events1. For example central bank economists are interested not only in
point estimate of inflation, but also the distribution of the estimator. In everyday
life people prefer to know the probability of rain next day — not only a simple

1Gneiting and Raftery (2007) give a review of literature in weather and macroeconomic domains
focusing on probabilistic forecasting.
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statement of the most probable weather state. An interesting practice of probabilistic
forecasting is employed by Gartner Inc., an IT market monitoring company, who
assigns probabilities to its predictions of future trends.

The widely spread practice of relying on external forecasts rises a question how
to evaluate them. Such assessment can be simply used as a measure of forecaster
performance. It can also be a part of a contract between the forecaster and the
side that demands the forecast. Further the latter understanding will be taken in
order to fix the terminology used. Following the standard conventions in economic
literature, see for example Salanié (2005), we will call the forecaster an agent and the
forecast demanding side a principal. We assume that the principal contracts the agent
to produce a forecast. The payment scheme in this contract is based on the forecast
given and the event that later occurs. Later, following the literature (Hendrickson and
Buehler, 1971), agent’s payoff function will be called a scoring rule. It is taken that
neither the principal nor the agent can influence the probability distribution of the
event. We will say that the scoring rule is proper if the agent maximizes her expected
profit when she reveals her true beliefs about the probability of the forecasted event2.
In economic literature, see Salanié (2005), proper scoring rules are said to implement
an incentive compatible contract.

The problem of evaluation of forecasts has been studied since the work of Brier
(1950), who considered a binary event prediction in weather forecasting applications
and proposed one proper scoring rule for such a case. Later line of research focused
on classification of proper scoring rules for binary (Schervish, 1989), nominal (Savage,
1971) and continuous (Gneiting and Raftery, 2007) random variables.

The implicit assumption that was made in the forecasting contracts literature was
that the true expectations of the forecaster are certain. For example, in binary event
case, that she has crisp beliefs about the probability of the event. McCarthy (1956)
has considered an experimentation procedure on agent’s side that would lead to a
change in her beliefs but still the a priori and a posteriori beliefs of the agent were
non-random. However, in real applications a far more common situation is that the
true agent’s expectations are represented as estimators. For example when predicting
the share of votes on some candidate in elections a pool-making company gets its
imprecise estimate by questioning a random sample of voters3.

The objective of this research is to extend the existing results on proper scoring
rules by adding the possibility that agent’s beliefs are given as a random variable. A
focus is put on the classical binary event case, as it allows for most clear presentation
of the analysis. An extension of the results to nominal events is presented.

The paper is organized as follows. First a formal model of a binary event forecast-
ing contract under non-random (classical) and random expectations assumption are
presented and outline the standard results obtained in the literature for the former
case are given. In the next section the properties of random beliefs model in binary
case are investigated. Finally it is shown how the results can be extended to nominal
variables. The paper is finished by concluding remarks.

2A formal definition of a proper scoring rule is given in section .
3Moreover, in practice such companies often quote the confidence of their predictions.
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The binary event forecasting contract model

In this section we first introduce the standard model of binary forecasting contract
and outline its properties. Next it is shown how it can be extended to agent’s random
beliefs.

Let x ∈ {0; 1} be the event that is predicted. For example x = 1 can be associated
with rain and x = 0 with no-rain forecast4. It is important to distinguish between
agent’s belief on Pr(x = 1), which will be denoted q and the value announced by her
to the principal, further denoted p.

A scoring rule is a pair of mappings Sx : [0; 1] → R taking announced probability
p as an argument and returning agent’s payoff. Notice that the mappings are indexed
by the event x. The agent obtains payoff S1(p) when event x = 1 occurs and S0(p)
when x = 0 happens. We assume that Sx can be set by the principal. Moreover we
take that the agent wants to maximize her expected payoff, denoted R(p), subject to
her beliefs5:

R(p) = qS1(p) + (1 − q)S0(p) → max (1)

Using this assumption we can define proper scoring rules.

Definition 1. A scoring rule Sx is proper if and only if

∀q ∈ [0; 1]∀[0; 1] ∋ x 6= q : R(q) > R(x)

and Sx is bounded from above and real valued (except possibly that S1(0) and S0(1)
can be equal to −∞).

Under this condition Gneiting and Raftery (2007) give a convenient condition
characterizing the class of proper scoring rules6.

Theorem 2 (Gneiting and Raftery, 2007). Every proper scoring rule is of the form

S1(p) = G(p) + (1 − p)G′(p)
S0(p) = G(p) − pG′(p)

(2)

where G : [0; 1] → R is a bounded and strictly convex function and G′(p) is a subgra-
dient of G at point p, for all p ∈ [0; 1].

Notice that:

R(p) = q(G(p) + (1 − p)G′(p)) + (1 − q)(G(p) − pG′(p)) = G(p) + (q − p)G′(p)

so G(q) = R(q).

4The rain/no rain probability prediction example was originally used by Brier (1950) in his pio-
neering research on scoring rules.

5This follows the standard economics assumption of agent’s rationality following expectation
maximization principle, see Mas-Collel et al. (1995).

6Gneiting and Raftery (2007) use the term regular strictly proper scoring rule.
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Example 3. By putting G(p) = −p(1−p) we get S1(p) = −(1−p)2 and S0(p) = −p2.
It is a scoring rule originally proposed by Brier (1950). It is illustrated on Figure 1.
Such scoring function always gives the agent negative payouts. However it can be
seen from Theorem 2 that transforming G(p) to G(p) + α, where α ∈ R, keeps it
convex while it does not affect the shape of Sx(p). Therefore the principal can adjust
the payouts to agent’s reservation level if it exists7. Also notice that Brier score is
a symmetric scoring function, that is S1(p) = S0(1 − p), so it does not depend on
labeling of event realizations. However in general scoring rules do not have to be
symmetric. Asymmetric scoring functions could be preferred by the principal when
she assigns different values to x = 1 and x = 0.

If we take Shannon’s entropy8 G(p) = p ln(p)+(1−p) ln(1−p) as a second example
then S1(p) = ln(p) and S0(p) = ln(1 − p). Note that in this case the payoff is −∞ if
the event is assigned probability 0 and it happens.
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Figure 1. Brier scoring functions Sx(p) and expected score G(p).

Now assume that the agent does not know q exactly and Q is a random variable
representing agent’s uncertainty about true value of q. Denote cumulative distribution
function of Q by F : [0; 1] → [0; 1].

Let us denote S the set of signals that can be sent by the agent. In the simplest
case if S = [0; 1] the agent is asked to report a fraction, but in general the principal

7The reservation level is understood as minimal payout that the agent requires to receive.
8Shannon and Weaver (1949) first introduced it as a measure of amount of information contained

in a message. In our case the message is what the agent tells the principal.
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might want to have something else reported. For example she might ask the agent
to reveal F . Based on this we define extended scoring rules as SE

x : S → R, that
are natural generalization of scoring rules. Notice that in the case when S = [0; 1]
extended scoring rule reduces to scoring rule.

The calculation of agent’s expected payoff takes into consideration the uncertainty
of Q as follows:

∀s ∈ S : RE(s) =

∫ 1

0

qSE
1 (s) + (1 − q)SE

0 (s)dF (q) (3)

In the next section the consequences of introducing uncertainty of q to agent’s
beliefs will be analyzed.

Uncertain expectation for binary event properties

Under uncertainty of q several natural questions arise. Firstly it will be investigated
how the agent will behave when faced with classical proper scoring rules. Next it
will be shown what kind of information the principal can extract from the agent by
appropriately setting an extended scoring rule. Lastly a question if extended scoring
rules can give an incentive to the agent to put extra effort to improve the precision
of estimation of q will be answered.

Expectation revelation principle

In this subsection we will show that when the agent has uncertain beliefs about q the
only information that the principal can obtain from her in an incentive compatible
way is an expected value of Q — the phenomenon will be called expectation revelation
principle. First it is shown that it is possible to construct a scoring rule under which
the agent will reveal E(Q).

Theorem 4. If S = [0; 1] and SE
x (s) is a proper scoring rule then RE(s) is maximized

for s = E(q).

Proof. Notice that:

RE(s) =

∫ 1

0

qSE
1 (s) + (1 − q)SE

0 (s)dF (q) = E(Q)SE
1 (s) + (1 − E(Q)) − SE

0 (s)

so RE(s) equals R(s) for q = E(Q). Therefore by Theorem 2 RE(s) is maximized for
s = E(Q). �

The above theorem shows that by using proper scoring rules the principal will learn
the expected value of Q. Using this one can notice that all results in existing liter-
ature concerning binary forecasting contracts can be directly extended to uncertain
estimation of q by assumption that the agent reveals her expected value of Q.

In general the principal might be interested in other statistics of the random
variable Q than expected value. In general we can denote the statistics as a function
of cumulative distribution function of Q: χ : [0; 1]2 → S. This could be for example
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a median of the distribution — then χ(F ) = F−1(0.5) or the distribution function
— then χ(F ) = F . Analogously to to the proper scoring rules we define χ-proper
extended scoring rule.

Definition 5. An extended scoring rule SE
x is χ-proper if and only if for all cumulative

distribution functions F :

∀S ∋ s 6= χ(F ) : RE(χ(F )) > RE(s)

and SE
x is bounded.

The following theorem shows that the principal is unable to retrieve any signifi-
cantly different information from the agent than expected value of Q.

Theorem 6. If SE
x is χ-proper extended scoring rule then there exists such mapping

h(·) that χ(F ) = h(E(Q)).

Proof. Assume that the converse is true and such χ-proper extended scoring rule ex-
ists. Then there exist such random variables Q1 and Q2 with cumulative distribution
functions F1 and F2 for which:

E(Q1) = E(Q2) ∧ χ(F1) 6= χ(F2).

The above condition reads that χ is not a function of expected value of random
variable it transforms.

But then using equation 3 and definition of χ-proper extended scoring rule we get:















E(Q1)(SE
1 (χ(F1)) − SE

0 (χ(F1))) + SE
0 (χ(F1)) >

> E(Q1)(SE
1 (χ(F2)) − SE

0 (χ(F2))) + SE
0 (χ(F2))

E(Q2)(SE
1 (χ(F1)) − SE

0 (χ(F1))) + SE
0 (χ(F1)) <

< E(Q2)(SE
1 (χ(F2)) − SE

0 (χ(F2))) + SE
0 (χ(F2))

However, by assumption E(Q1) = E(Q2) so the above equations are contradicting. �

The above result shows two important properties of the forecasting contract prob-
lem. Firstly - the only information the principal can get from the agent is expected
value of Q under any assumption on the structure of agent’s signal. Secondly - we
know that E(Q) is reported under classical proper scoring rules. Therefore it is ob-
solete to consider extended scoring rules — all the information that can be obtained
by the principal from the agent can be extracted in the standard framework.

Agent’s effort optimization

In this section it will be analyzed how can proper scoring rules incentivize the agent
to improve the precision of her initial estimation of Q. For this assume that the agent
can gather some information i coming frome the information space I. The expected
realization of gathered information i is a priori random and conditional on agent’s
beliefs on the distribution of Q. It is assumed that, conditional on Q, the agent can
assign a probability measure to I and define a random variable I representing the
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predicted distribution of received information. We assume that after the information
i is gathered the agent updates her beliefs on the distribution of Q. We will denote
the updated distribution conditional on realized i by Qi.

Example 7. Assume that initial distribution of Q is given by Beta distribution with
parameters α and β (it will be denoted B(α, β))9. We know that E(Q) = α/(α + β).
Now we take, that the experiment that can be made is one random draw of x from
the population. We have I = {0; 1} and conditional on agent’s beliefs Pr(I = 1) =
α/(α + β). Note that beta distribution is a conjugate prior to Bernoulli distribution.
Using standard results on Bayesian updating, see DeGroot (2004), posterior belefs of
the agent will be:

Q0 ∼ B(α, β + 1) for i = 0 with probability β/(α + β)
Q1 ∼ B(α + 1, β) for i = 1 with probability α/(α + β).

(4)

Continuing the analysis we have from the Theorem 2 that a priori agent’s expected
profit under proper scoring rule is equal to G(E(Q)). Having seen i she will report
E(Qi), further denoted Xi. A priori agent’s expected profit, conditional on the deci-
sion of running the experiment, is equal to E(G(XI)) (notice that this expectation is
taken over I). Also we can notice that E(XI) = E(Q), as a priori the expected beliefs
must be equal. The following example follows Example 7 to illustrate this property:

Example 8. Following equations 4 we can calculate that:

X0 = α/(α + β + 1)
X1 = (α + 1)/(α + β + 1).

Using this we have:

E(XI) =
β

α + β
α/(α + β + 1) +

α

α + β
(α + 1)/(α + β + 1) = α/(α + β) = E(Q).

So the agent does not expect to change her expectations.

Returning to the main line of reasoning it can be seen that the change in expected
profit of the agent when she decides to run the experiment is equal to:

V (Q, I) = E(G(XI)) −G(E(Q)). (5)

It can be shown that this change is always positive:

Theorem 9. If XI is not certain then V (Q, I) > 0.

Proof. It is enough to show that G(E(Q)) < E(G(XI)). However, G(E(Q)) =
G(E(XI)), so using the convexity of G and Jensen’s inequality we get the result. �

9The probability distribution function is given as f(x, α, β) = Γ(α+β)
Γ(α)Γ(β)

xα−1(1 − x)β−1, see Gel-

man et al. (2004).
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This means that the agent is given the incentive to improve the precision of the
estimate of Q. Of course she will have to compare V (Q, I) with her cost of running
the experiment.

As a special case we can assume that the experiment gives perfect information on
the value of q. In such a situation we have that cumulative distribution functions of
XI and Q are equal. Under this the expected value of perfect information (EVPI)
is equal to E(G(Q)) − G(E(Q)). The above results are illustrated with the example
using Brier score (see Example 3):

Example 10. Under Brier score we have G(q) = −q(1 − q) therefore:

E(G(XI)) = E(−XI(1 −XI)) = E(X2
I ) − E(XI) = D2(XI) + E2(XI) − E(XI).

Remembering that E(XI) = E(Q) it follows that:

V (Q, I) = E(G(XI)) −G(E(Q)) =
=

(

D2(XI) + E2(Q) − E(Q)
)

−
(

E2(Q) − E(Q)
)

= D2(XI).

In particular EVPI(Q) = D2(Q).

Summing up the results of this section it has been shown that the only information
that the principal can get from the agent in an incentive compatible way is E(Q) and
allowing the agent to signal other information than her probability beliefs does not
change the result. Finally — the agent gets a positive incentive to improve the
precision of the estimate of Q. In the next section it will be shown how to extend this
result to nominal events.

Nominal event forecasting contracts

In the nominal event case we assume that x ∈ {1, . . . , n} and N ∋ n > 2. That is —
there is a finite number of possible outcomes. In certain beliefs case by q = (q1, . . . , qn)
we will denote agent’s expectations and by p = (p1, . . . , pn) announced probabilities.
In this case every scoring rule Sx takes p as an argument. Agent’s expected payoff
can be calculated as R(p) =

∑n
i=1 qiSi(p). The Definition 1 of proper scoring rule is

extended naturally by requiring that the strict maximum of R(p) is attained in q.
For uncertain beliefs we define Q = (Q1, . . . , Qn) as a random vector representing

beliefs of the agent. The definition of SE
x remains unchanged (as it relates to arbi-

trary set S) and we can calculate expected payoff RE(s) = E
(
∑n

i=1 QiS
E
i (s)

)

. The
definition of χ-proper extended scoring rule is also unchanged (except for that now
χ : [0; 1]n+1 → S). In nominal case it can be shown that the binary results can be
naturally extended:

Theorem 11. If S = [0; 1]n and SE
x (s) is a proper scoring rule then RE(s) is maxi-

mized for s = E(q).

Proof. Using the linear separability of expected value operator the definition of
RE(s) in nominal case can be rewritten as RE(s) =

∑n
i=1 E(Qi)S

E
i (s). And because

SE
x (s) is a proper scoring rule we get that in optimum s = E(q). �
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Theorem 12. If SE
x is χ-proper extended scoring rule then there exists such mapping

h(·) that χ(F ) = h(E(Q)).

Proof. Assume that the converse is true and such χ-proper extended scoring rule
exists. Then there exist such random vectors T and U with n-variate cumulative
distribution functions F1 and F2 for which: E(T) = E(U) ∧ χ(F1) 6= χ(F2). But SE

x

χ-proper extended scoring rule so:

∑n
i=1 E(Ti)S

E
i (χ(F1)) >

∑n
i=1 E(Ti)S

E
i (χ(F2))

∑n
i=1 E(Ui)S

E
i (χ(F1)) <

∑n
i=1 E(Ui)S

E
i (χ(F2))

A contradiction, so it is impossible that SE
x is χ-proper. �

Now we will show that Theorem 9 also holds for nominal case. For this a result
first noted by McCarthy (1956) is needed:

Theorem 13 (McCarthy, 1956). If Sx is a proper scoring rule for nominal x then
R(p) is strictly convex.

And it can be seen that the proof of Theorem 9 remains unchanged for nominal
event.

Summary

In the paper a forecasting contract design with uncertain forecaster’s (agent’s) beliefs
was considered. It was assumed that such contract is incentive compatible if it is
strictly optimal for the agent to reveal her true beliefs.

It was shown that in binary and nominal case the principal can learn only expected
values of agent’s predictions on event probabilities in an incentive compatible way.
Payment schemes having this property, called proper scoring rules, can rely only on
asking the agent to reveal her expectation. Additionally it was shown that proper
scoring rules give the agent strictly positive incentive to improve the precision of her
estimates.

The consequences of changing the assumption that the agent maximizes her ex-
pected payoff can be investigated in further work. Here one remark will be only
made. Changing this assumption to maximization of expected utility (see for example
Mas-Collel et al., 1995) does not change the results if we use a natural assumption
that the utility function is strictly increasing. Then it is reversible and any proper
(or χ-proper) scoring rule under expected utility maximization assumption must be
equivalent to some proper scoring rule under expected payoff maximization.

It it also worth to investigate the problem on designing such incentive schemes
that would allow the principal to learn other statistics of agent’s beliefs than expected
value. However, from the results presented in the paper, it can be seen that in order
to achieve this goal such systems must allow for some additional information, for
example: repeated measurement or comparison of several forecasters.
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JEL classification: C72, L10, L13.

Key words: Cournot oligopoly, product differentiation, strategic complements
and substitutes.

Introduction

Cournot’s model of oligopolistic competition (1838) represents the starting point of
formalized economic theory and game theory. Nowadays it continues to be widely used
in a number of applications in economic theory. The reason for this is its tractability,
when product homogeneity can be assumed, and the fact that its properties are well
established. In this paper we follow the line of literature dealing with the monotonicity
of reaction correspondences, which is important in particular for studying problems
of equilibrium existence and comparative statics.

Increasing reaction correspondences characterizes games with strategic comple-
mentarities, while games of strategic substitutes have downward sloping best replies.
This expresses the strategic relationship among actions in this kind of games. Strate-
gic complementarities covers situations when an increase in one player action leads
to an increase in other players’ marginal payoffs. Strategic substitutes describe the
opposite situation, when an increase in one player action causes a decrease in other
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players’ marginal payoffs. The former kind of games always possesses pure strategy
Nash equilibria. Moreover, the set of pure strategy Nash equilibria, correlated equi-
libria and rationalizable strategies have identical bounds (see, Milgrom and Roberts,
1990, and Milgrom and Shannon, 1994). The latter kind of games, in the case of
2−player game, can be converted into the game of strategic complementarities by
reordering of one player’s action set (Milgrom and Roberts, 1990).

To establish properties of a Cournot oligopoly with heterogeneous products several
simplifying assumptions have been imposed. For instance, inverse demand function
have an aggregative form with respect to other players’ strategies (cf. Dubey et
al., 2005). Hoernig (2003) assumes that, departing from the situation when firms
produce the same quantities, when one firm deviates by raising its output, other firms
adjust their outputs to the level allowing for avoiding an increase in market price. He
conducts comparative statics in case of market entry and increasing number of firms,
extending the results of Amir and Lambson (2000) for homogeneous products.

In this paper we provide general conditions for a Cournot oligopoly with prod-
uct differentiation to have monotonic reaction correspondences. These results are a
generalization of the results of Amir (1996) for homogeneous products to the case
of differentiated product. We give various sufficient conditions for downward and
upward sloping reaction correspondences. They allow for identifying increasing best
responses even in case of inverse demand being submodular, and similarly, decreasing
best responses in case of supermodular inverse demand. Examples illustrating the
scope of applicability of these results are provided.

This approach gives a significant value added to the problem of equilibria exis-
tence and comparative statics. The standard approach demands profit function to be
quasi-concave in own quantities. This is quite restrictive, particularly because non-
concavities in costs are not uncommon and very convex demand functions cannot be
ruled out (Vives, 1999). The lack of quasi-concavity of payoffs causes discontinuities
in the best response correspondences of firms and makes possible the nonexistence
of equilibrium. Our approach covers games with monotonic reaction correspondences
and does not rely on the regularity condition.

The paper is organized as follows. Next section contains an brief overview of
relevant notions from supermodular optimization and games. Section 3 presents main
results. In Section 4 they are discussed. All proofs are placed in Appendix.

Supermodular games

We introduce in this section a summary of all relevant notions and results from lattice
theory, supermodular optimization and supermodular games useful in the remainder.
We present them in context of real decision parameter spaces, since this is sufficient
for our needs.

A function F : X × Y → R is supermodular if, for all x1 ≥ x2, y1 ≥ y2

F (x1, y1) − F (x2, y1) ≥ F (x1, y2) − F (x2, y2). (1)

A function F is submodular whenever −F is supermodular. For twice continuously
differentiable functions this notion has a useful differential characterization, namely
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supermodularity (submodularity) is equivalent to cross-partial derivative being posi-
tive (negative).

We say that F is log-supermodular (log-submodular) if logarithm of F is super-
modular (submodular).

Topkis (1978) showed the following theorem on monotone optimization, central to
our approach.

Theorem 1. If F is upper semi-continuous and supermodular (submodular), then
the maximal and minimal selections of

arg max
x∈X

{F (x, y), y ∈ Y }

are non-decreasing (non-increasing).

If F is strictly supermodular (submodular), then this theorem holds for every
selection of arg maxx∈X{F (x, y), y ∈ Y }.

The property of supermodularity is of cardinal nature, in the sense that it is
not preserved by monotonic transformation. Below we provide a definition of another
notion, of ordinal nature, which can be treated as a generalization of supermodularity.

A function F has the (dual) single-crossing property in (x, y) if, for all x1 ≥
x2, y1 ≥ y2

F (x2, y1) − F (x2, y2)(≤) ≥ 0 ⇒ F (x1, y1) − F (x1, y2)(≤) ≥ 0. (2)

Strict (dual) single crossing property is defined by the implication with strict
inequality on the right hand side.

Obviously, (1) implies (2), but the converse does not hold.
Milgrom and Shannon (1994) generalized the result of Topkis for functions pos-

sessing the single crossing property.

Theorem 2. If F is upper semi-continuous and satisfies the (dual) single crossing
property, then the maximal and minimal selections of

arg max
x∈X

{F (x, y), y ∈ Y }

are non-decreasing (non-increasing).

If F has strict (dual) single crossing property, then this theorem holds for every
selection of arg maxx∈X{F (x, y), y ∈ Y }.

The single crossing property has no differential characterization like supermodu-
larity. Milgrom and Shannon (1994) showed that this property can be tested using
the Spence-Mirrlees condition defined in the following theorem.

Theorem 3. Let F : R3 → R be continuously differentiable and F2(a, b, s) 6= 0.1

F (a, h(a), s) satisfies the single-crossing property in (a, s) for all functions h : R → R
if and only if

F1(a, b, s)

|F2(a, b, s)| (3)

1Subscripts denote partial derivatives with respect to the certain variable, e.g. here F2(a, b, s) =
∂F (a,b,s)

∂b
. We keep this notation throughout the paper.



202 Ma lgorzata Knauff

is increasing in s.

In applications, verifying (3) leads to conclusion that F (a, h(a), s) satisfies the
single crossing property in (a, s) for suitable choice of function h (which is often an
identity function, see Milgrom and Shannon, 1994, and Amir, 2005).

A game with compact real action spaces is supermodular (submodular) if each
payoff function is supermodular (submodular) and upper semi continuous in own
actions.

Replacing supermodularity by the single crossing property enables to define a
broader class of games: a game is ordinally supermodular (submodular) when its
action space is compact, the payoff functions have the (dual) single crossing property
and are upper semi continuous in own actions.

Supermodularity of the payoff functions can be interpreted as a complementarity
between the players’ actions, namely an increase some players’ actions causes an
increase in the marginal payoff of the others. Hence, this kind of games are also
called games with strategic complementarities. Submodularity expresses the opposite
phenomenon - substitutability of the players actions: increasing some players actions
causes a decrease in the marginal payoff of the others, thus this kind of games are
also called games of strategic substitutabilities.

Corollary 4. Every n−player game of strategic complementarities has pure strategy
Nash equilibrium.

There is no equivalent corollary for n−player games of strategic substitutes. Only
for the case of two players the existence of equilibrium is guaranteed.

Corollary 5. Every 2−player game of strategic substitutes has pure strategy Nash
equilibrium.

Conditions and examples

Consider a Cournot oligopoly game, when n firms decide simultaneously about the
products quantity. Let xi ∈ Xi be a production quantity of firm i and x−i ∈ X−i

represents vector of production quantities of the other n− 1 firms. The products are
heterogeneous. Denote P i(xi, x−i), i = 1, .., n , a system of inverse demand functions
describing the market. Each of the functions is twice continuously differentiable and
P i
j (xi, x−i) = P j

i (xj , x−j), i 6= j. Then the profit of firm i is given by

Πi(xi, x−i) = xiP
i(xi, x−i) − Ci(xi) (4)

where Ci(·) is a differentiable cost function. Assume that P i(xi, x−i) is decreasing in
own action, and Ci(·) is increasing.

We say that goods i and j are (strict) substitutes, if demand for i (strictly) rises
with the increase in the price of j. Goods i and j are (strict) complements, if demand
for i (strictly) goes down with the increase of the price of j. It can be translated in
terms of inverse demand function, so that P i is (strictly) decreasing in xj , if goods i
and j are substitutes, and the converse holds if goods i and j are complements.
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Define reaction (best response) correspondence of firm i as

ri(x−i) = arg max
xi∈Xi

{Πi(xi, x−i), x−i ∈ X−i}.

From Theorem 1 the game has increasing reaction correspondences if Πi, i = 1, .., n,
is supermodular or Πi

ij ≥ 0, ∀j 6= i, hence if each firm’s revenue is supermodular (see
also Novshek, 1985). For firm i it is equivalent to the following condition:

P i
j (xi, x−i) − xiP

i
ij(xi, x−i) ≥ 0, ∀j 6= i.

But from Theorem 2 it follows that even weaker conditions can secure the mono-
tonicity of the reaction correspondences. It is enough for the payoff function to satisfy
the single crossing property.

Vives (1999) formulated independent conditions on demand and cost function in a
Cournot oligopoly with product differentiation to be an ordinally supermodular game.
We give them in the form of a theorem.

Theorem 6. Assume that for i = 1, .., n

1. P i(·) is log-supermodular.

2. Ci is strictly increasing.

3. Goods i and j are strict complements ∀j 6= i.

Then the Cournot oligopoly, with profits given by (4) is an ordinally supermodular
game.

The proof (not given by Vives, 1999), presented in Appendix, does not require
differentiability of the inverse demand nor the cost function.

An analogous theorem can be formulated to provide conditions on a Cournot
duopoly to have decreasing reaction correspondences.

Theorem 7. Assume that for i = 1, .., n

1. P i(·) is log-submodular.

2. Ci is strictly increasing.

3. Goods i and j are strict substitutes ∀j 6= i.

Then the Cournot oligopoly, with profits given by (4) is an ordinally submodular
game.

To provide some intuition of the scope of duality between these theorems for a
duopoly case we can use Milgrom and Roberts (1990) action reordering argument.
In case of 2−players game, changing order of the action space of one of the players
converts a submodular game into a supermodular game. Take a game Γ, the Cournot
duopoly and consider situation of player 1 with P 1(x1, x2) log-submodular and x1,

x2 substitute goods. Reordering of the player’s 1 action space creates a new game ̂Γ.
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This is the Cournot duopoly with P 1(x̂1, x2). Observe that whenever P 1(x̂1, x2) is
positive, it is log-supermodular, since P 1P 1

12 − P 1
1P

1
2 ≤ 0 and x̂1

′
= −1 implies that

x̂1
′ (
P 1P 1

12 − P 1
1P

1
2

)

≥ 0 for every x1 ∈ X1 and x2 ∈ X2. Moreover, x̂1 and x2 are
complements now, since relation between them changed to the reverse.2 Therefore,
there is complete duality between these two results. This kind of duality does not
work if there is more than two players in the game.

The theorems given above work for any increasing cost function. But consider-
ing a specific cost function in relation with the inverse demand we may relax the
assumption of log-supermodularity of the demand. It is possible to formulate a more
general condition for a specific cost function, such that it guarantees increasing best
response correspondence. We provide it in the theorem below. The differentiability
of P i(xi, x−i) and Ci(xi) is assumed here .

Theorem 8. Assume that ∀j 6= i

P i
ij(xi, x−i)P

i(xi, x−i) − P i
i (xi, x−i)P

i
j (xi, x−i) ≥ P i

ij(xi, x−i)C
i′(xi). (5)

Then the Cournot oligopoly, with profits given by (4) is an ordinally supermodular
game.

Condition (5) can be reformulated into

P i
ij(xi, x−i)(P

i(xi, x−i) − Ci′(xi)) − P i
i (xi, x−i)P

i
j (xi, x−i) ≥ 0. (6)

It is straightforward that this condition is met, when the assumptions of Theorem 6
are satisfied. Moreover, for a suitable choice of Ci, this condition can be satisfied for
a number of inverted demand functions, which do not satisfy log-supermodularity, as
long as goods i and j remain complements. In particular, there are log-submodular
functions giving rise strategic complementarity in the Cournot model. An illustration
of this possibility is provided in Example 10.

When we assume fixed marginal costs, condition (5) can be interpreted as log-
super-modularity of net-of-cost inverse demand functions P i(xi, x−i) − ci, i = 1, 2.
Moreover, this condition says that the firm’s i perceived net-of-cost inverse demand
elasticity is increasing in firm’s j output. Indeed, elasticity of net-of-cost inverse
demand is given by

ε(xi, xj) ,
∂
(

P i(xi, x−i) − ci
)

∂xi

xi

P i(xi, x−i) − ci

= P i
i (xi, x−i)

xi

P i(xi, x−i) − ci
.

It is increasing in xj whenever its derivative with respect to xj is positive:

∂ε(xi, xj)

∂xj

= xi

P i
ij(xi, x−i)

(

P i(xi, x−i) − ci
)

− P i
i (xi, x−i)P

i
j (xi, x−i)

(P i(xi, x−i) − ci)
2 .

It holds if and only if (6) holds.

2Now, when price of good 2 increases, the demand for x̂1 goes up.
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Corollary 9. Assume that marginal cost is constant, denoted ci and P i(xi, x−i)− ci

is log-supermodular, i = 1, .., n. Then the Cournot oligopoly, with profits given by (4)
is an ordinally supermodular game.

We provide now an example illustrating the scope of application of Theorem 8
in the duopoly case. Our generalization enables to capture even situations when
inverse demand, being submodular and/or log-submodular, gives rise, for specific
cost functions, to an ordinally supermodular game.

Example 10. Consider a 2−player game. Let

P 1(x1, x2) = 1 +
1

(x1 + 1)2
+ (x2 + 1) exp(−x1).

It is easily verified that

P 1
1 (x1, x2) =

−2

(x1 + 1)3
− (x2 + 1) exp(−x1) < 0

P 1
2 (x1, x2) = exp(−x1) > 0,

Hence, the goods are complements. Also

P 1
12(x1, x2) = − exp(−x1) < 0

and moreover

(

lnP 1(x1, x2)
)

12
=

−
(

x2
1 + 3x1 + 4

)

x1 (x1 + 1) e−x1

(

1 + (x1 + 1)
2

((x2 + 1) e−x1 + 1)
)2 < 0.

Hence, the inverse demand is strictly submodular and strictly log-submodular, and
thus cannot be log-supermodular. Therefore, the conditions of Theorem 6 are not
satisfied. Now take the following cost function: C1(x1) = 2x1 and check the condition
(6):

P 1
12(x1, x2)(P 1(x1, x2) − C1′(x1)) − P 1

1 (x1, x2)P 1
2 (x1, x2)

= e−x1

(

(x2 + 1) e−x1 + 2x1 +
2

(x1 + 1)3

)

> 0.

It is satisfied for all positive x1 and x2. The verification that not all cost function
satisfy this condition is left to the reader.

Concavity of firm’s 1 profit can be easily verified, hence we use first order condition
to find the reaction curve.

Π1
1(x1, x2) = − (x1 − 1) (x1 + 1)

3
(x2 + 1) e−x1 + x1

(

x2
1 + 3x1 + 4

)

(x1 + 1)
3 = 0.

It cannot be solved explicitly for x1, thus we present a numerical plot in Figure 1.
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Figure 1. Reaction function of firm 1 in Example 10 is upward sloping.

Again, the dual theorem guaranteeing decreasing best responses can be formulated,
and is given below.

Theorem 11. Assume that ∀j 6= i

P i
ij(xi, x−i)P

i(xi, x−i) − P i
i (xi, x−i)P

i
j (xi, x−i) ≤ P i

ij(xi, x−i)C
i′(xi). (7)

Then the Cournot oligopoly, with profits given by (4) is an ordinally submodular game.

Similarly, in the case of duopoly, one can imagine this condition as derived from
the reordering approach.

This condition covers all the cases, which satisfy conditions of Theorem 7 and,
moreover, for specific cost functions, inverted demands, which are not log-submodular.
In fact even log-supermodular inverted demands may lead to an ordinally submodular
Cournot game, an illustration is provided in Example 13.

As before, we formulate a corollary for the case of constant marginal costs.

Corollary 12. Assume that marginal cost is constant, denoted ci and P i(xi, x−i)−ci

is log-submodular, i = 1, .., n. Then the Cournot oligopoly, with profits given by (4)
is an ordinally submodular game.

Log-submodularity of net-of-cost inverted demand can be interpreted as its elas-
ticity being decreasing in xj .

Usefulness of the Theorem 11 in the duopoly case is illustrated by the example
below. Again, even supermodular and log-supermodular inverse demand function can
give rise to an ordinally submodular game for some cost functions.

Example 13. Consider a 2−player game and take

P 1(x1, x2) =
e−x1

(x2 + 1)
+

1

x1 + 1
.
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It is easy to verify that

P 1
1 (x1, x2) = − e−x1

(x2 + 1)
− 1

(x1 + 1)
2 < 0,

P 1
2 (x1, x2) = − e−x1

(x2 + 1)
2 < 0,

P 1
12(x1, x2) =

e−x1

(x2 + 1)2
> 0,

and

(

lnP 1(x1, x2)
)

12
= e−x1

x1

(e−x1x1 + e−x1 + x2 + 1)
2 > 0.

Hence, the products are substitutes and inverse demand is log-supermodular. There-
fore the game does not satisfy the conditions of Theorem 7.

Take now the following cost function: C1(x1) = ln(x1 + 1) and check condition
(7),

P 1
12(x1, x2)(P 1(x1, x2) − C1′(x1)) − P 1

1 (x1, x2)P 1
2 (x1, x2) =

−e−x1
(x2 + 1) (x1 + 1)

2
ln (x1 + 1) + (x1 + 1)

2
e−x1 + x2 + 1

(x2 + 1)3 (x1 + 1)2
< 0.

It is satisfied for all positive x1 and x2. Therefore, the game is ordinally submodular.

From the first order condition of profit maximization we find best response curve.
We verified that Π1(x1, x12) is locally concave on the best response function. It is
given by an implicit formula

e−x1x2
1 − e−x1x1 − e−x1 + e−x1x3

1 + x2x1 + x1 = 0.

Since it cannot be explicitly solved for x1, we present a numerical plot in Figure 2.

Discussion

Games of strategic complementarities have Nash equilibria in pure strategies. Hence,
when the proper conditions are satisfied for a Cournot oligopoly with differentiated
products, one can be sure that equilibria exist, moreover, in terms of strategies, there
exist largest and smallest equilibria.

For games of strategic substitutes there is no equivalent result. We may only guar-
antee the existence of pure strategy Nash equilibria in 2−player game. For n > 2 one
can distinguished games, in which the strategies of all opponents can be aggregated
into one number. For this kind of games the existence of the pure strategy Nash equi-
librium was shown by Dubey et al. (2005), see also Novshek (1985). Unfortunately,
not all reasonable inverse demand functions have this property (cf. Hoernig, 2003).
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Figure 2. Downward sloping reaction function of firm 1 in Example 13.

Appendix

Proof. (of theorem 6) Consider firm i. Take x1
i > x2

i , x
1
−i > x2

−i. From assumption
1 we have:

lnP i(x1
i , x

1
−i) − lnP i(x2

i , x
1
−i) ≥ lnP i(x1

i , x
2
−i) − lnP i(x2

i , x
2
−i).

This implies that

P i(x1
i , x

1
−i)

P i(x2
i , x

1
−i)

≥ P i(x1
i , x

2
−i)

P i(x2
i , x

2
−i)

or

P i(x2
i , x

2
−i)

P i(x1
i , x

1
−i)

P i(x2
i , x

1
−i)

≥ P i(x1
i , x

2
−i). (8)

To prove that the game with log-supermodular inverse demand and increasing cost
function is ordinally supermodular, it is enough to show that Πi(xi, x−i) has the single
crossing property. To this end we start from assuming that

Πi(x1
i , x

2
−i) ≥ Πi(x2

i , x
2
−i).

Then

x1
iP

i(x1
i , x

2
−i) − Ci(x1

i ) ≥ x2
iP

i(x2
i , x

2
−i) − Ci(x2

i ).

We can replace P 1(x1
i , x

2
−i) from (8)

x1
iP

i(x2
i , x

2
−i)

P i(x1
i , x

1
−i)

P i(x2
i , x

1
−i)

− Ci(x1
i ) ≥ x2

iP
i(x2

i , x
2
−i) − Ci(x2

i ).
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Multiplying by
P i(x2

i
,x1

−i
)

P i(x2
i
,x2

−i
)

we get

x1
iP

i(x1
i , x

1
−i) −

P i(x2
i , x

1
−i)

P i(x2
i , x

2
−i)

Ci(x1
i ) ≥ x2

iP
i(x2

i , x
1
−i) −

P i(x2
i , x

1
−i)

P i(x2
i , x

2
−i)

Ci(x2
i ).

x1
iP

i(x1
i , x

1
−i) − x2

iP
i(x2

i , x
1
−i) ≥ P i(x2

i , x
1
−i)

P i(x2
i , x

2
−i)

(Ci(x1
i ) − Ci(x2

i ))

> Ci(x1
i ) − Ci(x2

i ).

Since P i(x2
i , x

1
−i) > P i(x2

i , x
2
−i) from assumption 2 and Ci(x1

i ) > Ci(x2
i ) from

assumption 3, it follows that

x1
iP

i(x2
i , x

1
−i) − Ci(x1

i ) > x2
iP

i(x1
i , x

1
−i) − Ci(x2

i ).

Hence

Πi(x1
i , x

1
−i) > Πi(x2

i , x
1
−i),

which means that (2) is satisfied. �

Proof. (of Theorem 7) is analogous to the previous one. �

Proof. (of Theorem 8) Consider firm i. Let the F (a, b, s) = bP i(a, s) − Ci(b). Then
F1(a, b, s) = bP i

1(a, s), F2(a, b, s) = P i(a, s) − Ci′(b) and

F1(a, b, s)

|F2(a, b, s)| =
bP i

1(a, s)

|P i(a, s) − Ci′(b)|
∂F1(a, b, s)/ |F2(a, b, s)|

∂s

= b
P i
12(a, s)

∣

∣P i(a, s) − Ci′(b)
∣

∣ − P i
1(a, s)P i

2(a, s)

(P i(a, s) − Ci′(b))2
.

Then, condition (3) holds when

P i
12(a, s)

∣

∣P i(a, s) − Ci′(b)
∣

∣− P i
1(a, s)P i

2(a, s) ≥ 0.

Sufficient condition for this is (5). �

Proof. (of Corollary 9) Consider firm i. Take x1
i > x2

i , x
1
−i > x2

−i. Form assumption
2 we have:

ln(P i(x1
i , x

1
−i) − ci) − ln(P i(x2

i , x
1
−i) − ci)

≥ ln(P i(x1
i , x

2
−i) − ci) − ln(P i(x2

i , x
2
−i) − ci).

This implies that

P i(x1
i , x

1
−i) − ci

P i(x2
i , x

1
−i) − ci

≥ P i(x1
i , x

2
−i) − ci

P i(x2
i , x

2
−i) − ci
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and

(P i(x2
i , x

2
−i) − ci)

P i(x1
i , x

1
−i) − ci

P i(x2
i , x

1
−i) − ci

≥ P i(x1
i , x

2
−i) − ci. (9)

To prove that the game characterized by log-supermodular net-of cost inverse demand
and constant marginal cost is ordinally supermodular, it is enough to show that
Πi(xi, x−i) has the single crossing property. To this end we start from assuming that

Πi(x1
i , x

2
−i) ≥ Πi(x2

i , x
2
−i). (10)

Then

x1
i (P i(x1

i , x
2
−i) − ci) ≥ x2

i (P i(x2
i , x

2
−i) − ci).

We can replace P i(x1
i , x

2
−i) − ci from (9)

x1
i ((P i(x2

i , x
2
−i) − ci)

P i(x1
i , x

1
−i) − ci

P i(x2
i , x

1
−i) − ci

) ≥ x2
i (P i(x2

i , x
2
−i) − ci).

x1
i (
(

P i(x1
i , x

1
−i) − ci

) P i(x2
i , x

2
−i) − ci

P i(x2
i , x

1
−i) − ci

) ≥ x2
i (P i(x2

i , x
2
−i) − ci).

Dividing by
P i(x2

i
,x2

−i
)−ci

P i(x2
i
,x1

−i
)−ci

we get

x1
i (P i(x1

i , x
1
−i) − ci) ≥ x2

i (P i(x2
i , x

1
−i) − ci),

which means that (10) implies

Πi(x1
i , x

1
−i) ≥ Πi(x2

i , x
1
−i),

which concludes the proof. �

Proof. (of Theorem 11) is analogous to the proof of Theorem 8. �

Proof. (of Corollary 12) is analogous to the proof of Corollary 9. �
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Abstract: In this research work we investigate which factors influence the prob-
ability of leaving the unemployment state among people registered in the District
Labor Office in S lupsk. The multiepisode hazard models with time-varying vari-
ables are suitable tools for this analysis. We introduced the changing labor market
structure into the risk model. The main results achieved show that the job finding
process depends on the historical time of the entry into the unemployment state
and the actual historical time.
Also, the specific individual characteristics of people unemployed, such as gender,
age, marital status, place of residence, education level, influence the probability of
exiting the unemployment state. There is a greater tendency to leave the unem-
ployment state when the person doesn’t receive the unemployment benefit. The
participation in the vocational training doesn’t increase the transition rate into
employment.

Key words: unemployment duration, hazard models, factor analysis

Introduction

Unemployment is a problem frequently connected with specific regions. In our re-
search work we try to analyze in detail the situation in district S lupsk in north Poland
(voivodeship Pomorskie).

The widely used unemployment measure – the unemployment rate – presents the
proportion of the unemployed workforce which is seeking employment. However,
such a ratio masks the dynamic nature of the labor market by failing to cover the
length of time individuals are unemployed. It will be more useful to understand
how the probability of exiting unemployment varies with demographic and economic
characteristics. Therefore, to analyze the duration of unemployment among residents
of district S lupsk, we use econometric risk models.
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The main goal of our study is to introduce the changing labor market structure
into the risk model in order to treat the time-dependent nature of the unemployment
duration process in an adequate manner. There are two main ways in which the
changing labor market affects finding job opportunities. First, people start their
unemployment episodes in different labor market contexts (cohort effect, see also [B],
[BGR]), and second, the labor market structure influences the opportunities of all
people unemployed within the labor market at every moment (period effect).

We attempt to find measures for the macro effects on the labor market and suggest
using 12 time series from official statistics, indicating the development of the labor
market structure in S lupsk region. But such variables often measure similar features
of a process and are highly correlated, which implies an identification problem. When
we choose only uncorrelated series, it may only capture specific features of the labor
market development. If time series represent aspects of an underlying regularity, it
is more appropriate to look for these latent dimensions. To do this, we apply the
statistical method – the exploratory factor analysis. The application of this method
allows to isolate the basic principal factors from the given set of variables describing
the development of the labor market in S lupsk region. The factors obtained are
introduced into the multiepisode hazard model as explanatory variables.

The second goal of our analysis is to estimate the effect of the unemployment
compensation system on the individual’s unemployment duration. Duration models
with time-varying covariates serve as proper tools for the analysis of the influence of
the unemployment benefit received at the risk of leaving unemployment. We would
also like to look at the means being used by the labor office to combat unemployment.
Vocational activation of people belonging to risk groups in the local job market is very
important for the labor office. Therefore, additionally, we intend to investigate the
impact of vocational training on the unemployment duration.

Our research work is based on the data obtained from the District Labor Office in
S lupsk from 1999 to 2007.

Description of the analysis method

Hazard models

The dependent variable we are interested in is the duration of time an individual
spends in the state of being unemployed. Empirical data for the duration variable
can take only positive values the negative duration periods do not exist. Moreover,
duration of the phenomenon can be observed only temporarily (censoring problem).
All this makes it impossible to apply traditional models of regression. An appropriate
approach, which considers right censoring of unemployment spells, and which controls
for observable personal characteristics of individuals that influence the unemployment
duration, is the application of hazard models.

In case of continuous hazard models the duration variable T is a continuous non-
negative random variable describing duration in any state, where t is realization. The
distribution function of T is denoted F and is defined as F (t) = Pr [T ≤ t]. The
density function of the duration variable T is f (t) = dF (t) /dt. The probability of
survival to t is given by the survivor function S (t):

S (t) = Pr [T > t] = 1 − F (t)
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The survival function S (t), gives the probability of the surviving of the process over
a certain moment t. The survival function lies between zero and one; it is equal to
one at the beginning of the spell (t = 0); and its slope is non-positive.

Hazard models are concerned with observation of the instantaneous rate of leaving
a certain state (e.g. unemployment) per unit time period at t:

h (t) =
f (t)

S (t)
= lim

dt→0

Pr [t ≤ T < t + dt|T ≥ t]

dt

The hazard function h (t) is the limit of probability that the spell is completed during
the interval [t, t + dt], given that it has not been completed before time t, for dt → 0.
The hazard rates describe the intensity of transition from one state to another. A
higher value of hazard function means that the transition from state A to state B
follows faster.

For general surveys of hazard rate models – also called survival models or duration
models – see, e.g. [KP], [CO], [Ki], [HL], [CT]. The first intensive application of du-
ration models is the analysis of individual unemployment duration data by Lancaster
[L]. A forecasting duration period of the unemployed people, over which they are
without jobs, until taking up a job is a typical example of the use of hazard models
(see, for example, [DK], [L]).

As far as the use of hazard models for unemployment duration in Poland is con-
cerned, literature is modest. The first hazard models to analyze the time spent in the
unemployment state have been applied by Fra̧tczak, Jóźwiak, Paszek [FJP] and later
by Malarska [M]. The other researchers performed microeconometric analysis of job
market based on the logit or probit model. However, such a methodology fails to cover
the individual duration of unemployment period. These researchers concentrated only
on the detecting of determinants, which influence the probability of finding jobs.

Hazard models are constructed whenever there is the purpose of forecasting the
moment, in which a certain event will occur. These models differ in assumptions
concerning distribution of individual time in which the event T occurs. Among du-
ration models, which allow to estimate the influence of different determinants, the
following parametric hazard models can be noted: proportional hazard models (PH)
and accelerated failure-time models (AFT).

In the PH models, the conditional hazard rate h (t|X) can be factored into sepa-
rate functions: h (t|X) = h0 (t) g0 (Xβ) = h0 (t) exp (Xβ), where h0 (t) is called the
baseline hazard and exp (Xβ) is a function of explanatory variables vector X . The
characteristics of hazard function change proportionally to the influence of explana-
tory variables. This category of models comprises the whole range of models which
show differences when it comes to assumptions concerning distribution of baseline
hazard.

The most widely applied semiparametric method of analyzing the effect of covari-
ates on the hazard rate is the proportional hazard model proposed by Cox [C]. The
Cox model states that the hazard rate for the j-th subject in the data is h (t|Xj) =
h0 (t) exp (Xjβ). Compared with the parametric approaches, the advantage of the
semiparametric Cox model is that we have no need to make assumptions about base-
line hazard; h0 (t) is left unestimated. This model is particularly attractive when the
researcher has only a weak theory supporting a specific parametric model and is only
interested in the magnitude and direction of the effects of observed covariates.
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Factor Analysis

Explanatory factor analysis (EFA) is a statistical technique for data reduction. The
term factor analysis was first introduced by Thurstone [T]. EFA is used to uncover
the latent structure of a set of variables. The main aim of this method is to get a
small set of variables from a large set of variables (most of which are correlated to each
other). The variability among observed variables will be described in terms of fewer
unobserved variables called factors. All factors will be orthogonal to one another,
meaning that they will be uncorrelated.

In the EFA the observed variables Xi, i = 1, ..., p are modeled as linear combina-
tions of the common factors Fj , j = 1, ..., k (k < p), plus the unique factors ui (“error”
terms):

X1 = a11F1 + a12F2 + ... + a1kFk + u1

X2 = a21F1 + a22F2 + ... + a2kFk + u2

. . .

Xp = ap1F1 + ap2F2 + ... + apkFk + up

where aij is the linear coefficient called the factor loading. Everything except the left-
hand-side variables is to be estimated, which implies that the model has an infinite
number of solutions.

EFA assumes that the variance in the measured variables can be decomposed into
that accounted for by common factors and that accounted for by unique factors. EFA
estimates how much of the variability is due to common factors (“communality”).

We use EFA when we are interested in making statements about the factors that
are responsible for a set of observed variables and when the goal of the analysis is to
detect structure.

Advantages of EFA are the following: the reduction of the number of variables by
combining two or more variables into a single factor and the identification of groups
of inter-related variables. However, there is a disadvantage, too. Interpreting factor
analysis is based on using a “heuristic”. More than one interpretation of the same
data can be made.

Subject of the research

In our analysis we use data taken from the District Labor Office in S lupsk in Poland
concerning registered unemployed people in the period from 1999 to 2007.

Our selected sample consists of 1690 persons, who were registered unemployed in
the labor office during the survey time at least for one day. They are residents of
district S lupsk and the city with district of S lupsk status.

On the basis of the registered history of events in the labor office Puls computer
system we can find out for how long was a person looking for a job every time or for
how long unemployed is actually looking for a job (in days). The time spent in the
unemployment state is called an episode. The episode finishes when the event occurs
(finding a job etc.). The duration of a single episode is marked by the neighboring
days, during which a given person has been in a given state. Unemployment spells
are completed if they end up with transition from unemployment state. Otherwise,
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unemployment spells are treated as right censored. The last observed exit from un-
employment was noted at the 3235 nd day. While our data basis contains multiple
spells for 1690 persons we have got 3614 episodes.

Method of episode splitting

For survival data, however, individuals may be observed at several stages during
an episode. and relevant time-varying regressors may take different values over an
episode. Time-dependent covariates can be included in parametric and semipara-
metric transition rate models by applying the method of episode splitting. The idea
of this method can be described as following: time-dependent qualitative covariates
change their values only at discrete points in time. At all points in time, when at least
one of the covariates changes its value, the original episode is split into subepisodes
(splits).

The Table 1 shows, for example, that the individual with “id”=19 has had two
unemployment episodes (numbers 26 and 27). The variable “des” serves as the cen-
soring indicator (“des=0” for right censoring). The episode 26, for example, is divided
into two subepisodes: the first one with starting time 2004-06-01 and the second one
with tstart=2005-06-02. The symbol “R B” marks the registration of unemployed re-
ceived unemployment benefit, “T U” means the change in the type of unemployment,
“N PU” – new type: the unemployed without unemployment benefit, “W PC” means
finding a job. The episode 27 starts with the registration of unemployed, who receives
no unemployment benefit; contains three subepisodes; the second one concerns the
vocational training.

Table 1. Records of data after episode splitting for one individual.

id newid des type tstart type tfin tf t1 benefit training
19 26 0 R B 2004-06-01 T U 2005-06-01 365 365 1 0
19 26 1 N PU 2005-06-02 W PC 2005-06-22 20 385 0 0
19 27 0 R P 2006-04-12 2006-04-30 28 28 0 0
19 27 0 Z X 2006-05-01 O O 2006-05-15 14 42 0 1
19 27 1 2006-05-16 W PC 2006-05-26 10 52 0 0

For the whole data set with 3614 episodes we created 6751 subepisodes, 3445 of
them were right censored.

Covariates in hazard models

Estimated hazard models will not only comprise present duration as a determinant
for the probability of leaving the state of unemployment, but also other observable
characteristics of individuals such as gender, age, marital status, place of residence,
education level. The Table 2 defines the first part of covariates used to explain the
joblessness duration with hazard models.
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Table 2. Definitions of Variables.

Variable Description Change in time
sex 1 if individual is male no
age age of the individual at the beginning of a subepisode

in years
yes

edu1 1 if individual has incomplete primary, primary,
lower secondary or basic vocational education level

no

edu2 1 if individual has general secondary, vocational sec-
ondary or post-secondary education level

no

edu3 1 if individual has tertiary education level no
marr 1 if individual is married no
town 1 if the place of residence is town no
language 1 if individual declares any foreign language skills no
benefit 1 if individual receives unemployment benefit yes
training 1 if individual takes part in the vocational training yes

Below, we present the results of the empirical calculation in which the method of
factor analysis was applied. The application of this method to the 12 time series from
official statistics (Regional Data Bank) allowed to isolate the basic factors describing
the development of labor market in S lupsk region in the time period 1999-2007. The
suggested measures for the macro effects are shown in the Table 3.

Table 3. Suggested measures for the macro effects in S lupsk region.

Variable Description Data source
workpop the proportion of the population at work-

ing age in % of total population
district s lupski and city with
district of S lupsk status

service the proportion of the employed in the
service sector in % of all persons em-
ployed

district s lupski and city with
district of S lupsk status

industry the proportion of the employed in the in-
dustrial sector in % of all persons em-
ployed

district s lupski and city with
district of S lupsk status

offers job offers per 1000 unemployed registered district s lupski and city with
district of S lupsk status

entities entities of the national economy recorded
in the REGON register per 1000 of the
population

district s lupski and city with
district of S lupsk status

dwellings dwellings completed per 1000 of the pop-
ulation

district s lupski and city with
district of S lupsk status

budgreven revenue of districts and cities with dis-
trict status budgets per 1 inhabitant

district s lupski and city with
district of S lupsk status

unempl the unemployment rate registered subregion S lupsk
wages average monthly gross wages and salaries voivodeship Pomorskie
gdp gross domestic product per capita voivodeship Pomorskie
invest investment outlays per capita voivodeship Pomorskie
rd expenditures on R&D per 1 inhabitant voivodeship Pomorskie
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We perform the factor analysis with principal factoring and the Equimax rotation.
The variance accounted for by factors is summarized in the Table 4. In the second
column (Eigenvalue), we find the variance on the new factors that were extracted. In
the third column, these values are expressed as a percentage the total variance. The
next column contains the cumulative variance extracted.

The Table 4 attempts to determine the number of orthogonal factors to be retained
for further analysis. The Kaiser criterion for determining the number of factors, is the
“eigenvalue greater than 1” criterion [Ka]. This entails that, unless a factor extracts
at least as much as the equivalent of one original variable, we drop it. Since the first
two factors were the only ones that had eigenvalues greater than 1, the final factor
solution will represent only 87.649% of the variance in the 12 time series.

Table 4. Extraction of factors.

Eigenvalues Sum of square of loadings Sum of square of loadings

after extraction after rotation
Fac- Eigen- % of Cum. Eigen- % of Cum. Eigen- % of Cum.

tors value variance % of value variance % of value variance % of

variance variance variance

1 6.838 56.984 56.984 6.838 56.984 56.984 6.648 55.397 55.397
2 3.680 30.665 87.649 3.680 30.665 87.649 3.870 32.251 87.649
3 0.736 6.133 93.781
4 0.496 4.133 97.914
5 0.141 1.179 99.093
6 0.080 0.668 99.761
7 0.022 0.186 99.947
8 0.006 0.053 100.000
9 0.000 0.000 100.000
10 0.000 0.000 100.000
11 0.000 0.000 100.000
12 0.000 0.000 100.000

A graphical method for determining the number of factors is the scree test. We
can plot the eigenvalues shown above in a simple line plot (Figure 1).

Figure 1. Plot of eigenvalues.
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We have to find the place where the smooth decrease of eigenvalues appears to
level off to the right of the plot. According to this criterion, we would retain two
factors (principal components).

The Table 5 shows the loadings representing a correlation between the items and
the factors. The loadings are distributed between the two factors. In order to obtain
interpretable results the basic solution was rotated (we used Equimax rotation).

Table 5. Factor loading matrix

after Equimax rotation.

Table 6. Table of factor scores.

Factors
Variables 1 2

gdp 0.971 0.234
rd 0.959 0.107

budgreven 0.943 0.278
invest 0.927 -0.329
wages 0.926 0.294
offers 0.924 0.088

unempl -0.875 0.429
service 0.087 0.968

entities 0.285 0.881

workpop 0.566 0.798

industry 0.387 -0.779

dwellings 0.003 0.619

Factors
Variables 1 2

gdp 0.142 0.033
rd 0.144 0.000

budgreven 0.137 0.045
invest 0.152 -0.115
wages 0.134 0.050
offers 0.139 -0.004

unempl -0.147 0.139
service -0.016 0.253
entities 0.018 0.224

workpop 0.063 0.194
industry 0.083 -0.217
dwellings -0.018 0.163

The Table 6 shows the factor scores for each row of the data file; we use these to
obtain the values for each factor.

The first factor could be interpreted as representing the changing “level of economy
development” in the whole region (voivodeship) and, the second one as a measure of
changes in the “local economic activity”.

As can be seen from the plots of the scores of the two factors in Figure 2, the first
factor shows a trend with an increasing slope, while the “local economic activity”
factor shows contrary development with downturn around 2004.
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Figure 2. Plots of factor values.

Because the factors obtained are orthogonally constructed, it is possible to intro-
duce both measures into the multiepisode hazard model as time-varying explanatory
variables.
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To represent the changing conditions under which cohorts enter the unemployment
state, we use the factor values at the day, on which the person was registered in the
labor office (variables fac1rd and fac2rd). To introduce the period effects, we use the
earlier splitted episodes so that the factor values are updated in each job subepisode
(variables fac1 and fac2).

Results of models estimation

Below, you can find estimated Cox proportional hazards model describing the unem-
ployment duration. The results of the estimation of cohort and period effects and the
effects of the other variables on the probability of leaving the unemployment state in
the Cox model are shown in the Table 7.

Table 7. Results of Cox PH models estimation for the risk of leaving the unemployment

state.

Cox regression
Variable Coef. Haz. Ratio
sex 0.490 *** 1.632
age -0.009 *** 0.991
edu1 -0.194 *** 0.824
edu2 -0.096 0.909
marr 0.169 *** 1.184
town 0.136 *** 1.146
language 0.126 *** 1.134
benefit -6.504 *** 0.001
training -0.463 ** 0.629
fac1rd -0.646 *** 0.524
fac2rd -0.504 *** 0.604
fac1 0.788 *** 2.199
fac2 0.566 *** 1.760

Log likelihood = -22,913.006
LR chi2(13) = 2,412.20
Prob > chi2 = 0.0000

***,**,* - significant at 1%, 5%, 10% level respectively.

Source: own computations using Stata Statistical Software.

The semiparametric Cox model was estimated by the partial likelihood method.
By interpreting the results of models parameters it can be stated that:

– the hazard of leaving the unemployment state in the case of a man is 63.2%
greater than in the case of a woman,

– the age coefficient implies that older people are at a disadvantage; the one-year-
older age of the individual at the beginning of a jobless subepisode leads to 0.9%
decrease of chance for exiting unemployment,

– the primary, lower secondary or basic vocational education levels, in comparison
with the tertiary education level, lead to the significant decrease of opportunities
to break unemployment,

– the chance of leaving unemployment is greater in urban than in rural areas,

– the hazard of breaking unemployment is greater in the case of people with any
foreign language skills (by 13.4%),
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– there persists a lower tendency to leave the unemployment state if the person
registered receives the unemployment benefit (hazard rate decreases by 99.9%),

– the participation in the vocational training significantly decreases the transition
rate from unemployment.

Now we concentrate on the interpretation of the effects of changes in markets
development. The parameters, which we are interested in, are statistically significant.

The “level of economy development” at the time of entry into the unemployment
state has a negative effect on the chance of finding a job. The higher the “level of
economy development”, the smaller the attractiveness of the people newly registered
in the labor office. It is less likely that these people will be further moved from
unemployment. It is also true for the negative effect of the “local economic activity”
level at the entry into jobless state.

Conversely, the period effect of the “economy development” is positive. The con-
tinuous developing of the regional economy leads to the increasing opportunities for
all people to move up to the job. The same is true for the period effect of the “local
economic activity” level; the better this level is, the more current opportunities for
unemployed people to find a job.

Conclusions

Using the multiepisode hazard models with time-varying variables, we investigated
which factors influence the probability of leaving the unemployment state among the
people registered in the District Labor Office in S lupsk.

We introduced the changing labor market structure into the risk model in order to
treat the time-dependent nature of the unemployment duration process in an adequate
manner. The main results achieved show that the job finding process depends on the
historical time of the entry into the unemployment state and the actual time. We
found that the “level of economy development” in the whole region and the “local
economic activity” level at the time of entry into the unemployment state have a
negative effect on the chance of finding a job, while the period effects are positive.

Having estimated the Cox PH model for the risk of leaving the unemployment
state, we can take into account three future scenarios for the regional and local econ-
omy development. The optimistic scenario A assumes a continuous development of
the regional and local economy, the worst-case scenario B reflects the decline in devel-
opment at the regional and local level and the base scenario C assumes a continuation
of existing tendencies. The continuous development (scenario A) leads to the increas-
ing opportunities for all registered unemployed to move up to the job. The reduction
of development (scenario B) leads to fewer opportunities to find a job. In scenario
C, the effects of increasing development at the voivodeship level and decline in local
economic activity may be reduced.

Apart from that, the specific individual characteristics of people unemployed, such
as gender, age, marital status, place of residence, education level, influence the prob-
ability of exiting the unemployment state.

The examination of the impact of the unemployment benefit received exhibits,
that there is a greater tendency to leave the unemployment state when the person
doesn’t receive the unemployment benefit. What is more, the actual participation in
the vocational training doesn’t increase the transition rate into employment.
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Abstract: In this paper I show that within expected utility large buying and
selling price gap is possible and [R] paradox may be resolved if only initial wealth
is allowed to be small. It implies giving up the doctrine of consequentialism which
may be reduced to requiring initial wealth to be total lifetime wealth of the deci-
sion maker. Still, even when initial wealth is allowed to be small and interpreted
narrowly as gambling wealth, classic preference reversal is not possible within ex-
pected utility. I show that only another kind of reversal which I call preference
reversal B is possible within expected utility. Preference reversal B occurs when
buying price for one lottery is higher than for another, but the latter lottery is
chosen in a direct choice. I demonstrate that classic preference reversal is suscepti-
ble to arbitrage whereas preference reversal B is not which suggests that the latter
reversal is more rational.

Key words: expected utility, consequentialism, total wealth, gambling wealth,
narrow framing, [R] paradox, preference reversal, WTA/WTP disparity, buying
and selling price for a lottery

Introduction

Willingness-to-accept or selling price for a lottery is a minimal sure amount of money
which a person is willing to accept to forego the lottery. Willingness-to-pay or buying
price for a lottery on the other hand is a maximal sure amount of money which a
person is willing to pay in order to play the lottery. The disparity between willing-
ness to pay (WTP) and willingness to accept (WTA) is a well-known phenomenon
that arises in experimental settings. There is a large body of evidence starting with
[KS] and [T] that WTA is much higher than WTP for many types of goods. [H] is
a survey which documents and analyzes results from a great number of experiments
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and obtains mean values of the WTA/WTP ratio for different goods. Although the
mean WTA/WTP ratio for lotteries is 2.10 and it is small as compared to the same
ratio for other, especially non-market goods, it means nevertheless that WTA is on
average more than two times higher than WTP. There have been many attempts to
give account for this phenomenon.
There is strong belief in the literature that this evidence is not consistent with ex-
pected utility theory. Along the lines of [R06] I will argue that the source of this belief
lies in associating expected utility theory with the doctrine of consequentialism, ac-
cording to which ”the decision maker makes all decisions having in mind a preference
relation over the same set of final consequences”. This association is harmless when
considering Constant Absolute Risk Aversion, as in this case decisions whether to
accept a given lottery do not depend on wealth. However as many studies confirm
people usually exhibit Decreasing Absolute Risk Aversion1, in which case wealth ef-
fects are present.
In practice the doctrine of consequentialism means that the initial wealth underlying
any decision whether to accept or reject a given lottery is assumed to be the decision
maker’s lifetime wealth. It follows that most lotteries under consideration are small
relative to initial wealth and therefore, by [R] argument for any reasonable level of
risk aversion expected utility predicts approximate risk neutrality towards such lot-
teries. In this case, not only is expected utility incapable of accommodating large
spreads between buying and selling price, but also it is inconsistent with risk averse
behavior for small gambles2. Instead of burying expected utility theory I propose
to divorce it from the doctrine of consequentialism, i.e. relax the assumption that
initial wealth underlying any decision whether to accept a gamble is total lifetime
wealth of the decision maker. If initial wealth is allowed to be small, I will show that
expected utility is consistent with large buying/selling price spread, i.e. that within
expected utility for reasonable3 levels of risk aversion one can obtain buying/selling
price spread of the magnitude consistent with experimental results. Following this
finding I will propose an alternative for consequentialism involving narrow framing.
Instead of asserting that preferences are always defined over total lifetime wealth, I
will assume that preferences over gambling are defined over gambling wealth, i.e this
part of the decision maker’s total wealth which he designates for taking gambles. The
idea is taken from [FH], although the seeds of this approach, and in particular the
idea of separating lifetime wealth and something else for different decision problems,
are already in [R06]. I will propose several ways for testing the hypothesis of gambling
wealth.
There are many papers on the disparity between willingness to accept and willingness
to pay for risky lotteries. It is part of a vast literature stream on WTA and WTP val-
uations in general. For example, [SSS] explain WTA/WTP spread for risky lotteries
using prospect theory. They propose the third-generation prospect theory, in which,
unlike in the previous versions, reference point is allowed to be random. They show

1In this paper decreasing absolute risk aversion means strictly decreasing absolute risk aversion.
2”Small” here means ”small relative to lifetime wealth”.
3Consistent with experimental evidence.
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that loss aversion in such model implies positive WTA/WTP gap4. In general, there
have been many accounts for the disparity based on non-expected utility models. My
aim in this paper is not to offer a better explanation. I am even convinced that specific
behavioral theories will fit empirical and experimental evidence better than expected
utility model which I analyze. My goal is to show, that large spreads between WTA
and WTP, due entirely to wealth effects, are possible within expected utility if only
wealth is interpreted narrowly as gambling wealth. The advantage of this approach is
that expected utility has stronger normative appeal as compared to many behavioral
models. And hence, it is useful to know that certain patterns of preferences, or in this
case valuations, can be accommodated not only within behavioral models but also
within expected utility.
The approach I take in this paper in general is not novel. As I mentioned before,
[R06] claims that a lot of recent confusion around expected utility, which led some
researchers to question it as a descriptive theory is caused by associating expected
utility theory with the assumption of consequentialism - the idea that there is a sin-
gle preference relation over the set of lotteries with prizes being the ”final wealth
levels” such that the decision maker at any wealth level W who has vNM prefer-
ence relation %W over the set of ”wealth changes” derives that preference from % by
L1 %W L2 ⇐⇒ W + L1 % W + L2, where L1 and L2 are lotteries. Also, [CS]
argue that the confusion around expected utility in general, and Rabin’s paradox in
particular, is caused by the failure in the literature to distinguish between expected
utility theories, which stands for all models based on a set of axioms among which
there is independence axiom, and a specific expected utility model. They show on
the basis on Rabin’s argument that the expected utility of income model is capable of
accommodating evidence which the expected utility of terminal model cannot accom-
modate. Finally, [P-HS] show that in case of Rabin’s paradox, it is the assumption of
rejecting small gambles over a large range of wealth levels, and not expected utility,
that does not match real-world behavior. For more discussion on Rabin’s paradox,
see section .4.
My approach in this paper follows the lines of the aforementioned articles. The differ-
ence is that these articles focus on Rabin’s paradox and I focus here on buying/selling
price or WTA/WTP spread.
Related to buying/selling price disparity is the issue of preference reversal analyzed
by [GP]. There are two lotteries called the $-bet and the P-bet both of which promise
some prize with some probability and nothing otherwise such that the probability of
winning is higher for the P-bet but the prize is bigger for the $-bet. Preference rever-
sal occurs when selling price for the $-bet is higher than that for the P-bet but the
P-bet is preferred to the $-bet in a direct choice5. A related possibility, which I call
preference reversal B occurs when buying price for the P-bet is higher than that for
the $-bet and yet the $-bet is chosen over the P-bet in a direct choice. I will show that
traditional preference reversal is susceptible to arbitrage and is not possible within

4In fact, by imposing some symmetry conditions on prospect theory utility function in their
model, it is possible to show that loss aversion is equivalent to positive WTA/WTP gap

5Experimentally, in order to confirm preference reversal one must show that the asymmetry
described above occurs more often than the opposite kind of asymmetry, i.e. when the $-bet is
preferred in a direct choice but the P-bet gets higher selling price.
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expected utility, whereas preference reversal B is possible within expected utility and
it does not allow arbitrage. This result may suggest that traditional preference rever-
sal is less rational that preference reversal B.
Buying and selling price for a lottery are the concepts introduced by [Rai] in the
context of expected utility. More popular perhaps are the terms willingness to pay
(WTP) and willingness to accept (WTA), respectively, the terms introduced primar-
ily in the context of non-expected utility theories. Except for the fact that buying
and selling price terms were introduced in a different context than WTP and WTA,
these terms have the same meaning. Since I focus on expected utility model I will
henceforth use the former terms.
The structure of this paper is as follows. First, I introduce the model, its assump-
tions, definitions of buying and selling price for a lottery and buying/selling price
reversal. Then I state a couple of technical propositions which describe the shape and
properties of buying and selling price for a lottery for different risk attitudes. The
subsequent section contains the main theses of the paper. Focusing on constant rel-
ative risk aversion class of utility functions, I demonstrate first that expected utility
with consequentialism is likely to predict risk neutral behavior towards most gambles
and eventually a gap between buying and selling price becomes negligible. Second, I
demonstrate that if the doctrine of consequentialism is abandoned and wealth is al-
lowed to move over the whole domain, significant spreads between buying and selling
price are possible due to income effects when wealth is sufficiently small. As a next
step, I propose an alternative to consequentialism involving narrow framing. Instead
of defining wealth as total lifetime wealth of the decision maker I suggest to use gam-
bling wealth which is that part of the decision maker total wealth which he designates
for the purpose of taking gambles. I discuss ways to test gambling wealth hypothesis
and then I examine the possibility of what I call preference reversal B which I com-
pare to the related concept of traditional preference reversal. I show that whereas
preference reversal B is possible within expected utility framework with gambling
wealth instead of total lifetime wealth and it does not allow arbitrage opportunities,
preference reversal allows arbitrage opportunities and is not possible within expected
utility. And finally I conclude. The appendix at the end of this paper contains proofs
of the propositions.

The model

I start with basic assumptions and definitions.

Assumption 1. Preferences obey expected utility axioms. Bernoulli utility function
U : R → R is twice continuously differentiable, strictly increasing and strictly concave.

Definition 2. A lottery x is a real- and finite-valued random variable with finite
support. The space of all lotteries will be denoted X . I define the maximal loss of
lottery x as: min(x) = min supp(x).

The typical lottery will be denoted as x ≡ (x1, p1; ...;xn, pn), where xi ∈ R, i ∈
{1, 2, ..., n} are outcomes and pi ∈ [0, 1] i ∈ {1, 2, ..., n} the corresponding probabili-
ties. Outcomes should be interpreted here as monetary values. Although most results
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that follow are true for more general lotteries, the finite support assumption is suffi-
cient for the purposes of this paper. Now I define buying and selling price for a lottery
given wealth level along the lines of [Rai]. To avoid repetitions, I will henceforth skip
statements of the form: ”Given utility function U satisfying assumption 1, any lottery
x and wealth W ...”.

Definition 3. I define selling price and buying price for a lottery x at wealth W
as functions denoted, respectively, S(W,x) and B(W,x). Provided that they exist,
values of these functions will be determined by the following equations:

EU [W + x] = U [W + S(W,x)] (1)

EU [W + x−B(W,x)] = U(W ) (2)

If utility function is defined over the whole real line as is the case for constant
absolute risk aversion, buying and selling price as functions of wealth exists for any
wealth level by assumption 1. If the domain of utility function is restricted to a part
of real line as is the case of constant relative risk aversion utility function analyzed
here, I will specify later on in the paper on which domain buying and selling price are
defined as functions of wealth.
In economic terms, given an individual with initial wealth W whose preferences are
represented by utility function U(·), S(W,x) is the minimal amount of money which
he demands for giving up lottery x. Similarly, B(W,x) is the maximal amount of
money which he is willing to pay in order to play lottery x. Additionally I define a
concept of buying/selling price reversal.

Definition 4. Given two lotteries x and y and some wealth level W , define buy-
ing/selling price reversal as:

S(W,y) > S(W,x) and B(W,x) > B(W,y)

This kind of preference pattern may be interpreted as follows. For a given initial
wealth, an individual’s certainty equivalent for lottery y is higher than for lottery x,
and yet he is willing to pay more to play lottery x than to play lottery y. In other
words, an individual exhibiting buying/selling price reversal, may prefer to buy x

than y if he does not play any lottery initially. When, on the other hand, he does
play the lottery initially, he would prefer to sell x than y.

Buying short and selling short price for a lottery

It is possible to introduce buying short and selling short for a lottery x at wealth
level W denoted, respectively, by BS(W,x) and SS(W,x). They satisfy the following
equations:

EU [W − x] = U [W −BS(W,x)] (3)

EU [W − x + SS(W,x)] = U(W ) (4)

The interpretation of these two measures is the following: BS(W,x) is the maximal
sure amount of money which an individual would pay for not taking a short position
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in lottery x. In other words if initial position is W − x, BS(W,x) is the maximal
sure amount of money which an individual is willing to pay for x. On the other hand
SS(W,x) is the minimal sure amount of money which an individual would accept
for taking a short position in x. In other words, it is the minimal selling price for a
lottery which an individual does not have initially.
Notice that buying price B(W,x) and SS(W,x) are evaluated with respect to the
same initial position W . Using Jensen’s inequality it is easy to show that for strictly
concave utility function and a nondegenerate lottery x:

SS(W,x), BS(W,x) ∈ (E[x],max(x))

where max(x) denotes the maximal consequence in the support of lottery x. As shown
in proposition 1 below, classical buying and selling price for a lottery are on the other
hand strictly in between min(x) and E[x] for strictly concave utility function. Hence,
for strictly concave utility function, both SS(W,x) and BS(W,x) are strictly greater
than S(W,x) and B(W,x) for any wealth level.
Certain global (i.e. holding for any lottery) properties of buying and selling price as
functions of wealth are ”mirrored” by the corresponding global properties of buying
short and selling short prices for a lottery. This is due to the simple relation which
holds between these measures and which is the following:

SS(W,x) = −B(W,−x)

BS(W,x) = −S(W,−x)

So, if for example buying and selling price for any no-degenerate lottery are strictly
concave and strictly increasing in W as is the case for CRRA utility function6, then
selling short and buying short prices for any non-degenerate lottery will be strictly
decreasing and strictly convex in W . If 0 < B(W,x) < S(W,x) as is the case for
DARA7, then 0 < SS(W,x) < BS(W,x).

Preliminary results

Before introducing the main point of this paper I need a couple of theoretical results
which describe properties of buying and selling price for a lottery for different risk
attitudes. The most basic property of buying and selling price which is true for any
concave strictly increasing utility function is the following:

Proposition 1 (Concave). For any non-degenerate lottery x and any wealth W
such that buying and selling price exist, S(W,x) and B(W,x) lie in the interval
(min(x),E(x)). For a degenerate lottery x, S(W,x) = B(W,x) = x.

Proof. In the appendix. �

Below I state propositions which characterize constant and decreasing absolute risk
aversion utility functions in terms of buying and selling price. Proofs of these propo-
sitions may be found for example in [ML]. Also I refer to [ML] for an extensive

6See results in [ML].
7See results in [ML].
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discussion on multiplicative and nominal gambles, risk aversion notions for the two
kinds of gambles, etc.

Proposition 2 (CARA). The following two statements are equivalent:

i. Bernoulli utility function exhibits CARA

ii. Buying and selling price are independent from wealth and equal i.e.

B(W,x) = S(W,x) = Cα, ∀W

where α is absolute risk aversion coefficient and Cα takes real values and depends
only on α.

Proposition 3 (DARA). The following two statements are equivalent:

i. Bernoulli utility function exhibits DARA

ii. buying and selling price are increasing in W

B(W,x) > 0 ⇐⇒ B(W,x) < S(W,x)

for a non-degenerate lottery x.

The above propositions show that in expected utility model a gap between buying
and selling price can only arise due to wealth effects. Selling price is higher than
buying price for a lottery for which I would be willing to pay positive amount only
if absolute risk aversion decreases in wealth. Since I want to focus on CRRA utility
functions which is a subclass of DARA utility functions I will additionally state one
more proposition, the proof of which may also be found in [ML].

Proposition 4 (CRRA). The following two statements are equivalent:

i. Bernoulli utility function exhibits CRRA

ii. buying and selling price for any lottery are homogeneous of degree one i.e.

S(λW, λx) = λS(W,x), ∀λ > 0

B(λW, λx) = λB(W,x), ∀λ > 0

Buying/selling price spread within expected utility framework

In this section I focus on constant relative risk aversion utility class, since it is sim-
ple and empirically well validated. For convenience but without loss of generality I
normalize Bernoulli utility function as follows:

Uα(x) =

{

x1−α−1
1−α

, 1 6= α > 0, x > 0

log x, α = 1, x > 0
(5)
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Parameter α is required to be bounded. I also focus on non-degenerate lotteries with
non-negative values such that outcome zero gets positive probability. This restriction
is a matter of convenience as the forthcoming results extend to the case of general
lotteries. The following proposition is necessary to establish the domain and the range
of buying and selling price for a lottery as functions of wealth for the case of CRRA
functions of the above form. Before I state this proposition a couple of remarks might
be useful. First, since CRRA utility function used in this section is defined only
for positive real numbers I need to be sure that both sides of equations (2) and (1)
defining buying and selling price are well defined. Second, notice that CRRA function
of the above form is unbounded from below for α ≥ 1 and bounded from below for
0 < α < 1. This is the reason why for 0 < α < 1 the infimum of B(W,x) and S(W,x)
cannot be equal to min(x), the lower bound given in proposition 1. It turns out that
there is a certain threshold denoted by WL(x) ∈ (0,E[x]) such that the infimum of
B(W,x) and S(W,x) is equal to WL(x) + min(x) which is greater than min(x).

Proposition 5 (CRRA2). Given the class of CRRA utility function of the form given
by (5) the following holds for any non-degenerate lottery x: for α ≥ 1

• limW→0 B(W,x) = min(x)

• limW→−min(x) S(W,x) = min(x)

Define WL(x) = U−1[EU(−min(x) + x)]. For 0 < α < 1

• limW→WL(x) B(W,x) = WL(x) + min(x),

• limW→−min(x) S(W,x) = WL(x) + min(x)

Additionally,

∀α > 0 lim
W→∞

B(W,x) = lim
W→∞

S(W,x) = E[x] (6)

Proof. In the appendix. �

The above proposition establishes the domain and the range of buying and selling
price for a given lottery x as functions of wealth for CRRA utility functions which
are defined above. Now that I introduced the necessary theoretical results, I proceed
to the main message of this paper.

Expected utility and consequentialism

Consequentialism is a doctrine that says that an individual makes all decisions ac-
cording to a preference relation defined over one set of final consequences. In practice
it means that initial wealth taken into account when making whatever decision is in-
terpreted as the decision maker’s total lifetime wealth. Most lotteries which a person
may encounter are small relative to his lifetime wealth. Especially, lotteries used in
experiments have values which are small relative to total lifetime wealth of experi-
mental subjects. Therefore to explain certain experimental results it is sufficient to
focus on lotteries that have values which are negligible as compared to total lifetime
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wealth. To represent this fact I assert here that lotteries have bounded values and
consequentialism approximately means that wealth tends to infinity. In this case the
following result holds:

Proposition 6. Expected utility with consequentialism and CRRA approximately pre-
dicts no buying/selling price spread and risk neutrality.

Proof. The proof follows directly from equation (6) in proposition 5. To represent
the fact that most lotteries are small relative to lifetime wealth, I take any lottery
with bounded values and let wealth go to infinity. What happens is that both selling
price and buying price tend to E[x] and hence the gap between them vanishes. Since
the distance E[x] − S(W,x) measures risk aversion, it is clear that there is no risk
aversion either. �

This proposition is very similar to [R] calibration theorem confined to CRRA class of
utility functions. Reasonable levels of risk aversion for big gambles give rise to risk
neutral behavior towards small gambles within expected utility with consequential-
ism. The difference between [R] argument is that I claim after [R09] that this is due
to consequentialism and not due to expected utility.
This negative result immediately rises the issue of what happens if I drop the as-
sumption of consequentialism. To answer this question I proceed in two steps. First,
I show that relaxing consequentialism is promising, i.e. large buying/selling price for
a lottery for reasonable levels of risk aversion may be obtained. Second, I propose an
alternative assumption which could replace the assumption of consequentialism.
In the first step I allow wealth to vary freely. I will therefore analyze buying and
selling price for a lottery as functions of wealth. The goal is to see for what values of
wealth is the spread between buying and selling price likely to be high. To save on
notation, given a fixed lottery x I shall write S(W,x) = S(W ) and B(W,x) = B(W ).
I define relative spread between buying and selling price as follows:

τ(W ) =
S(W ) −B(W )

B(W )

The following lemma can be used to infer certain properties of the relative gap between
buying and selling price.

Lemma 5. For differentiable decreasing absolute risk aversion utility function, given
any non-degenerate lottery x and any wealth level W , the following holds:

• B′(W ) < 1

• S′(W −B(W )) = B′(W )
1−B′(W ) and hence S′(W −B(W )) > B′(W )

• B′(W + S(W )) = S′(W )
1+S′(W ) and hence B′(W + S(W )) < S′(W )

• S′(W ) = S(W )−B(W )
B(W ) and B′(W ) = S(W )−B(W )

S(W ) for small positive S(W )

Proof. In the appendix. �
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Observe that the slope of buying price is always smaller than one whereas the slope
of selling price can be higher for small values of wealth. Before I state a proposition
describing the characteristics of the relative gap between buying and selling price I
need the following lemma:

Lemma 6. For CRRA utility function, given any non-degenerate lottery x, S(W )
and B(W ) are concave functions.

Proof. See [ML]. �

I focus now on the case when S(W ) > B(W ) > 0. The remaining cases can be
analyzed similarly. By proposition 5, to make sure that B(W ) is positive I require
that min(x) cannot be lower than zero. The following proposition suggests that for
CRRA utility function the lower the wealth the higher the relative gap between buying
and selling price.

Proposition 7. For CRRA utility function and any lottery x with min(x) ≥ 0, the
relative gap between buying and selling price τ(W ) is strictly decreasing in W .

Proof. In the appendix. �

This proposition already gives an explanation of why buying/selling price gap cannot
be predicted within expected utility with consequentialism for small experimental lot-
teries. The reason is that within expected utility, the gap between buying and selling
price is the highest for small values of wealth. So if initial wealth is small, expected
utility model can accommodate large buying and selling price gap. Obviously, assum-
ing initial wealth to be total lifetime wealth of the decision maker is as far as one can
go away from this possibility.
Using lemma 5 and proposition 7 it is possible to infer certain properties of buying
and selling price when data on relative gap between buying and selling price is avail-
able. Also, in the opposite direction, it is possible to infer properties of the relative
gap between buying and selling price when certain properties of buying and selling
price are known. Here, I mention just a couple of possibilities:

• the gap is equal to the slope of selling price for small B(W )

• for small values of B(W ) the gap is equal to B′(W )
1−B′(W ) and hence

• the maximal gap depends on the slope of B(W ) for small values of B(W )

The above mathematical results can be best illustrated on the basis of an example.
Let x be a lottery giving 100 euros or nothing with equal probabilities. The notation
I use for such a lottery is (100, 12 ; 0, 12 ). Table 1 contains graphs of selling and buying
price for lottery x on the left and relative spread between them as functions of wealth
W on the right, each of them for CRRA utility function for three different coefficients
of relative risk aversion: 1/2, 1 and 28. Notice that as stated in propositions above

8The CRRA utility function is of the form given in (5).
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Table 1. Buying/selling price spread for x for CRRA utility function
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buying and selling price are between min(x) and E[x] for α = 1 and α = 2. For
α = 0.5 I can calculate WL(x) as follows:

WL(x) =

(

1

2

√
100 +

1

2

√
0

)2

= 25

Hence buying and selling price for α = 0.5 are indeed between WL(x) + min(x) and
E[x]. Notice also that buying and selling price are increasing and strictly concave in
wealth and that selling price is higher than buying price over the whole domain of
buying and selling price. Finally as stated in proposition 7 the relative gap indeed is
the highest for the minimal value of wealth for which both buying and selling price
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are defined.
As illustrated by this simple example and stated formally in the propositions, the
smaller the wealth the greater the relative gap between buying and selling price. So
if wealth is small enough it is possible to obtain the gap between buying and selling
price consistent with experimental evidence for reasonable levels of risk aversion. I
will summarize this finding in a proposition.

Proposition 8. For levels of risk aversion which are consistent with experimental
evidence on risk attitudes there exists levels of wealth such that the expected utility
model predicts high relative gap between buying and selling price.

To illustrate the proposition consider again the above example. For instance, to
obtain selling price 30 per cent higher than buying price for the lottery in considera-
tion and for different relative risk aversion coefficients I need wealth levels which are
listed in table 2.

Table 2. Selling price 30% higher than buying price

α W

0.5 35.15
1 43.94
2 51.57

For example to obtain selling price 30% higher than buying price for the lottery
(100, 12 ; 0, 12 ) for logarithmic utility function, initial wealth level of almost 44 is nec-
essary. In the next subsection I introduce gambling wealth. If one believes that
expected utility model accurately predicts behavior 44 would correspond to the cali-
brated gambling wealth.
Assuming that the decision maker exhibits constant relative risk aversion, one can
calibrate pairs of wealth and relative risk aversion consistent with any given level of
relative gap between selling and buying price for a given lottery.

Expected utility with gambling wealth

I have argued above that expected utility with total wealth interpretation of wealth
predicts no gap between buying and selling price and risk neutrality for a wide range
of gambles used in experiments. On the other hand I have shown that if small values
of wealth are possible one can obtain large gaps between buying and selling price
for a lottery for reasonable levels of risk aversion. One way to proceed would be
to make wealth a free parameter of the model. Then, if one believes that expected
utility is a good descriptive model of behavior, then given the data on risky choices
one can calibrate which pairs of risk attitude and wealth level are consistent with
the data, as I have illustrated in table 2. Unfortunately, by making wealth a free
parameter, the model loses much of its predictive power. In particular, it is harder
to falsify the model or design testable predictions. Another way to proceed is to
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give wealth a new interpretation or, even better, to develop a theory of endogenous
wealth determination and then to test whether this new interpretation gives better
answers than consequentialist interpretation. Since at this point I am unable to offer
a theory of endogenous wealth determination, I will only propose a new interpretation
of wealth and ways to test it.

.1 Gambling wealth

Consequentialism assumption implies that when making any kind of decision people
consider and have in mind their lifetime wealth. I think a good alternative assumption
is that people frame decisions narrowly and separate them into categories. When they
engage themselves in housing decisions they think about housing budget, when they
consume they think about consumption budget and when they consider gambling or
whether to accept of reject an offered gamble, they consider gambling budget. Of
course, personal assignment of different categories, budgets for them and time span
for the budgets is a very complex subject and certainly there is plenty of factors which
influence such decisions. Therefore I do not aim at a theory of endogenous budget
determination. For the purposes of this paper I focus only on gambling category
and a budget assigned to it, which I call gambling wealth. Gambling wealth was
proposed informally by [FH]. They define gambling wealth as that part of total
wealth designated only for taking gambles. Alternatively, if W is wealth designated
for the purposes of living, housing and consumption, then gambling wealth is what is
left over.
In the light of the results from previous subsection, one can argue that the idea
of gambling wealth and more generally, the idea of separate budgets for different
categories of decisions could explain a number of interesting phenomena, for example:

• Agents who gamble more, have higher gambling wealth and therefore buying
and selling price gap for a given lottery is smaller than for less experienced
individuals

• If an object is treated narrowly the disparity should be higher; if it is integrated
into a wider set of objects the disparity should decrease ([H])

• The disparity should also be higher for artificial environments such as experi-
ments than for a real market place.

This approach also has potential of explaining why buying/selling price gap is more
pronounced when objects of choice are not monetary, e.g. coffee mugs. The more
specific or narrowly defined is the object of choice the more pronounced are wealth or
income effects since the value of the object is comparable with the money designated
for taking such objects.
The attractive feature of all these explanations is that they are all within expected
utility framework. The only novel thing is narrow framing with which expected util-
ity model is supplemented. Naturally, a theory of endogenous wealth determination
would be much appreciated to make this kind of explanations fully testable. At this
point, I may suggest a couple of ways to test gambling wealth hypothesis.
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I propose the following experiment design which could shed light on the validity of
this approach. The first stage of experiment is to give people small amount of money
for trading in gambles and then to elicit buying price and selling price for a given
lottery. It is possible to use sealed bid second price auction to elicit the true buying
price and [BDGM] procedure to elicit the true selling price for a lottery. In the second
stage subjects are given more money for trading in gambles and again buying and
selling price is elicited. Alternatively, instead of giving the subjects more money it is
possible to scale down or up the lotteries being played. If subjects exhibit constant
relative risk aversion it should be equivalent to increasing or decreasing initial wealth
- here the characterization results from [ML] are useful. If my explanation for the
gap between buying and selling price is correct then the gap should decrease when
subjects are given more gambling money or if the lotteries are scaled down without
changing gambling wealth.
The second experiment design is the following - I show some possible lotteries to the
subjects. Then I ask them how much money maximally, they would risk playing these
lotteries. Their answer would correspond to their gambling wealth. Then I again re-
peat the procedure as in the first experiment design.
Another way to test the approach would be to elicit buying and selling prices for
objects from a very narrowly defined set, such as coffee mugs and then extend the
set of objects to say all kitchen stuff and again elicit buying and selling prices. The
gap between reported buying and selling price in the first case should be bigger than
the one in the second case. The reason is that the money designated for trading in
coffee mugs is definitely no bigger than money designated to trade in all kitchen stuff.
This also would be consistent with results of [H]. He argues that buying/selling price
gap should be small if there is some substitute on the market and should be bigger if
there is no.
Assuming the approach is valid then I propose the following experiment for calibrating
gambling wealth. The experiment should be designed to test risk attitudes9 and at
the same time to elicit selling and buying prices for lotteries. Given the data it is then
easy to calculate the underlying wealth level. This is then interpreted as gambling
wealth. More precisely, given observed buying and selling price for a given lottery
I can calculate wealth-relative risk aversion coefficient pair which is consistent with
these prices.
Gambling wealth hypothesis is promising. However, until there is no theory of gam-
bling wealth interpretation it can not be fully testable. In the next subsection I
discuss another concept which is related to gambling wealth - the concept of pocket
cash by [FL]. The advantage of pocket cash idea is that there is a theory of pocket
cash determination. I would like to show in what respect pocket cash and gambling
wealth are similar and in what respect they differ.

.2 Pocket cash

The idea of pocket cash money in the context of gambling decisions is the following. If
a small gamble is offered, an individual decides whether to take it or not on the basis

9Characterization results from [ML] are useful here.
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of what he has in his pockets, and hence pocket cash will be the relevant wealth level
for this decision. If, on the other hand, the same individual is offered a big gamble
the values of which exceed significantly what he has in his pockets, the individual
decides more carefully taking into account his lifetime wealth. I will introduce now
some details of the model.
[FL] develop a dynamic model in which long-run self controls the series of short-run
selves. In each period t there are two subperiods:

• bank subperiod

– consumption is not possible

– wealth yt is divided between savings st, which remain in the bank, and
pocket cash xt which is carried to the nightclub

• nightclub subperiod

– consumption 0 ≤ ct ≤ xt is determined and xt − ct is returned to the bank
at the end of the period

– wealth next period is yt+1 = R(st + xt − ct)

The long-run self can implement a∗, the optimum of the problem without self-control,
by simply choosing pocket cash xt = (1− a∗)yt to be the target consumption. In this
way self-control costs might be avoided.

• At the nightclub in the first period there is a small probability the agent will
be offered a choice between several lotteries.

• The model predicts then that:

– for large gambles risk aversion is relative to wealth

– for small gambles it is relative to pocket cash

In this way the model can explain [R] paradox and large buying and selling price gap.

.3 Gambling wealth vs. pocket cash

An interesting feature of [FL] approach is the following. [FL] estimate pocket cash to
be roughly in the range of 20-100 dollars. This is very similar to the range of gambling
wealth necessary to get large and consistent with the evidence buying/selling price
gaps as indicated in table 2. Even if not supported by the thorough econometric
analysis it is striking that two totally different approaches give rise to results of a
very similar range.
In spite of the similarities, the two concepts are nevertheless different from each other.
To illustrate the difference I will now discuss what testable predictions are obtained
in [R] paradox according to the dual self model with pocket cash and what testable
prediction are obtained according to gambling wealth approach.
[R] calibrated that expected utility model predicts the following:

• if a risk averse agent with wealth ≤ 350000 rejects the lottery (105, 1/2;−100, 1/2)
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• then he should reject the lottery (635000, 1/2;−4000, 1/2) at wealth level 340000

Denote the first of the above lotteries by lottery 1 and the second by lottery 2.
According to [R] the first statement is plausible and the second is not and hence it is
called a paradox.
In the dual-self model it is not true anymore that the decision maker rejects both
lotteries. The first lottery is small and hence it is evaluated relative to pocket cash.
The second lottery is big and therefore it is evaluated according to total wealth.
Suppose that the utility function is logarithmic. Then the following is true:

• lottery 1 small - reject if pocket cash < 2100

• lottery 2 large - accept if total wealth higher than 4035

Now both statements (pocket cash less than 2100 and total wealth higher than 4035)
are plausible.
Now consider gambling wealth interpretation. Suppose that utility is logarithmic. If
gambling wealth is less than 2100 then the decision maker should

• reject lottery 1

• reject lottery 2

There is nothing paradoxical in rejecting the second lottery since gambling wealth in
the amount of 2100 is too little to cover the loss (−4000) which occurs with probability
1/2. No matter how attractive is the second prize, the decision maker cannot afford
to take lottery 2.

.4 Rabin’s paradox in the literature

Although, in this paper, I adopt the lines of [R09], and focus on the assumption
of consequentialism, there has been other explanations for Rabin’s paradox in the
literature. [P-HS] claim that it is the assumption of rejecting small gambles over a
large range of wealth levels, which should be questioned as it does not match real-
world behavior. In particular they show that the assumption that an expected utility
maximizer turns down a given even-odds gamble with gain and loss for a given range
of wealth levels implies that there exists a positive lower bound on the coefficient
of absolute risk aversion which can be calculated exactly. This lower bound is an
additional assumption imposed on a utility function. [P-HS] show that in Rabin’s
examples this lower bound turns out to be very high, which is not consistent with
empirical evidence. Another paper which addresses Rabin’s critique of expected utility
is [CS]. They argue that the source of confusion around expected utility lies in a
failure to distinguish between expected utility theories, i.e. all models based on a
set of axioms with independence axiom being the key axiom, and a specific expected
utility model. In a similar spirit to [R06], they claim that Rabin in fact criticizes
expected utility model of terminal wealth, in which there is a single preference relation
over final wealth consequences. They show that expected utility of income model, in
which prizes are interpreted as changes in wealth levels, does not exhibit Rabin’s
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paradoxical behavior. In order to enable the dependence of preference over income
on initial wealth, they design an expected utility of initial wealth and income model.
They demonstrate that such a model can withstand the Rabin’s critique if initial
wealth is not additive to income in the utility function. [SS] on the other hand point
out that paradoxes of the kind considered by Rabin, are not specific to expected utility
theory. They show that they can be constructed in non-expected utility theories as
well.

Preference reversal versus buying/selling price reversal

Preference reversal is commonly observed in experiments. Suppose that A ≻C B
denotes ”A preferred to B in a direct choice”. Using my notation, preference reversal
is possible if:

S(W,y) > S(W,x) and x ≻C y

Preference reversal is not possible within expected utility framework. To see this,
note that expected utility implies that x ≻C y which can be equivalently written as
EU(W +x) > EU(W +y). By definition of S, this is equivalent to U(W +S(W,x)) >
U(W + S(W,y) and since utility function is strictly increasing: S(W,x) > S(W,y).
So expected utility implies the following:

S(W,y) > S(W,x) ⇐⇒ y ≻C x (7)

On the other hand buying/selling price is possible within expected utility framework:

Proposition 9. For a given decreasing absolute risk aversion utility function and
any wealth level W , buying/selling price reversal is possible.

Proof. In the appendix. �

By condition (7) this proposition implies that expected utility admits the possibility
of the following kind of preference reversal:

B(W,y) > B(W,x) and x ≻C y

This kind of preference reversal will be referred to as preference reversal B. Prefer-
ence reversal B is equivalent to buying/selling price reversal within expected utility
framework.
Since expected utility theory imposes rather strong consistency assumptions, the re-
sult above suggests that the possibility of preference reversal is less rational than the
related possibility of buying/selling price reversal or preference reversal B. The fol-
lowing two propositions clarify the meaning of ”less rational” beyond the strength of
consistency requirements argument.

Proposition 10. Suppose that preferences of the decision maker are continuous,
monotonic and that preference reversal pattern is fixed for the range of wealth W ∈
[w, w̄]. Then arbitrage opportunities exist.

Proof. In the appendix. �
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Hence preference reversal allows arbitrage. On the other hand buying/selling price
reversal or preference reversal B does not allow arbitrage.

Proposition 11. Buying/selling price reversal does not allow arbitrage.

Proof. In the appendix. �

The analysis shows that buying/selling price reversal or preference reversal B is more
rational than traditional preference reversal in two respects - it is consistent with
expected utility and it does not allow arbitrage.
Preference reversal B or buying/selling price reversal occur within expected utility
theory. However it does not mean that they have to be meaningful. If buying/selling
price gap is small, then these two reversals are not meaningful i.e. they can occur
theoretically but the scope for their occurrence is negligible. For these reversals to be
meaningful, it is necessary for buying/selling price gap to be non-negligible. Testing
of preference reversal B might be therefore relevant only if wealth is interpreted nar-
rowly, either as gambling wealth or pocket cash. It is not relevant if the doctrine of
consequentialism is maintained. I will illustrate this fact in the following example.

Example 7. Suppose utility function is CRRA with relative risk aversion coefficient
of 2, the $-bet (denote it by x) gives $100 or $0 with equal probabilities and the P-bet
(denote it by y) gives $40 with probability 3/4 and $0 otherwise. The picture below
graphs buying and selling prices for these two lotteries as functions of wealth:
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Figure 1. Wealth region for buying/seeling price reversal
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In the above example, there is an interval (50, 75) of wealth for which buy-
ing/selling price reversal (and hence also preference reversal B) occurs10. This is the
common pattern that buying/selling price reversal occurs only at small wealth and
only in the limited interval of wealth. The reason is that for such reversal to occur the
$-bet has to have higher variance and higher expected value. Then since as wealth be-
comes large, buying and selling price approach expected value of a lottery, these prices
for the $-bet have to increase above those of the P-bet. For smaller values of wealth,
the CRRA decision maker would become very risk averse, so he will be solely preoccu-
pied by the gamble’s variance. Therefore, both selling and buying price for the $-bet
are below those of the P-bet. Technically speaking, notice that if W ∗ denotes wealth
level at which selling price of x and y are equal, i.e. S(W ∗,x) = S(W ∗,y) = S∗,
then from definition it also holds that S∗ = B(W ∗ +S∗,x) = B(W ∗ +S∗,y), so that
B(W,x) crosses B(W,y) at W = W ∗+S∗. Hence the interval for which buying/selling
price reversal occurs is of length S∗ exactly.

Further discussion

I argued above that dropping the assumption of consequentialism and interpreting
initial wealth narrowly as something much smaller than total wealth can explain
large buying and selling price gap but cannot explain traditional preference reversal
involving WTA valuations. But in my approach, the consequentialist view, while
dropped, is replaced with something different only in quantitative and not qualitative
terms. I allow initial wealth to be small enough with a claim that it changes the
interpretation of initial wealth. Instead of total wealth which is usually much higher
than the value of consequences of a lottery in question, I propose to use a somewhat
vague11 notion of gambling wealth which, in order to explain large gap between buying
and selling price, should be small enough and in particular of the magnitude similar to
the lottery’s consequences. This approach changes things only slightly in the following
sense: While in case of total wealth interpretation of initial wealth, an individual’s
preferences over wealth changes are induced from his preferences over final wealth
levels, in case of gambling wealth, preferences over changes in gambling wealth are
induced from preferences over gambling wealth levels. In quantitative terms, these
two situations may be very different. However in a structural or qualitative sense,
these two situations differ only marginally. A much more fundamental departure
from consequentialism assumption would be the following - suppose that the decision
maker derives preference over lotteries not from preferences over the resulting total
position of whatever budget he might consider but directly from changes to this budget
implied by accepting the lottery in question. This approach was first undertaken by
[KT] in their seminal contribution. In prospect theory which was then proposed as an
alternative to expected utility theory the decision maker has preferences directly over
wealth changes relative to a reference point. [R09] suggests that a similar approach
is possible without having to depart from expected utility theory by reinterpreting
lottery prizes as monetary change and not as total position. In what follows I will

10The following holds S(50,y) = S(50,x) and B(75, y) = B(75, x).
11Or at least hard to measure using existing data.
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illustrate formally that in such an approach both large buying and selling price gap
and preference reversal is possible for a wide class of utility functions defined over
wealth changes.

WTA/WTP disparity for preferences over wealth changes

Suppose U(·) is a utility function defined over changes in wealth, and hence over the
whole real line. It is assumed to be strictly increasing, continuous and that U(0) = 0.
Willingness to accept for lottery x, denoted by WTA(x), and willingness to pay for
lottery x, denoted by WTP (x), will be the notions used here in place of selling and
buying price, respectively. They are defined as follows:

EU(WTA(x) − x) = 0 (8)

EU(x−WTP (x)) = 0 (9)

The interpretation of these two terms is equivalent to the interpretation of selling and
buying price, respectively, which was given earlier.

Proposition 12. Suppose that U(x) < −U(−x) for all x > 0. Then given any
nondegenerate lottery x, the following holds: WTA(x) > WTP (x).

Proof. Denote A ≡ WTA(x) to save on notation.

E[U(x−A) − U(A− x)]

=
∑

i:xi>A

pi[U(xi −A) − U(−(xi −A))] −
∑

i:xi≤A

pi[U(A− xi) − U(−(A− xi))]

< −2
∑

i:xi>A

piU(−(xi −A)) − 2
∑

i:xi≤A

piU(A− xi)

= 0

The claim follows by monotonicity of U . �

The above proposition is quite general. In what follows I will analyze two special
cases. In the original version of prospect theory ([KT]) reference point was required
to be constant. Hence it would be impossible to define willingness to accept in this
formulation. [SSS] proposed a so called ”third-generation prospect theory” in which
reference point is allowed to be random. They defined willingness to accept and
willingness to pay essentially as in (8) and (9) and showed first that willingness to
pay and willingness to accept disparity is possible in prospect theory mainly due to loss
aversion. Below I will show my version of their result which shows that under certain
symmetry conditions WTA/WTP gap occurs solely due to loss aversion. Consider
prospect theory utility function with an imposed symmetry condition of the following
form:

Assumption 8. Utility function for outcomes is of the following form:

U(x) =

{

u(x) if x ≥ 0
−λu(−x) if x < 0
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where λ > 0 denotes the loss attitude parameter. If λ > 1, there is loss aversion.
Furthermore, a function u(·) is absolutely continuous, bounded, strictly increasing
with u(0) = 0 and concave on its domain.

The above utility function is concave for gains, convex for losses and for λ = 1, it is
symmetric around (0, 0), meaning that risk loving for losses is of the same magnitude
as risk aversion for gains. For λ > 1, there is loss aversion, which means that a given
gain brings less satisfaction, than the dissatisfaction from the same loss.
Observe that this utility function satisfies U(x) < −U(−x) for all x > 0 if and only if
λ > 1. Hence for λ greater than one, meaning that there is loss aversion, willingness
to accept for any nondegenerate lottery exceeds willingness to pay by proposition 12.
In fact for a utility function of the above form an even stronger result holds, which I
state below:

Proposition 13. For a nondegenerate lottery x and utility function of the form
defined by assumption 8, the following holds:

λ > 1 ⇐⇒ WTA(x) > WTP (x)

Proof. Define A ≡ WTA(x) and P ≡ WTP (x) to save on notation. From defini-
tions:

λ
∑

i:xi>A

u(xi −A) =
∑

i:xi≤A

u(A− xi)

∑

i:xi>P

u(xi − P ) = λ
∑

i:xi≤P

u(P − xi)

First notice that λ = 1 if and only if A is equal to P . Now observe that λ > 1 if and
only if

∑

i:xi>A

u(xi −A) < λ
∑

i:xi>A

u(xi −A) =
∑

i:xi≤A

u(A− xi) < λ
∑

i:xi≤A

u(A− xi)

And by monotonicity of u it follows immediately that A > P and hence WTA(x) >
WTP (x). �

The above proposition shows that in prospect theory willingness to accept/willingness
to pay disparity may be explained solely by loss aversion.
An even simpler version of this result obtains in case of the prospect theory utility
function without risk aversion.

Assumption 9. Utility function for outcomes is of the following form:

U(x) =

{

x if x ≥ 0
λx if x < 0

(10)

Proposition 14. For a nondegenerate lottery x and utility function defined by as-
sumption 9

λ > 1 ⇐⇒ WTA(x) > E[x] > WTP (x)
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Proof. Define A ≡ WTA(x) to save on notation. From definition:

0 = −λ
∑

i:xi>A

pi(xi −A) +
∑

i:xi≤A

pi(A− xi)

= (1 − λ)
∑

i:xi>A

pi(xi −A) +
n
∑

i=1

pi(A− xi)

= (1 − λ)
∑

i:xi>A

pi(xi −A) + A− E[x]

< A− E[x]

The proof that E[x] > WTP (x) is similar and hence omitted. �

In fact utility function 9 is a special case of an overall concave utility function for
which similar result holds:

Proposition 15. For a nondegenerate lottery x, given utility function u : R → R

that is strictly increasing, continuous and bounded with u(0) = 0, the following holds:

u(·) is concave ⇐⇒ WTA(x) ≥ E[x] ≥ WTP (x)

Proof. By Jensen’s inequality:

0 = Eu(x−WTP (x)) ≤ u(E[x] −WTP (x))

0 = Eu(WTA(x) − x) ≤ u(WTA(x) − E[x])

Since u(0) = 0 and u is strictly increasing, the conclusion follows. �

The conclusion of this section is that the gap between willingness to accept and
willingness to pay in case of preferences defined over wealth changes and not wealth
levels may be explained by a kind of a general loss aversion, which is defined by
the requirement: u(x) < −u(−x), for all x > 0. This requirement defines a wide
class of available utility functions and in particular, an S shaped utility function with
sufficient level of loss aversion as well as a traditional overall concave utility function
over the whole real line satisfies this condition.

Preference reversal for preferences over wealth changes

First, recall that traditional preference reversal is not possible within expected utility
when preferences are defined over wealth levels, irrespective of whether these wealth
levels are interpreted narrowly as levels of gambling wealth for instance or whether
they are interpreted traditionally as total wealth levels. On the other hand, when
preferences are defined over wealth changes, it turns out that traditional preference
reversal is possible. [SSS] shows that preference reversal may occur in third genera-
tion prospect theory. They calibrate for which values of parameters, a very general
but parametrized version of prospect theory is compatible with preference reversal .
Below I will show that for a very simple version of third generation prospect theory,
preference reversal is obtained as a generic element.
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Let x ≡ (x, p) and y ≡ (y, q) be two prospects such that y > x > 0 and 1 > p > q > 0.
Lottery x will be called the P-bet and lottery y will be called the $-bet. In what fol-
lows I want to demonstrate that preference reversal is possible.

Lemma 10. For a utility function satisfying assumption 9, the following holds: If
px = qy, so that the decision maker is indifferent between lottery x and y in a direct
choice, then

λ > 1 ⇐⇒ WTA(y) > WTA(x

Proof. From definitions I calculate that:

WTA(x) =
λp

1 − p + λp
x, WTA(y) =

λq

1 − q + λq
y

Using the fact that px = qy, I obtain:

WTA(y) −WTA(x) = WTA(y)
p− q

1 − p + λp
(λ− 1)

The claim immediately follows. �

Proposition 16. Given a utility function satisfying assumption 9, preference reversal
is possible if and only if λ > 1

Proof. Preference reversal occurs when the decision maker chooses the P-bet in a
direct choice but assigns higher willingness to accept to the $-bet. In terms of the
model, preference reversal occurs when px > qy and WTA(y) > WTA(x). By
lemma 10, I know that if px = qy then WTA(y) > WTA(x) ⇐⇒ λ > 1. Since
utility function u(·) is continuous, it follows that willingness to accept as a function
of a given lottery is also continuous. Hence changing the lottery slightly changes
willingness to accept for it slightly. It follows that if initially px = qy and I increase
p or x slightly or decrease q or y slightly, the new lottery x will be preferred to a new
lottery y in a direct choice and yet it will remain true that willingness to accept for
a new lottery y will still be higher than willingness to accept for a new lottery x. �

Again, a more general result for concave functions is possible:

Lemma 11. Suppose that px = qy. Given utility function u : R → R that is strictly
increasing, continuous and bounded with u(0) = 0, the following holds:

u(·) is concave ⇐⇒ WTA(y) ≥ WTA(x)

Proof. Define A ≡ WTA(x) to save on notation. A satisfies the following equation:

pu(A− x) + (1 − p)u(A) = 0 (11)

The following is the so called three-strings lemma for concave functions:

Lemma 12 (Three strings lemma). Utility function u(·) is concave if and only if for
a > b > c the following holds:

u(a)

a
<

u(b)

b
<

u(c)

c
(12)
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Hence u(·) is concave if and only if

qu(A− y) + (1 − q)u(A) ≤ qA−y
A−x

u(A− x) + (1 − q)u(A) [by (12)]

= u(A− x)
[

qA−y
A−x

− p
]

+ (p− q)u(A) [by (11)]

= u(A− x) qA−qy−pA+px
A−x

+ (p− q)u(A)

= A(p− q)
[

u(A)
A

− u(A−x)
A−x

]

[px = qy]

≤ 0 [by (12)]

�

Proposition 17. Suppose that px = qy. Preference reversal occurs if u(·)12 is strictly
concave.

Proof. Suppose that u(·) is strictly concave. By lemma 11, WTA(y) > WTA(x).

Since x < y, u(x)
x

> u(y)
y

, by the three strings lemma for concave function u(·). Hence
the following holds:

Eu(x) = pu(x) > p
x

y
u(y) = qu(y) = Eu(y)

So lottery x or a P-bet is chosen over lottery y or a $-bet in a direct choice and yet
WTA(y) > WTA(x) as required. �

Concavity of a utility function is sufficient for preference reversal in the above example.
However it is not necessary. In particular, [SSS] show that preference reversal is
possible with an S-shaped prospect utility function, which is convex for losses. If one
wants to obtain a possibility of preference reversal for specific lotteries and not as a
generic feature of the model, then the following requirement, which is weaker than
the overall concavity of utility function, may be imposed: For a given P-bet and a
given $-bet and utility function u(·), define A = WTA(x). Then:

u(A− y)

A− y
>

u(A− x)

A− x
>

u(A)

A

Concluding remarks

Expected utility theory by [vNM] imposes a set of consistency assumptions on choices
among lotteries. The theory is used in a large part of economic theory, including the
famous Nash existence theorem. However there is a lot of mainly experimental evi-
dence that people often violate [vNM] axioms, in particular the most crucial among
them - independence. In response to this evidence economists started to question
expected utility theory and investigate other models of choice which describe human
behavior better. However, since these new theories usually have lower consistency re-
quirements being imposed on the admissible choice, they necessarily also have lower
prediction power and less scope for testable predictions. Moreover, they also have

12Strictly increasing, continuous and u(0) = 0.
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weaker normative appeal, since the decision makers violating expected utility axioms
are vulnerable to money pumps. It is therefore an important issue to identify patterns
of choices and behavior which are consistent with expected utility and contrast them
with those which are impossible within expected utility. In order to perform this task
it is important to identify expected utility theory in its bare form and in particular
separate it from the doctrine of consequentialism. More precisely, it is necessary to
abandon the common practice of interpreting wealth variable as total wealth position
common to all decisions.
If one is willing to accept that wealth underlying gambling decisions is separated from
total wealth so that gambling decisions are framed narrowly, important implications
can be derived. If gambling wealth is small enough, which should be tested in an
experiment, then selling price for a lottery can be significantly greater than buying
price without going beyond expected utility model and the extent of this difference
can be as high as the one found in experiments. Also, the famous [R] paradox can be
resolved, suggesting that expected utility is not guilty here, but rather the doctrine
of consequentialism.
Still, traditional preference reversal is not possible even if wealth is allowed to be
small. If expected utility is to be regarded as a positive theory, it is definitely a neg-
ative result. However, if one is willing to accept expected utility as a good normative
theory, then the same result is very useful. It informs us then, that preference re-
versal is not rational. It is confirmed further by the result proved in the paper, that
individuals exhibiting preference reversal are susceptible to arbitrage under certain
mild conditions. The same kind of arbitrage, which I prefer to call strong arbitrage, is
not possible within expected utility. What might be interesting is that another kind
of preference reversal, which I call preference reversal B and which involves buying
price in place of selling price and otherwise is the same as the traditional preference
reversal, is possible within expected utility and is not vulnerable to arbitrage as shown
in the paper. What it could suggest if one is willing to treat expected utility as a
good normative theory, is that preference reversal B is perhaps ”more rational” than
traditional preference reversal. An interesting thing to do in the future would be to
check whether people exhibit preference reversal B as frequently as they exhibit the
traditional preference reversal and if not, then check why this is so.

Appendix

In what follows I will need the following lemma:

Lemma 13. For any lottery x and any wealth level W , the following holds:

S[W,x−B(W,x)] = 0 (13)

S[W −B(W,x),x] = B(W,x) (14)

B[W + S(W,x),x] = S(W,x) (15)

The proof is directly from definitions. For details, see [ML].
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Proof of proposition 1

Proposition 18 (Concave). For any concave and strictly increasing utility function
and a non-degenerate lottery x the following holds:

min(x) < B(W,x) < E[x]

min(x) < S(W,x) < E[x]

Proof. Notice first, that for degenerate lottery x = x, equations (1) and (2)imply
the following:

W + S(W,x) = W + x

W + x−B(W,x) = W

And so S(W,x) = B(W,x) = x. From now on I will focus on a non-degenerate lottery
x. I will prove the proposition only for the case of selling price. For buying price the
proof is similar. I define S ≡ S(W,x). Suppose mini∈{1,...,n} xi ≥ S. Then notice
that:

U(W + xi) ≥ U

(

W + min
i∈{1,...,n}

xi

)

≥ U(W + S)

with strict inequality for any xi 6= mini∈{1,...,n} xi. Since lottery x is non-degenerate
there exists at least one xi 6= mini∈{1,...,n} xi Hence

n
∑

i=1

piU(W + xi) > U(W + S)

So S cannot be the selling price - a contradiction.
Suppose now that S ≥ E[x]. By strict Jensen’s inequality

EU [W + x] < U [W + E[x]] ≤ U(W + S)

So S cannot be the selling price - a contradiction. So I have shown that indeed
mini∈{1,...,n} xi < S(W,x) < E[x].

�

Hence for lotteries with bounded values buying and selling price are bounded below
by the minimal prize of the lottery and bounded above by the expected value of the
lottery.

Proof of proposition 5

Note first that Uα is unbounded from below if α ≥ 1 and bounded from below if
α < 1.

lim
x→0

Uα(x) =

{

− 1
1−α

, 0 < α < 1

−∞, α ≥ 1
(16)

By proposition 1 buying and selling price are necessarily greater than min(x). For
α ≥ 1 the utility function is unbounded from below, therefore from the definition it
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follows that: limW→0 B(W,x) = min(x) and limW→−min(x) S(W,x) = min(x). On
the other hand for 0 < α < 1 the utility function is bounded from below. Additionally,

W −B(W,x) is strictly increasing in W since ∂B(W,x)
∂W

< 1. Therefore the lower bound
for the domain of B(W,x) as a function of W is given by WL(x) such that:

EU(−min(x) + x) = U(WL(x))

It follows that limW→WL(x) B(W,x) = WL(x)+min(x). Similarly, the lower bound for
the domain of S(W,x) as a function of W is −min(x) and hence: limW→−min(x) S(W,x) =
WL(x) + min(x) since

EU(−min(x) + x) = U(−min(x) + S(−min(x),x))

= U(−min(x) + min(x) + U−1(EU(−min(x) + x)))

Proof. Now I prove the following statement:

∀α > 0, lim
W→∞

B(W,x) = lim
W→∞

S(W,x) = E[x]

Note that the Absolute Risk Aversion for CRRA utility function has the form Aα(W ) =
α
W

. Hence as W goes to infinity and α is bounded (no extreme risk aversion)
Aα(W ) tends to zero. This implies risk neutrality and hence limW→∞ S(W,x) =
limW→∞ B(W,x) = E[x] irrespective of relative risk aversion coefficient. �

Proof of lemma 5

I prove first that B′(W ) < 1. From the definition of buying price using implicit
function formula:

dB

dW
= 1 − U ′(W )

EU ′(W + x−B(W,x))

Since utility function is strictly increasing it must be that dB
dW

< 1.

Now I prove that S′(W −B(W )) = B′(W )
1−B′(W ) and S′(W −B(W )) > B′(W )

From lemma 13 equation (14), using chain rule of differentiation, I have B′(W ) =
S′(W −B(W ))(1 −B′(W )) Rearranging gives

S′(W −B(W )) =
B′(W )

1 −B′(W )

Since 0 < B′(W ) < 1 by the above argument and proposition 3, I obtain S′(W −
B(W )) > B′(W ).

Similarly I prove that B′(W + S(W )) = S′(W )
1+S′(W ) and B′(W + S(W )) < S′(W ).

Using equation (15) from lemma 13, I have S′(W ) = B′(W + S(W ))(1 + S′(W )) and
hence

B′(W + S(W )) =
S′(W )

1 + S′(W )

Since S′(W ) > 0 by proposition 3, I get B′(W + S(W )) < S′(W )

Now I will prove that S′(W ) = S(W )−B(W )
B(W ) for small positive S(W ).
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And by proposition 3 S(W ) > B(W ) > 0. So when S(W ) is small and positive, then
also B(W ) is small and positive. By lemma 13 equation (14), S(W−B(W )) = B(W ).
For small B(W ) using first order Taylor expansion B(W ) = S(W ) − dS

dW
B(W ) and

hence it follows that

S′(W ) =
S(W ) −B(W )

B(W )

Similarly, by lemma 13 equation (15), B(W +S(W )) = S(W ). Hence, for small S(W )
using first order Taylor expansion S(W ) = B(W ) + dB

dW
S(W ) and it follows that

B′(W ) =
S(W ) −B(W )

S(W )

Proof of proposition 7

Without loss of generality I assume that min(x) = 0. Fix x such that min(x) = 0.
By proposition 5, B(W ) and S(W ) are positive and hence by proposition 3 τ(W ) is
positive over the whole range. Notice that range of τ(W ) is determined by proposition
5. If the domain of S(W ) is denoted DS and the domain of B(W ) is denoted DB, then
the domain of τ(W ) is just DS ∩DB = DB. In particular, for α ≥ 1 the domain of
τ(W ) is the interval (0,∞) and for α ∈ (0, 1), the domain is the interval (WL(x),∞),
where WL(x) is defined as in proposition 5. To prove the proposition I have to check
whether the following expression is negative:

τ ′(W ) =
S(W )

B(W )

[

S′(W )

S(W )
− B′(W )

B(W )

]

(17)

From lemma 13 I have the following equations:

B(W ) = S(W −B(W ))

S(W ) = B(W + S(W ))

For the proof first order effects are not sufficient, but it turns out second order ef-
fects are. Therefore, by Taylor expansion of the second order I get from the above
equations:

B(W ) = S(W ) − S′(W )B(W ) + S′′(W )B2(W )

S(W ) = B(W ) + B′(W )S(W ) + B′′(W )S2(W )

I only need to check the difference from equation (17) which I can rewrite as follows
using the above Taylor expansions:

S′(W )

S(W )
− B′(W )

B(W )
=

S(W )−B(W )
B(W ) + S′′(W )B(W )

S(W )
−

S(W )−B(W )
S(W ) −B′′(W )S(W )

B(W )

=
S′′(W )B2(W ) + B′′(W )S2(W )

S(W )B(W )
< 0

where the last inequality follows from the fact that both B(W ) and S(W ) are concave
(by lemma 6) and nonnegative (by proposition 5).
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Proof of proposition 9

Take any non-degenerate lottery y with S(W,y) > B(W,y). Such a lottery exists
by proposition 3. I can find a sequence of real numbers which all are greater than
B(W,y) and smaller than S(W,y). I can then treat these numbers as a support for
a new lottery x. I assign probabilities to each of this numbers such that they sum to
one and are positive for at least two of these numbers (such that the resulting lottery
is non-degenerate). Suppose I choose n such numbers. By proposition 1 I can now
conclude that:

S(W,y) > max
i∈{1,...,n}

xi > E[x] > S(W,x) > B(W,x) > min
i∈{1,...,n}

xi > B(W,y)

And hence the result is proved.

Proof of proposition 10

Suppose that at any wealth W ∈ [w, w̄] the decision maker prefers lottery x to lottery
y in a direct choice but assigns higher certainty equivalent to lottery y. Given such
pattern of preferences it is easy to design an arbitrage strategy that extracts at least
W −w from this decision maker. Suppose W ∈ [w, w̄] is an initial wealth. Construct
a sequence Wi, i ∈ {1, 2, ..., n} such that:

• W0 = W

• Wi = W0 −
∑i

k=1 ǫk, ǫi > 0 i ∈ 1, 2, ..., n

• Wn ≥ w, and Wn+1 < w

• for i even (including 0) Wi+1 + x ≻ Wi + y

• for i odd: CE(Wi + x) < CE(Wi+1 + y)

Notice that such a sequence exists by monotonicity and continuity of preferences and
by properties of real numbers. Assume w.l.o.g. that W0 + y ≻ W0. The arbitrage
strategy is now the following:

0) Take y

1) Exchange y for x and pay me ǫ1

2) Exchange x for CE(W1 + x) −W1

3) Exchange CE(W1 + x) for CE(W1 + y) and pay me ǫ2

4) Exchange CE(W2 + y) −W2 for y

5) Exchange y for x and pay me ǫ3

6) Exchange x for CE(W3 + x) −W3

7) Exchange CE(W3 + x) for CE(W3 + y) and pay me ǫ4
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8) Exchange CE(W4 + y) −W4 for y

...............

The above arbitrage strategy extracts the amount of wealth equal to W −w from the
decision maker.

Proof of proposition 11

In what follows I will try to construct an arbitrage strategy to exploit the decision
maker and show that it is not possible. Given DARA utility function U , take x such
that B(W,x) < 0. I will examine only this case since in the other cases the proof is
trivial.
Suppose first, the decision maker initially has non-random position W . If the price b
for the lottery is bigger than B(W,x), the decision maker will not buy it. Hence, a
price which is a part of an arbitrage strategy must be smaller than B(W,x). Given
such price b, the decision maker buys the lottery. His new position is W + x − b.
If the price s is smaller than S(W − b,x), then the decision maker does not want
to sell. Hence a price which is a part of an arbitrage strategy must be bigger than
S(W − b,x). By proposition 3, I know that S is strictly increasing and b < B(W,x).
Therefore:

s > S(W − b,x) > S(W −B(W,x),x) = B(W,x) > b

where the equality follows from lemma 13 equation (14).
Suppose now, that the decision maker initially has a random position W + x. By the
same argument as above the price s, which is a part of an arbitrage strategy has to be
greater that S(W,x), otherwise the decision maker would not sell the lottery x. After
selling the lottery, the decision maker’s new position is W + s. The price b which is
a part of an arbitrage strategy has to be smaller than B(W + s,x). By lemma 5, I

know that ∂B(W,x)
∂W

≤ 1 for all W ≥ 0. Hence:

s− S(W,x) > B(W + s,x) −B(W + S(W,x),x)

By lemma 13 equation (15), I know that B(W + S(W,x),x) = S(W,x), and hence:

s > B(W + s,x) > b

That proves that with decision maker’s initial position equal to either W or W + x,
all arbitrage strategies have the property that s > b. However, this cannot be an
arbitrage strategy since it makes negative profit equal to b−s. This proves that there
are no arbitrage strategies.
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Abstract: In the paper we examine discrete time dynamic games in which the
global state variable changes in response to a certain function of the profile of
players’ decisions, called statistic, while the players form some expectations about
its future values based on the history. Besides, there are also players’ private state
variables.
A general model is built, encompassing both games with finitely many players as
well as games with infinitely many players. This model extends the class of games
with distorted information considered by the author in [20], in which there were
no private state variables and there were much stronger assumptions about the
statistic of players’ decisions considered. The notions of pre-belief distorted Nash
equilibrium (pre-BDNE), self-verification and belief distorted Nash equilibrium
(BDNE), defined already in [20], are applied to our wider class of games. The
relations between Nash equilibria, pre-BDNE and BDNE are examined as well as
the existence and properties of pre-BDNE.
A model of a financial market – a simplified stock exchange – is presented as an
example. Pre-BDNE using threshold prices are proposed. One of further results
in this example is potential self-verification of fundamental beliefs and beliefs in
infinite speculative bubbles.

Key words: games with continuum of players, n-player dynamic games, Nash
equilibrium, pre-belief distorted Nash equilibrium, subjective equilibrium, self-
verification of beliefs, financial markets.

Introduction

Motivation

The starting point of the research on games with distorted information were two
phenomena arising from the problems examined in earlier papers of the author: ex-
ploitation of common renewable resources, especially by a large groups of users, and
modelling financial markets.
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The problem of a common ecosystem in the context of pre-belief distorted Nash
equilibria (pre-BDNE) and self-verification of beliefs was examined by the author in
Wiszniewska-Matyszkiel [20]. A concept of belief distorted Nash equilibria (BDNE)
encompassing both pre-BDNE and self-verification of beliefs during the game was also
introduced.

An example which is especially illustrative for the class of games considered in
this paper, and which in fact forced extension of the class of games considered in
Wiszniewska-Matyszkiel [20], is a stock exchange.

In such an institution prices of shares are calculated by the equilibrating mecha-
nism given only a profile of players’ orders. However, players usually formulate various
prognostic techniques, often ridiculed by economists. Can such a behaviour with no
scientific explanation turn out to be rational? Why people still believe in things like
technical analysis?

Imperfect information, beliefs and game theory

There were various concepts taking beliefs into account, usually in games with stochas-
tic environment or randomness caused by using mixed strategies.

The first were Bayesian equilibria, introduced by Harsanyi [7].

That approach was continued by e.g. Battigalli and Siniscalchi [5] using the con-
cept of ∆-rationalizability being an iterative procedure of eliminating type-strategy
pairs in which the strategy is strictly dominated according to player’s beliefs or which
are contradicted by a history of play.

Another concept – subjective equilibria were introduced by Kalai and Lehrer [8]
and [9] (although the very idea of subjectivity in games appeared already in Aumann
[2] and [3]). They apply to repeated games. In those concepts every player maximizes
his expected payoff assuming some environment response function (so, in fact, cal-
culation of equilibrium is decomposed into separate decision making problems) and
non-falsification of his assumption during the game was added.

A comparison of these absolutely different concepts to the concepts of pre-BDNE
and BDNE, can be found in Wiszniewska-Matyszkiel [20].

Games with a measure space of players

The term games with a measure space of players is usually perceived as a synonym
of games with infinitely many players called also large games. In order to make it
possible to evaluate the influence of the infinite set of players on aggregate variables,
a measure is introduced on a σ-field of subsets of the set of players. However, the
notion games with a measure space of players encompasses also games with finitely
many players, where e.g. the counting measure on the power set may be considered.

Large games illustrate situations where the number of agents is large enough to
make a single agent from a subset of the set of players (possibly the whole set)
insignificant – negligible – when we consider the impact of his action on aggregate
variables while joint action of a set of such negligible players is not negligible. This
happens in many real situations: at competitive markets, stock exchange, or while we
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consider emission of greenhouse gases and similar global effects of exploitation of the
common global ecosystem.

Although it is possible to construct models with countably many players illustrat-
ing the phenomenon of this negligibility, they are very inconvenient to cope with.
Therefore simplest examples of large games are so called games with continuum of
players, where players constitute a nonatomic measure space, usually unit interval
with the Lebesgue measure.

The first attempts to use models with continuum of players are contained in Au-
mann [1] and Vind [13].

Some theoretical works on large games are Schmeidler [11], Mas-Colell [10], Balder
[4] and Wiszniewska-Matyszkiel [14].

The general theory of dynamic games with continuum of players is still being
developed, mainly by the author in [15] and [16].

Introducing a continuum of players instead of a finite number, however large, can
change essentially properties of equilibria and the way of calculating them even if the
measure of the space of players is preserved in order to make the results comparable.
Such comparisons were made by the author in [17] and [18].

Formulation of the model

A game with distorted information G is a tuple of the following objects
((I,=, λ),T, X, {Wi}i∈I, (D,D), {Di}i∈I, U, φ, {κi}i∈I, {Pi}i∈I, {Gi}i∈I, {Bi}i∈I, {ri}i∈I),
whose interpretation and properties will be defined in the sequel.

The set of players is denoted by I. In order that the definitions of the paper
encompassed both games with finitely many players as well as games with infinitely
many players we introduce a structure on I consisting of a σ-field = of its subsets and
a measure λ on it.

The game is dynamic, played over a discrete time set T, without loss of generality
T = {t0, t0+1, . . . , T} or T = {t0, t0+1, . . .}, which, for uniformity of notation, will be
treated as T = +∞. We introduce also the symbol T denoting {t0, t0 + 1, . . . , T + 1}
for finite T and equal to T in the opposite case.

The game is played in a global system with the set of states X. The state of the
global system (state for short) changes over time in response to players’ decisions,
constituting a trajectory X, whose equation will be stated in the sequel. The set of
all potential trajectories – functions X : T→ X – will be denoted by X.

Besides the global system, player i has his private state variable with values in a set
of private states of player i denoted by Wi. By W we denote a superset containing
all Wi. The vector of private state variables also changes in response to players’
decisions, constituting a trajectory W : T→WI, whose equation will be stated in the
sequel.

At each time t given state x and his private state wi player i chooses a decision
from his available decision set Di(t, x, wi) ⊂ D – the set of (potential) actions. These
available decision sets of player i constitute the correspondence of available decision
sets of player i Di : T × X ×W ( D, while all available decision sets constitute a
correspondence of available decision sets D : I × T × X ×W ( D with nonempty
values. We shall also need a σ-field of subsets of D, denoted by D.
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For any time t, state x and a vector of private states w ∈ WI we call any D-
measurable selection δ from the correspondence i ( D(i, t, x, wi) a static profile
available at t, x and w. The set of all static profiles available at t, x and w is denoted
by Σ(t, x, w). The union of all the sets of static profiles available at various t, x and
w is denoted by Σ.

The definitions of a strategy (dynamic strategy) and a profile (dynamic profile)
will appear in the sequel, since first we have to define the domains of these functions.

The influence of a static profile on the global state variable is via its statistic.
Without loss of generality the same statistic is the only parameter besides player’s
own strategy influencing the evolution of his private state variable and the value of

his payoff. Formally, a statistic is a function U : Σ × X onto→ U for a set U called

the set of profile statistics and such that U(δ, x) = γ
([∫

I gk(i, δ(i), x)dλ(i)
]
k∈K

)
for

a collection of functions {gk : I × D × X → R}k∈K which are = ⊗ D-measurable for
every x ∈ X and for every k in the set of indices K, and a function γ : RK → U. If
∆ : T→ Σ represents choices of profiles at various time instants and X is a trajectory
of the global system, then by U(∆, X) we denote the function u : T → U such that
u(t) = U(∆(t), X(t)). The set of all such functions will be denoted by U.

We do not assume any kind of continuity of the function γ. In the case of modelling
financial markets it is by assumption discontinuous – it is defined, as in section , as
a point at which a maximum of a kind of lexicographic ordering on a subset of RK is
attained.

This class of statistic functions is a generalization of the class of statistic functions
used in the previous paper Wiszniewska-Matyszkiel [20], in which K was finite and γ
was absent.

Obviously, in the case of games with finitely many players with finite dimensional
strategy set, the statistic can be the profile itself.

In a model of stock exchange an obvious candidate for such a statistic is the market
price of the asset considered (in the example we shall see that another two coordinates
will be useful).

Given a function u : T → U, representing the statistics of profiles chosen at
various time instants, the global system evolves according to the equation X(t +
1) = φ(X(t), u(t)) with the initial condition X(t0) = x̄. We call such a trajectory
corresponding to u and denote it by Xu. If u = U(∆, Xu), where ∆ : T → Σ
represents a choice of static profiles at various time instants, then, by a slight abuse
of notation, we shall denote the trajectory corresponding to u by X∆ and call it
corresponding to ∆ and instead of U(∆, X∆) we write U(∆) – the statistic of ∆.

Given functions u : T → U and d : T → D, representing, correspondingly,
the subsequent statistics of static profiles chosen and subsequent decisions of player
i, the private system of player i evolves according to the equation Wi(t + 1) =
κi(Wi(t), d(t), Xu(t), u(t)) with the initial condition Wi(t0) = w̄i. We call such a

trajectory of private system corresponding to d and u and denote it by W d,u
i . If a

function ∆ : T → Σ represents choices of profiles at various time instants, then the

trajectory of private state variables W∆ defined by
(
W∆

)
i

= W
∆i,U(∆)
i is called cor-

responding to ∆. This is another generalization of [20] in which only the global state
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variable was considered.

At each time t and the state of the global system x and the vector of players’ private
states w players get instantaneous payoffs. The instantaneous payoff of player i is a
function Pi : D× U× X×W→ R ∪ {−∞}.

Besides, in the case of finite time horizon players get also terminal payoffs (after
termination of the game) defined by the functions Gi : X ×W → R ∪ {−∞}. For
uniformity of notation we take Gi ≡ 0 in the case of infinite time horizon.

Players observe some histories of the game, but not the whole profiles. At time t
they observe the states X(s) for s ≤ t and the statistics u(s) of chosen static profiles
for time instants s < t. Therefore the set of histories at time t equals Xt−t0+1×Ut−t0 .
In order to simplify notation we introduce the set of all, possibly infinite, histories of
the game H = XT−t0+2×UT−t0+1 and for such a history H ∈ H we denote by H|t the
actual history at time t, while by H(t) the pair (X(t− 1), u(t)).

Given a history observed at time t, H|t, players formulate their suppositions about
future values of u and X, depending on their decision a made at time t. This is
formalized as a multivalued correspondence of belief of player i, Bi : T×D×H( H
with nonempty values. To reflect the fact that beliefs are based only on observed
history, we assume that beliefs Bi(t, a,H) are identical for histories H with identical
H|t and that for all H ′ ∈ Bi(t, a,H) we have H ′|t = H|t. For simplicity of some
further notation we also assume that for every history H ′ ∈ Bi(t, a,H) and H ′′ ∈ H
differing from H ′ only by u′(t) 6= u′′(t) we have also H ′′ ∈ Bi(t, a,H), which means
that the belief correspondence codes no information about the current value of u.

In our problem we allow players to have very compound closed loop strategies –
dependent on time instant, state, private state and belief at the actual history of the
game at this time instant. Formally, a (dynamic) strategy of player i is a function
Si : T × X ×W × H → D such that for each time t, state x, a private state wi and
history H we have Si(t, x, wi, H) ∈ Di(t, x, wi).

Such choices of players’ strategies constitute a function
S : I × T × X ×W × H → D. The set of all strategies of player i will be denoted by
Si.

For simplicity of further notation, for a choice of strategies S = {Si}i∈I we can
consider the open loop form of it SOL : T→ Σ, defined by
SOLi (t) = Si(t,X(t),Wi(t), H), where H is the history of the game resulting from
choosing S. It is well defined, whenever the history is well defined (note that the
statistic was defined only for measurable selections from players’ strategy sets, there-
fore the statistics at time t is well defined if the function SOL· (t− 1) is measurable).
Therefore, we restrict the notion (dynamic) profile (of players’ strategies) to choices
of strategies such that for every t the function SOL· (t) is a static profile available at

t ∈ T, XSOL(t) and WSOL(t). The set of all dynamic profiles will be denoted by Σ.
Since the choice of a dynamic profile S determines the history of the game, we shall
denote this history by HS .

If the players choose a dynamic profile S, then the actual payoff of player i
Πi : Σ → R in the game depends only on the actions actually chosen by players
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at subsequent time instants, i.e. the open loop form of the profile, and it is equal to

Πi(S) =
∑T
t=t0

Pi

(
SOLi (t), U

(
SOLi (t)

)
, XSOL(t),WSOL

i (t)
)
·
(

1
1+ri

)t−t0
+

+Gi

(
XSOL(T + 1),WSOL

i (T + 1)
)
·
(

1
1+ri

)T+1−t0 ,

where ri > 0 is called a discount rate.
However, players do not know the whole profile, therefore instead of the actual

payoff at each future time instant they can use in their calculations the anticipated
payoff functions Πe

i : T×Σ→ R corresponding to their beliefs at the corresponding
time instants (the world ”anticipated” is used in the colloquial meaning of ”expected”,
while the world ”expected” is not used in order not to cause associations with expected
value with respect to some probability distribution).
This function for player i is defined by

Πe
i (t, S) = Pi

(
SOLi (t), U

(
SOLi (t)

)
, XSOL(t),WSOL

i (t)
)

+

+Vi(t+ 1,WSOL

i (t+ 1), Bi(t, S
OL
i (t), HS)) · 1

1+ri
,

where Vi : T ×Wi × (P(H)\∅)) → R, (the function of guaranteed anticipated value)
represents the present value of the minimal future payoff given his belief correspon-
dence and assuming player i chooses optimally in the future.

Formally, for time t, private state wi and belief B ∈ P(H)\∅ we define

Vi(t, wi,B) = inf
H∈B

vi(t, wi, H),

where the function vi : T×Wi × H → R is the present value of the future payoff of
player i along a history assuming he chooses optimally in the future: for t ∈ T we
define it by

vi(t, wi, (X,u)) = supd:T→D d(τ)∈Di(τ,X(τ),Wi(τ)) for τ≥t∑T
τ=t

Pi(τ,d(τ),u(τ),X(τ),Wi(τ))

(1+ri)
τ−t + Gi(X(T+1),Wi(T+1))

(1+ri)
T+1−t

for Wi defined by Wi(t) = wi and
Wi(τ + 1) = κ(Wi(τ), d(τ), X(τ), u(τ)) for τ < T ;
vi(T + 1, wi, H) = Gi (X(T + 1), wi).

Note that such a definition of anticipated payoff is inspired by the Bellman equation
for calculation of best responses of players to the strategies of the others. For various
versions of this equation see e.g. Blackwell [6] or Stokey and Lucas [12].

We also introduce the symbol Gt,H,w (for H = (X,u)), called subgame with dis-
torted information at t, x and w and denoting the game with the set of players I, the
sets of their strategies Di(t,X(t), wi) and the payoff functions Π̄e

i (t,H, ·) defined by
Π̄e
i (t,H, δ) = Πe

i (t, S) for a profile S such that S(t) = δ and HS |t = H|t (note that
the dependence of Πe

i (t, ·) on the profile is restricted to its static profile at time t only
and the history H|t, therefore the definition does not depend on the choice of specific
S from this class).
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Nash equilibria and pre-belief distorted Nash equilibria

One of the basic concepts in game theory, Nash equilibrium, assumes that every
player (almost every in case of large games with a measure space of players) chooses
a strategy which maximizes his payoff given the strategies of the remaining players.

In order to simplify the notation we shall need the following abbreviation: for a
profile S and a dynamic strategy d of player i the symbol Si,d denotes the dynamic
profile such that Si,di = d and Si,dj = Sj for j 6= i.

Definition 1. A profile S is a Nash equilibrium if for a.e. i ∈ I and for every strategy
d of player i we have Πi(S) ≥ Πi(S

i,d).

However, the assumption that a player knows the strategies of the remaining play-
ers or at least the statistic of these strategies which influences his payoff, is usually
not fulfilled in real life situations. Moreover, even details of the other players’ pay-
off functions or available strategy sets are sometimes not known precisely, while the
other players’ information at a specific situation is usually unknown. This is especially
visible at financial markets.

Therefore, given their beliefs, players maximize their anticipated payoffs.

Definition 2. A profile S is a pre-belief distorted Nash equilibrium (pre-BDNE for
short) if for a.e. i ∈ I, and every strategy d of player i and every t ∈ T we have
Πe
i (t, S) ≥ Πe

i (t, S
i,d).

If we use the notation introduced in the formulation of the model, then a profile S
is a pre-BDNE in G if at every time t the static profile SOL(t) is a Nash equilibrium
in Gt,HS ,WS(t).

In order to state an existence result for games with a nonatomic space of players
we have to introduce the following notation.
Let e(δ, x) =

[∫
I gk(i, δ(i), x)dλ(i)

]
k∈K. The functions P̃i(a, e, x, wi), κ̃i(wi, a, x, e)

and φ̃(x, e) will denote Pi(a, γ(e), x, wi), κi(wi, a, x, γ(e)) and φ(x, γ(e)), respectively.

Theorem 3. Existence of pre-BDNE
Let (I,=, λ) be a nonatomic measure space and let K be finite, D = Rn, W =

Rm with the σ-fields of Borel subsets and let the function I 3 i 7→ w̄i be mea-
surable. Assume that for every t, x, wi, H and for almost every i the following
continuity-compactness assumptions hold: the sets Di(t, x, wi) are compact, the func-

tions P̃i(a, e, x, wi) and
Vi(t, κ̃i(wi, a, x, e), Bi(t, a,H)) are upper semicontinuous in (a, e) jointly while for ev-
ery a they are continuous in e and for all k the functions gk(i, a, x) are continu-
ous in a for a ∈ Di(t, x, wi) and assume that for every t, x, e, H the following
measurability assumptions hold: the graph of D·(t, x, ·) is measurable and the fol-

lowing functions defined on I ×W × D are measurable (i, w, a) 7→ P̃i(a, e, x, w), ri,
Vi(t, κ̃i(w, a, x, e), Bi(t, a,H)), κ̃i(w, a, x, e) and gk(i, a, x) for every k. Moreover, as-
sume that for every k and x there exists an integrable function Γ : I→ R such that
for every w and every a ∈ Di(t, x, w) |gk(i, a, x)| ≤ Γ(i). Under these assumptions
there exists a pre-BDNE for B.
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Proof. It is a conclusion from one of theorems on the existence of pure strategy Nash
equilibria in games with continuum of players: Wiszniewska-Matyszkiel [14] theorem
3.1 or Balder [4] theorem 3.4.1 applied to the sequence of games Gt,H,w for any history
H such that H|t is the actual history of the game observed at time t while w describes
the private states of players at time t.

In order to apply one of those theorems we first have to prove measurability of
the function i 7→ wi(t) given a measurable initial data and a dynamic profile, which
is immediate. It implies that the graph of D·(t, x, w·) (in I × D) is measurable and

the following functions defined on I × D are measurable: (i, a) 7→ P̃i(a, e, x, wi), ri,
Vi(t, κ̃i(wi, a, x, e), Bi(t, a,H)). �

Now we return to show some properties of pre-BDNE for a special kind of belief
correspondence – the perfect foresight.

Definition 4. A belief correspondence Bi of player i is the perfect foresight at a
profile S, if for every t, Bi(t, S

OL
i (t), HS) = {HS}.

Theorem 5. Equivalence between pre-BDNE for perfect foresight and Nash
equilibria

Let (I,=, λ) be a nonatomic measure space and let supS∈Σ Πe(t, S) and infS∈Σ Πe(t, S)
be finite for every t.

a) Let S̄ be a Nash equilibrium profile. If B is the perfect foresight at a profile
S̄ and the profiles S̄i,d for a.e. i and every strategy d of player i, then for every
t S̄OL(t) ∈ Argmaxa∈Di(t,X(t),Wi(t)) Π̄e

i (t,H
S̄ , (S̄OL(t))i,a), where the symbol δi,a for

a static profile δ denotes the profile δ with strategy of player i changed to a, and
S̄OLi |{t + 1, . . . , T} are consistent with the results of the player’s optimizations used
in the definition of vi, i.e. S̄OLi is an element of the set

Argmaxd:T→D d(τ)∈Di(τ,X(τ),Wi(τ)) for τ≥t
∑T
τ=t Pi(d(τ), u(τ), X(τ),Wi(τ))·

(
1

1+ri

)τ−t
+

Gi (X(T + 1),Wi(T + 1)) ·
(

1
1+ri

)T+1−t
.

b) Every Nash equilibrium profile S̄ is a pre-BDNE for a belief correspondence
being the perfect foresight at S̄ and the profile S̄i,d for a.e. i and every strategy d of
player i.

c) Let S̄ be a pre-BDNE for a belief B. If B is the perfect foresight at S̄ and the
profiles S̄i,d for a.e. i and every strategy d of player i, then choices of players are
consistent with the results of their optimizations used in definition of vi.

d) If a profile S̄ is a pre-BDNE for a belief B being the perfect foresight at this S̄
and S̄i,d for a.e. player i and his every strategy d, then it is a Nash equilibrium.

Proof. The proof is similar to analogous result in [20]. Nevertheless, introduction of
private state variables makes it much more complicated.

First note that if the measure λ is nonatomic, then a choice of strategy by a single
player influences neither u nor X. It only influences player’s private state variable.
Therefore, instead of looking for the best response to the profiles of the remaining
players’ strategies it is enough to look for best responses to the statistic of this profile,
equal to the statistic of the whole profile.
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In all the cases we shall consider player i outside the set of measure 0 of players
for whom the condition of maximizing payoff or expected payoff does not hold.

a) We shall prove that along the perfect foresight path the equation for the ex-
pected payoff of player i becomes the Bellman equation for optimization of the actual
payoff by player i and Vi coincides with the value function.

Formally, given the profile of the strategies of the remaining players coinciding
with S̄, with the statistic u and trajectory of the global system X, let us define the
value function for the decision making problem of player i, Ṽi : T×W→ R.

Ṽi(t, wi) =

= supd:T→D d(τ)∈Di(τ,X(τ),Wi(τ)) for τ≥t
∑T
τ=t Pi(d(τ), u(τ), X(τ),Wi(τ))·

(
1

1+ri

)τ−t
+

+Gi (X(T + 1),Wi(T + 1)) ·
(

1
1+ri

)T+1−t
,

whereWi is defined recursively byWi(t) = wi andWi(τ+1) = κ(Wi(τ), d(τ), X(τ), u(τ)).

In the finite horizon case Ṽi fulfills the Bellman equation

Ṽi(t, wi) = supa∈Di(t,X(t),wi) Pi(a, u(t), X(t), wi)+Ṽi(t+1, κi(wi, a,X(t), u(t)))·
(

1
1+ri

)
with the terminal condition
Ṽi(T + 1, wi) = Gi (X(T + 1), wi) .

In the infinite horizon case Ṽi also fulfills the Bellman equation, but the terminal
condition sufficient for the solution of the Bellman equation to be the value function is

different. The simplest one is limt→∞ Ṽi(t,Wi(t))·
(

1
1+ri

)t−t0
= 0 for every admissible

Wi (see e.g. Blackwell [6] or Stokey and Lucas [12]). In this paper it holds by the
assumption that the payoffs are bounded.

If we write the formula for Ṽi from the definition in the r.h.s. of the Bellman
equation, then we get

Ṽi(t, wi) = supa∈Di(t,X(t),wi) Pi(a, u(t), X(t), wi) +
(

1
1+ri

)
·

supd:T→D d(τ)∈Di(τ,X(τ),Wi(τ)) for τ≥t+1

∑T
τ=t+1 Pi(d(τ), u(τ), X(τ),Wi(τ))·

(
1

1+ri

)τ−t−1

+Gi (X(T + 1),Wi(T + 1)) ·
(

1
1+ri

)T+1−t
subject to

Wi(t) = wi, Wi(t+1) = κ(Wi(t), a,X(t), u(t)) andWi(τ+1) = κ(Wi(τ), d(τ), X(τ), u(τ))
for τ > t.

Note that the last supremum is equal to Ṽi(t+ 1, κi(wi, a,X(t), u(t))), but also to
vi(t+ 1, κ(wi, a,X(t), u(t)), (X,u)).
Since (X,u) is the only history in the belief correspondence along both S̄ and all
profiles S̄i,d, it is also equal to Vi(t+ 1, κ(wi, a,X(t), u(t)), {(X,u)}).

Therefore Ṽi(t, wi) = supa∈Di(t,X(t),wi) Pi(a, u(t), X(t), wi)+

+
(

1
1+ri

)
· Vi(t+ 1, κ(wi, a,X(t), u(t)), Bi(t, S̄

OL
i (t), H S̄)) =

= supa∈Di(t,X(t),wi) Πe
i (t, S̄

i,dt,a), where by dt,a we denote such a strategy of player i

that d(t,X(t), wi, H
S̄) = a and at any other point of the domain it coincides with S̄i.

Let us note that for all t the set

Argmaxd:T→D d(τ)∈Di(τ,X(τ),Wi(τ)) for τ≥t
∑T
τ=t Pi(d(τ), u(τ), X(τ),Wi(τ))·

(
1

1+ri

)τ−t
+
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+Gi (X(T + 1),Wi(T + 1)) ·
(

1
1+ri

)T+1−t
is both the set of open loop forms of strate-

gies of player i being best responses of player i to the strategies of the remaining play-
ers along the profiles S̄ and S̄i,d and the set at which the supremum in the definition
of the function vi for a history being the perfect foresight along S̄ and S̄i,d is attained.
We only have to show that S̄i(t) ∈ Argmaxa∈Di(t,X(t),wi) Π̄e

i (t,H
S̄ , S̄OL(t)i,a).

By the definition this set is equal to
Argmaxa∈Di(t,X(t),wi) Pi(a, u(t), X(t), wi)+

+
(

1
1+ri

)
· Vi(t+ 1,W S̄OL

i (t+ 1), Bi(t, S̄
OL
i (t), H S̄)) =

= Argmaxa∈Di(t,X(t),wi) Pi(t, a, u(t), X(t), wi)+
(

1
1+ri

)
·Ṽi(t+1,W S̄OL

i (t+1)), which,

by the Bellman equation, defines the value of the best response at time t, which con-
tains S̄i(t), since S̄ is an equilibrium profile.

b) An immediate conclusion from a)

d) Given S̄, we consider Ṽi defined as in the proof of a).
By the definition of pre-BDNE
S̄i(t) ∈ Argmaxa∈Di(t,X(t),wi) Π̄e(t,H S̄ , S̄OL(t)i,a) =
= Argmaxa∈Di(t,X(t),wi) Pi(a, u(t), X(t), wi)+

+
(

1
1+ri

)
· Vi(t+ 1, κ(wi, a,X(t), u(t)), Bi(t, S̄

OL
i (t), H S̄)) =

= Argmaxa∈Di(t,X(t),wi) Pi(a, u(t), X(t), wi)+

+
(

1
1+ri

)
· Vi(t+ 1, κ(wi, a,X(t), u(t)), {(X,u)}) =

= Argmaxa∈Di(t,X(t),wi) Pi(t, a, u(t), X(t), wi)+

+
(

1
1+ri

)
·maxd:T→D d(τ)∈Di(τ,X(τ),Wi(τ)) for τ≥t+1

∑T
τ=t+1 Pi(d(τ), u(τ), X(τ),Wi(τ))

·
(

1
1+ri

)τ−t
+Gi (X(T + 1),Wi(T + 1)) ·

(
1

1+ri

)T+1−t
(for Wi defined by Wi(t) = wi

and Wi(τ + 1) = κ(Wi(τ), d(τ), X(τ), u(τ)) for τ > t)

= Argmaxa∈Di(t,X(t),wi) Pi(a, u(t), X(t), wi) +
(

1
1+ri

)
· Ṽi(t+ 1, κ(wi, a,X(t), u(t))).

If we add the fact that
Ṽi(t, wi) = maxa∈Di(t,X(t),wi) Pi(a, u(t), X(t), wi)+

(
1

1+ri

)
·Ṽi(t+1, κ(wi, a,X(t), u(t))),

then, by the Bellman condition, the set

Argmaxa∈Di(t,X(t),wi) Pi(a, u(t), X(t), wi) +
(

1
1+ri

)
· Ṽi(t+ 1, κ(wi, a,X(t), u(t))) rep-

resents the value of the optimal choice of player i at time t, given X, u and wi. Since
we have this property for a.e. i, the profile defined in this way is a Nash equilibrium.

c) By d) and a). �

We can also prove an equivalence theorem for repeated games – dynamic games
without state variables, which can be modelled as both global and private state sets
being singletons.
Not surprisingly, analogous theorem from Wiszniewska-Matyszkiel [20] can be cited
and the proof does not change.

Theorem 6. Let G be a repeated game with a belief correspondence not dependent on
players’ own strategies in which payoffs and anticipated payoffs are bounded for a.e.
player.
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a) If (I,=, λ) is a nonatomic measure space, then a profile S is a pre-BDNE if and
only if it is a Nash equilibrium.

b) Every profile S with strategies of a.e. player being independent of histories is a
pre-BDNE if and only if it is a Nash equilibrium.

Self-verification of beliefs and BDNE

The concept of pre-BDNE lacks a kind of guarantee that after some stage of the game
players can still have the same beliefs, i.e. that beliefs are not contradicted by players’
observations.

First we state what we mean by potential and perfect self-verification.

Definition 7. a) A collection of beliefs {Bi}i∈I is perfectly self-verifying if for every
pre-BDNE S̄ for B for a.e. i ∈ I we have H S̄ ∈ Bi(t, S̄OLi (t), H S̄).

b) A collection of beliefs {Bi}i∈I is potentially self-verifying if there exists a pre-
BDNE S̄ for B such that for a.e. i ∈ I we have H S̄ ∈ Bi(t, S̄OLi (t), H S̄).

c) A collection of beliefs {Bi}i∈J of a set of players J is perfectly self-verifying
against beliefs of the other players {Bi}i∈\J if for every pre-BDNE S̄ for {Bi}i∈I for

a.e. i ∈ J we have H S̄ ∈ Bi(t, S̄OLi (t), H S̄).
d) A collection of beliefs {Bi}i∈J of a set of players J is potentially self-verifying

against beliefs of the other players {Bi}i∈\J if there exists a pre-BDNE S̄ for {Bi}i∈I
such that for a.e. i ∈ J we have H S̄ ∈ Bi(t, S̄OLi (t), H S̄).

And, finally, the notion of BDNE.

Definition 8. a) A profile S̄ is a belief-distorted Nash equilibrium (BDNE) for a
collection of beliefs B = {Bi}i∈I if S̄ is a pre-BDNE for B and for a.e. i and every t
H S̄ ∈ Bi(t, S̄OLi (t), H S̄)

b) A profile S̄ is a belief-distorted Nash equilibrium (BDNE ) if there exists a
collection of beliefs B = {Bi}i∈I such that S̄ is a BDNE for B.

Remark 9. Theorems 5 and 6 remain valid with pre-BDNE replaced by BDNE. �

Simplified stock exchange

Here we present an example of games with distorted information – a model of stock
exchange simplified in order to avoid enormous complexity inherent to real world large
systems. More complex models of stock exchange with more than one asset sold,
and coping with the problem of distorted information and self-verification of various
prognostic techniques against another prognostic techniques, including random ones,
were considered by the author in [19].

We examine a model of stock exchange with two assets: money m of interest rate r
and a share s traded at the stock exchange. This share pays a deterministic dividend
{At}t∈N. Both assets are infinitely divisible. The transaction cost is linear with a
rate C > 0. The horizon of players’ optimization is T = +∞.

The set of players is either the unit interval with the Lebesgue measure or a large
finite set with the normalized counting measure.
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Each player i has an initial portfolio of assets (m̄i, s̄i) ∈ R2
+ with at least one coor-

dinate strictly positive. Portfolios constitute private states of players wi = (mi, si) ∈
R2

+. Prices are, for simplicity of notation, positive integers.
We define the state of the global system being the price at the previous period

X(t) = p(t− 1), with p(t0 − 1) > 0 given. This auxiliary state variable is introduced,
since price at time t, as we shall see in the sequel, depends on previous price.

At each stage players state their bid and ask prices pBi , p
S
i ∈ N – at which they

want to buy or sell, respectively, and which constitute their decisions with the available
decisions correspondence Di ≡ D = N2, where the first coordinate denotes pBi while
the second pSi . These, together with players’ actual portfolios, constitute orders – in
their orders players buy or sell as much as they can. There are no other constraints
for orders. The statistic function will be three dimensional with the actual market
price as the first coordinate. The market price p is a function of players’ decisions as
follows.

Given a profile of players strategies at a fixed time instant, first the aggregate
supply and demand functions AS : N→ R+ and AD : N→R+ are calculated. The
aggregate (or market) supply at a price q is defined by

AS(q) =

∫
I
si(t) · 1pSi (t)≤qdλ(i),

while the aggregate (or market) demand at a price q is defined by

AD(q) =

∫
I

mi

q · (1 + C)
· 1pBi (t)≥qdλ(i) for q > 0,

AD(0) = +∞,

where the symbol 1condition denotes 1 when the condition is fulfilled and 0 otherwise.
If we consider a finite set of players with the counting measure, then the integral is
simply the sum.

The market mechanism considered in the paper at each time t ≥ t0 returns a price,
called the market price, contained in the set [(1−h) ·p(t−1), (1+h) ·p(t−1)]∩N\{0},
where h > 0, being a constraint for variability of prices, is large compared to r.

The procedure of calculating the market price operates as follows.
First we look for a strictly positive price maximizing a lexicographic order with cri-
teria, starting from the most important:
1. maximizing volume i.e. the function V ol(q) = min(AS(q), AD(q));
2. minimizing disequilibrium i.e. the function Dis(q) = |AS(q)−AD(q)|;
3. minimizing the number of shares in selling orders with price limit less then q and
buying orders with price limits higher than q i.e. the functionN(q) = (AS(q − 1)−AD(q))

+
+

(AD(q + 1)−AS(q))
+

, where the symbol (x)+ = max(0, x);
4. minimizing the absolute value of the difference between the q and the previous price
i.e. |q − p(t− 1)|.
If the resulting q is not in the interval [(1 − h) · p(t − 1), (1 + h) · p(t − 1)], then we
project it on [(1− h) · p(t− 1), (1 + h) · p(t− 1)] ∩ N\{0}.
The resulting unique price constitutes the first of three coordinates of the statistic
function.
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The procedure is copied from the regulations of the Warsaw Stock Exchange for
the single price auction system, but it is used also at other stock exchanges.

In order that the model was complete, in case when the supply at the market price
is not equal to the demand, each of the orders on the excess side is reduced at the
same rate.

The buying orders are multiplied by

BR(t) =

{
1 if AD(p(t)) ≤ AS(p(t)),
AS(p(t))
AD(p(t)) otherwise,

while the selling orders by

SR(t) =

{
1 if AD(p(t)) ≥ AS(p(t)),
AD(p(t))
AS(p(t)) otherwise.

These BR and SR constitute the remaining two coordinates of the statistic.
The instantaneous payoff is equal to the change of money stock exactly at the time

instant considered: Pi(t, (p
B
i , p

S
i ), (p,BR, SR), x, (mi, si)) =

= SR · si · p · (1− C) · 1pSi ≤p −BR ·mi · 1pBi ≥p +At · si.
The payoff at a profile S =

{
(pBi , p

S
i ) : T→ N2

}
i∈I is, therefore, equal to

Πi(S) =
∑∞
t=t0

SR(t)·si(t)·p(t)·(1−C)·1
pS
i

(t)≤p(t)
−BR(t)·mi(t)·1pB

i
(t)≥p(t)

+At·si(t)
(1+r)t .

Now we can complete the definition of our game by defining the behaviour of the
state variables.

The global system fulfills X(t+ 1) = p(t), which determines φ in the obvious way,
while the private state variables change as follows.

Money fulfil mi(t+ 1) = (1 + r)·
(
mi(t)(1−BR(t) · 1pBi (t)≥p(t))+

+si(t) · (SR(t) · p(t) · (1− C) · 1pSi (t)≤p(t) +At)
)

,

while shares si(t+1) = si(t)−SR(t) ·si(t) ·1pSi (t)≤p(t) +BR(t) · mi(t)
(1+C)·p(t) ·1pBi (t)≥p(t),

which defines the functions κi.
In this game we shall consider various belief correspondences.

Threshold prices and pre-BDNE for simplified stock exchange

For a history H and a time instant t we define p̄Si (t) ∈ N, called the selling threshold
price of player i who has si(t) > 0, as the minimum of the prices such that for all
histories in the current belief the anticipated payoff for selling at this price is not less
then the anticipated payoff for not selling at all at time t, and p̄Bi (t) ∈ N ∪ {+∞},
called the buying threshold price of player i who has mi(t) > 0, as the maximum of
the prices such that for all histories in the current belief the anticipated payoff for
buying at this price is not less then the anticipated payoff for not buying at all at
time t.

Formally, we have the following definition.

Definition 10. Threshold prices
Let us consider a time instant t, a history H and player i who has wi = Wi(t)

resulting from some previous realization of the profile. We introduce an auxiliary
anticipated payoff Π̂e

i which does not take into account player’s influence on the
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current statistic of the profile Π̂e
i : T×H× N× D×W→ R by

Π̂e
i (t,H, p, a, wi) = Pi (t, a, (p, 1, 1), x, wi)+ Vi(t+1,κi(wi,a,x,(p,1,1)),Bi(t,a,H))

1+r for some x.
Note that in our case the functions considered are independent on x, so the definition
is correct.

If player i has si(t) > 0, then the price p̄Si (t) ∈ N ∪ {+∞} defined by

p̄Si (t) = min{pSi ∈ N\{0} : Π̂e
i

(
t,H, p,

(
pBi , p

S
i

)
, wi
)
≥ Π̂e

i

(
t,H, p,

(
pBi , p+ 1

)
, wi
)

for
every pBi , p ∈ N} if this set is nonempty,
p̄Si (t) = +∞ otherwise,
is called the selling threshold price of player i.

If player i has mi(t) > 0, then the price p̄Bi (t) ∈ N ∪ {+∞} defined by

p̄Bi (t) = max{pBi ∈ N : Π̂e
i

(
t,H, p,

(
pBi , p

S
i

)
, wi
)
≥ Π̂e

i

(
t,H, p,

(
p− 1, pSi

)
, wi
)

for
every pSi , p ∈ N}
is called the buying threshold price of player i. This definition is correct because the
set is nonempty – since the inequality holds for pBi = 0.

We are interested in the existence and properties of the threshold prices.

Proposition 11. Consider a belief B independent on players’ own decisions and the
game Gt,HS ,W (t) with W (t) such that for player i mi(t), si(t) > 0 and∫
I\{i}mj(t)dλ(j),

∫
I\{i} sj(t)dλ(j) > 0.

a) Both p̄Bi (t) and p̄Si (t) are well defined and either p̄Bi (t) < p̄Si (t) or they are both
+∞.

b) Consider profiles of the form δ =
{

(pBi (t), pSi (t))
}
i∈I.

(i) If pSi (t) < p̄Si (t), p̄Si (t) ≥ (1− h) · p(t− 1) and pSi (t) ≤ (1 + h) · p(t− 1),

then Π̄e
i

(
t,HS , δ

)
≤ Π̄e

i

(
t,HS , δi,(p

B
i (t),p̄Si (t))

)
, with strict inequality for at least one

δ.
(ii) If pBi (t) > p̄Bi (t), p̄Bi (t) ≤ (1 + h) · p(t− 1) and pBi (t) ≥ (1− h) · p(t− 1),

then Π̄e
i

(
t,HS , δ

)
≤ Π̄e

i

(
t,HS , δi,(p̄

B
i (t),pSi (t))

)
, with strict inequality for at least one

δ.
c) Assume a continuum of players and profiles of the form δ =

{
(pBi (t), pSi (t))

}
i∈I.

For every δ we have Π̄e
i

(
t,HS , δ

)
≤ Π̄e

i

(
t,HS , δi,(p

B
i (t),p̄Si (t))

)
and

Π̄e
i

(
t,HS , δ

)
≤ Π̄e

i

(
t,HS , δi,(p̄

B
i (t),pSi (t))

)
.

Sketch of the proof a) First note that Vi is strictly increasing in both si and
mi.

Assume that the inequality does not hold at time t. This means that there exists
a price p̄ ∈ [p̄Si (t), p̄Bi (t)].

Let player i choose his threshold prices. If the market price is p̄, then player i
both buys and sells at time t and pays commission twice. So he can increase his
anticipated payoff Π̂e by either inreasing pSi (t) or by decreasing pBi (t). To prove this,
we can increase the set of possible strategies allowing players to buy or sell using only
a fraction of their assets and change the model respectively. Note that the actual
strategies in our game can be viewed as extremal points of such an enlarged strategy
set corresponding to fractions 0 and 1.
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After this change the fact that buying and selling nontrivially at the same time
instant decreases payoff is immediate. Because of linearity of the model, if there
exists an optimal strategy, then there exists an optimal strategy consisting of extreme
points.

b) (i) The inequality ”≤” is from definition and by the fact that choosing pSi (t)
lower than p̄Si (t) can influence price or reductions only if the resulting price is less
than p̄Si (t) and resulting SR is positive.
Tedious analysis of possible cases shows that a situation in which player who wants
to buy shares at lower price will not gain using such a strategy.

The strict inequality holds for a profile with p(t) = p̄Si (t) and SR(t) 6= 0 (which is
admissible);

(ii) analogously.

c) In games with continuum of players chosing a strategy by a player does not
influence neither price, nor reductions.

The cases which are not covered by b) can be proven by the fact that either nothing
changes or in such cases player can only decrease his payoff because of not buying or
not selling at a price at which it leads to increase of anticipated payoff. �

Corollary 12. In games with continuum of players and beliefs independent of player’s
own choice a profile consisting of pairs of respective threshold prices is a pre-BDNE.

�

.1 Fundamental beliefs

In the ”obvious” Nash equilibria, in which players believe that prices are equal to the
fundamental value Ft =

∑T
s=t+1As · (

1
1+r )s−t, prices are close to the fundamental

value as follows.

First, lets us formally define what we mean by fundamental beliefs.

Definition 13. A belief Bi is called a fundamental belief if for every t, every H and
every a ∈ D
Bi(t, a,H) ⊂ {(X, (p,BR, SR)) : p(t) = Ft, X(t) = p(t− 1) for all t}.

Of course, such beliefs only make sense if for every t Ft ∈ N. Otherwise, we can
substitute p(t) = Ft by |p(t)−Ft| ≤ 1

2 and we shall obtain similar results with similar
proofs.

Formally, we state the following proposition.

Proposition 14. Beliefs based on fundamental analysis

Assume that a.e. player has fundamental beliefs.

For every time instant t such that(⌊
Ft

1+C

⌋
,
⌈
Ft

1−C

⌉)
∩ [(1− h) · p(t− 1), (1 + h) · p(t− 1)]∩N\{0} 6= ∅ and such that the

set of players with positive mi(t) and the set of players of positive si(t) are of positive
measure we have

a) The threshold prices are p̄Bi (t) =
⌊
Ft

1+C

⌋
and p̄Si (t) =

⌈
Ft

1−C

⌉
.
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b) Every profile such that pBi (t) ≤
⌈
Ft

1−C

⌉
and pSi (t) ≥

⌊
Ft

1+C

⌋
for a.e. player i is

a pre-BDNE for fundamental beliefs.

At this profile p(t) ∈
(⌊

Ft
1+C

⌋
,
⌈
Ft

1−C

⌉)
and there is no trade (i.e. V ol(p(t)) = 0).

Proof. Take any history H and player i for whom both mi(t), si(t) > 0.

a) We shall prove p̄Bi (t) =
⌊
Ft

1+C

⌋
and p̄Si (t) =

⌈
Ft

1−C

⌉
are the threshold prices.

A simple comparison between trade and no trade strategies shows that for every
decision a Vi(t+ 1, (mi(t+ 1), si(t+ 1)), Bi(t, a,H)) = si(t+ 1) · (1 + r) · Ft and the
maximum is attained for a strategy at which player i does not trade.
Therefore, in order to calculate the threshold prices we have to maximize
SR(t) · si(t) · p(t) · (1− C) · 1pSi (t)≤p(t) −BR(t) ·mi(t) · 1pBi (t)≥p(t) +At · si(t) +

+ 1
1+r · si(t+ 1) · (1 + r) · Ft =

= SR(t) · si(t) · p(t) · (1− C) · 1pSi (t)≤p(t) −BR(t) ·mi(t) · 1pBi (t)≥p(t) +At · si(t)+

+
(
si(t)− SR(t) · si(t) · 1pSi (t)≤p(t) +BR(t) · mi(t)

p(t)·(1+C) · 1pBi (t)≥p(t)

)
· Ft =

= SR(t) · si(t) · 1pSi (t)≤p(t) · (p(t) · (1− C)− Ft) +

BR(t) ·mi(t) · 1pBi (t)≥p(t) ·
(

Ft
p(t)·(1+C) − 1

)
+At · si(t)+ si(t) · Ft

for BR(t) = SR(t) = 1.
The last two terms of the maximized function are independent of player’s own

decision at time t, therefore we can equivalently take into account maximization of
the function
f(pBi (t), pSi (t)) = 1 · si(t) · 1pSi (t)≤p(t) · (p(t) · (1− C)− Ft) +

+
(

1 ·mi(t) · 1pBi (t)≥p(t) ·
(

Ft
p(t)·(1+C) − 1

))
.

If p(t) < Ft
(1−C) , then p(t) · (1−C)−Ft < 0, therefore the first term of f is at most

0 and the maximal value is attained if player i chooses a price at which he does not
sell i.e. pSi (t) > p(t). Since it holds for all p(t) < Ft

(1−C) , we get pSi (t) ≥ Ft
(1−C) . Since

prices are integers, we have pSi (t) ≥
⌈

Ft
(1−C)

⌉
.

If p(t) ≥ Ft
(1−C) , then p(t)·(1−C)−Ft ≥ 0, therefore the first term of f is nonnegative.

It is 0 if pSi (t) > p(t) and for p(t) > Ft
(1−C) it is strictly positive whenever pSi (t) ≤ p(t).

Therefore p̄Si (t) =
⌈

Ft
(1−C)

⌉
.

An analogous reasoning applies to the second term and it proves that p̄Bi (t) =⌊
Ft

(1+C)

⌋
.

b) We have to prove that such a strategy of player i is a best response to the
strategies of the remaining players.

Assume that all players besides i choose
(⌊

Ft
1+C

⌋
,
⌈
Ft

1−C

⌉)
. If player i also chooses

this strategy, then he does not trade at time t, and his anticipated payoff is si(t) ·
(At + Ft). If he chooses any strategy with pBi (t) <

⌈
Ft

1−C

⌉
and

pSi (t) >
⌊
Ft

1+C

⌋
, he does not change his payoff since there is still no trade. If he

chooses any strategy with pSi (t) ≤
⌊
Ft

1+C

⌋
then the first term of f is negative and if he
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chooses pBi (t) ≥
⌈
Ft

1−C

⌉
, then the second term of f is negative, while the other term

is, as we have just proven, at most 0, therefore he only decreases his payoff.

We shall calculate the price at the profile at which players choose
(⌊

Ft
1+C

⌋
,
⌈
Ft

1−C

⌉)
:

the market price p(t) will be the price within the interval
(⌊

Ft
1+C

⌋
,
⌈
Ft

1−C

⌉)
closest to

p(t − 1) if this interval has a nonempty intersection with [(1 − h) · p(t − 1), (1 + h) ·
p(t− 1)] ∩ N\{0}. For this price there is no trade. �

.2 Speculative bubbles

However, we are interested in more counter-intuitive pre-BDNE, which correspond to
speculative bubbles. They usually reflect strong trends in technical analysis. In the
sequel we shall prove that belief in strong trends may be self verifying.

Proposition 15. Beliefs in strong trends
Assume B is such that for every t at which a nonnegligible set of players i has

mi(t) > 0, and such that for every action a of a.e. player i with positive mi(t) or
si(t), every history H and every history in Bi(t, a,H),

1. there exists τ̄ > t such that p(τ̄)·(1−C)
(1+r)τ̄−t > (bp(t− 1) · (1 + h)c+ 1) · (1 + C) and

SR(τ̄) = {1} and
2. for every t < τ ≤ τ̄ p(τ) ≥ p(τ − 1) · (1 + r).
Assume also that for this B the anticipated payoff is always finite.
Then
a) The threshold prices fulfil p̄Bi (t), p̄Si (t) > b(1 + h) · p(t− 1)c.
b) Every profile such that pBi (t) ≥ b(1 + h) · p(t− 1)c and

pSi (t) > b(1 + h) · p(t− 1)c is a pre-BDNE for B.
At this pre-BDNE p(t) = b(1 + h) · p(t− 1)c, BR(t) = 0 and SR(t) = 1 for every t.

c) At every pre-BDNE we have for every t and a.e. i with positive si(t) p
S
i (t) > p(t)

and there is no trade.
d) In the case of continuum of players at every pre-BDNE we have also for every

t
p(t) = min

(
b(1 + h) · p(t− 1)c , essinfsi(t)>0 p

S
i (t)− 1

)
, BR(t) = 0, SR(t) = 1.

Proof. a) The threshold prices for these beliefs fulfil p̄B(t), p̄Si (t) > b(1 + h) · p(t− 1)c.
It is enough to prove this for p̄B(t), since the second inequality results from the first
one by proposition 11.

We prove this by comparing a non-trade strategy with a strategy at which player
i buys at the market price at time t and he sells at time τ̄ > t for which

inf(X,(p,BR,SR))∈Bi(t,a,H):SR(τ̄)=1
p(τ̄)

(1+r)τ̄−t is maximal. This maximum is attained,

since otherwise the anticipated payoff is infinite, and it constitutes the optimal d
in the definition of vi.
We get the required inequality, whatever are p(t), SR(t), BR(t) and the other price
limit at time t.

b) If we consider such a profile, then any strategy with
pBi (t) ≥ b(1 + h) · p(t− 1)c and pSi (t) > b(1 + h) · p(t− 1)c maximizes the anticipated
payoff of i.
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For such a profile of strategies the market mechanism returns the price
b(1 + h) · p(t− 1)c, BR(t) = 0 and SR(t) = 1 for every t.

c) Assume that pSi (t) ≤ b(1 + h) · p(t− 1)c for i in a subset of positive measure of
the set of players for which si(t) > 0.

Then if p(t) ∈
[
pSi (t), b(1 + h) · p(t− 1)c

]
and SR(t) > 0, player i can increase his

anticipated payoff by changing pSi (t) to b(1 + h) · p(t− 1)c+ 1.

Let us check, whether SR(t) = 0 is possible. In such a case AS(p(t)) > 0 while
AD(p(t)) = 0, which implies that for almost every i for whom mi(t) > 0 we have
pBi (t) < p(t). Let us consider any player with positivemi(t) from this set. By changing
his pBi (t) to p(t), player i does not change the price above b(1 + h) · p(t− 1)c (since
p(t) ≤ b(1 + h) · p(t− 1)c) and he does not decrease BR(t) to 0 (since AS(p) > 0 for
p ≥ p(t)), so he can buy at a price below his threshold buying price, and, consequently,
he increases his anticipated payoff, which contradicts the fact that the profile was a
pre-BDNE.

Therefore, in such a case p(t) < pSi (t) for a.e. player, which implies no trade.

d) Let us consider a profile being a pre-BDNE and a time instant t. By c) we
know that p(t) < pSi (t) for a.e. i such that si(t) > 0.

First we shall prove that in the continuum of players case a subset of i for whom
mi(t) > 0 of positive measure has pBi (t) ≥ p(t).

Assume the converse. We know that p(t) ≤ b(1 + h) · p(t− 1)c < p̄Bi (t). So if
BR(t) > 0, then, by nonatomicity of the space of players, every player i for whom
mi(t) > 0 and pBi (t) < p(t) can increase his payoff by choosing some pBi (t) ≥ p(t)
(and he does not affect nor p nor BR). This contradicts the pre-BDNE condition.

By c) we have that AS(p(t)) = 0. Therefore we have SR(t) = 1. We have just
excluded BR(t) > 0.

So now let us consider BR(t) = 0, which means that AD(p(t)) > 0, i.e. for a set
of players of positive measure with positive mi(t) we have pBi (t) ≥ p(t).

We shall prove that this implies
p(t) = min

(
b(1 + h) · p(t− 1)c , essinfsi(t)>0 p

S
i (t)− 1

)
.

Indeed, either V ol(q) = 0 for every q or it is positive for some q – by the form of
pSi it is obtained for some q > b(1 + h) · p(t− 1)c.

In the latter case V ol(p(t)) = 0 and p(t) is obtained from a value greater than
b(1 + h) · p(t− 1)c by projection on the set
[d(1− h) · p(t− 1)e , b(1 + h) · p(t− 1)c] ∩ (N \ {0}), since otherwise the equilibrating
mechanism chooses q maximizing V ol(q). In such a case p(t) = b(1 + h) · p(t− 1)c.

If V ol ≡ 0 and p(t) < b(1 + h) · p(t− 1)c,
then essinfsi(t)>0 p

S
i (t) > esssupmi(t)>0 p

B
i (t).

Let us assume that for i in a subset of positive measure of the set of players with
positive mi(t) we have pBi (t) < b(1 + h) · p(t− 1)c.

As we have proven, BR(t) = 0, SR(t) = 1, AD(p(t)) > 0 and AS(p(t)) = 0.

Let us check what is the market price in such a situation.

The second condition restricting the price interval is minimization of disequilib-
rium. Let us assume that p̄ < essinfsi(t)>0 p

S
i (t)− 1 is the market price. By the con-

dition of minimization of disequilibrium and the facts that AD(q) is a nonincreasing
function of q and that in our case disequilibrium for q < essinfsi(t)>0 p

S
i (t) is equal to
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AD(q), we get the result that also every price q in the interval
[
p̄, essinfsi(t)>0 p

S
i (t)− 1

]
minimizes Dis(q).

The function N(q) is either always zero at this set or it attains its minimum over
this set at essinfsi(t)>0 p

S
i (t) − 1. In the latter case the market price cannot be less

than essinfsi(t)>0 p
S
i (t)− 1. In the former case we have AD(p̄) = 0, which contradicts

our assumption.
Thus we have proven that p(t) ≥ min

(
b(1 + h) · p(t− 1)c , essinfsi(t)>0 p

S
i (t)− 1

)
,

AS(p(t)) = 0 while AD(p(t)) > 0.
Therefore, SR(t) = 1 and BR(t) = 0 at every pre-BDNE.
On the other hand, we have p(t) < essinfsi(t)>0 p

S
i (t) and p(t) ≤ b(1 + h) · p(t− 1)c,

which ends the proof. �

Note that we made no comparison with fundamental values – the prices can grow
because of players beliefs, whatever the fundamental values are, even if we have no
uncertainty about fundamental values – speculative bubbles may happen even at a
world with no external uncertainty.

This pre-BDNE profile is not a Nash equilibrium, since any deviating player who

decides to sell his shares at any time t such that p(t) >
⌈
Ft

1+C

⌉
and SR(t) > 0 increases

his payoff. We shall check whether it can be a BDNE.

Simplified stock exchange and self-verification of beliefs

Now we screen the beliefs considered before to check self-verification and look for
BDNE.

We can expect that fundamental beliefs of investors are self-verifying in a word
without uncertainty. This is not obvious for the beliefs in strong trends.

Proposition 16. Self-verification

a) If for every t Ft+1 ⊂
[⌈

(1− h) ·
⌈
Ft

1−C

⌉⌉
,
⌊
(1 + h) ·

⌊
Ft

1+C

⌋⌋]
,[⌈

(1− h) ·
⌈
Ft

1−C

⌉⌉
,
⌊
(1 + h) ·

⌊
Ft

1+C

⌋⌋]
∩ N\{0} 6= ∅ and

Ft ∈
(⌊

Ft
1+C

⌋
,
⌈
Ft

1−C

⌉)
∩ N\{0}, then fundamental beliefs that contain a history with

SR(s) = BR(s) = 1 for every s > t are potentially self-verifying and the profile
defined by pSi (t) = Ft + 1 and pBi (t) = Ft − 1 is a BDNE for these beliefs.

b) There exist beliefs in strong trends as defined in proposition 15 which are po-
tentially self-verifying and the profile consisting of the corresponding threshold prices
is a BDNE for these beliefs.

Proof. a) In our case the threshold strategies, as we proved in proposition 14a), are

(p̄Bi (t), p̄Si (t)) =
(⌊

Ft
1+C

⌋
,
⌈
Ft

1−C

⌉)
As we have proven in proposition 14b), the profile fulfilling

S̄OLi (t) =
(⌊

Ft
1+C

⌋
,
⌈
Ft

1−C

⌉)
is a pre-BDNE.

However, the profile SOLi (t) = (Ft − 1, Ft + 1) admits no trade and is also a pre-
BDNE, since any individual deviation resulting in trade decreases the anticipated
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payoff of the deviating player, which we prove in the same way as we have proven
proposition 14b).
At this pre-BDNE the price is Ft, since it is the only price in the interval (Ft − 1, Ft + 1).
The reductions SR(t) = BR(t) = 1, since AS(p(t)) = AD(p(t)) = 0. Therefore, HS

belongs to Bi(t, S
OL
i (t), HS).

b) An example of such belief is
Bi(t, a,H) = {(X, (p,BR, SR)) : p(τ) ≥ ε · p(τ − 1), SR(τ) = 1, BR(τ) = 0,
X(τ) = p(τ−1) for every t < τ < τ̄ and (X, (p,BR, SR))|t = H|t} for ε ∈ [1+r, 1+h]
such that for every n ≥ 1 b(1 + h) · nc ≥ ε·n (such an ε exists since h is large compared
to r) and τ̄ − t large enough.

Obviously, for every t we have p(t) = b(1 + h) · p(t− 1)c ≥ ε · p(t− 1), SR(t) = 1
and BR(t) = 0 for the pre-BDNE defined in proposition 15b), which is, therefore, a
BDNE. �

Note that, although we have potential self-verification and the profiles consid-
ered are BDNE, the stock exchange, in fact, cannot operate. The problem of self-
verification in a more compound but less formal model of a stock exchange was con-
sidered by the author in [19], including also self-verification of various beliefs against
beliefs of other players, which included also dependence on a random factor. In this
paper some beliefs have the property of approximately perfect self-verification against
a small group of players with random beliefs if the measure of the set of players with
the beliefs under consideration was large enough. However, there were also classes
of beliefs that were self-falsifying in such a case – they caused changes of prices with
signs opposite to the anticipated ones.

Conclusions

In this paper new notions of equilibria in deterministic dynamic games with distorted
information – pre-belief distorted Nash equilibrium (pre-BDNE ) and belief distorted
Nash equilibrium (BDNE ) – together with concepts of self-verification of beliefs, first
defined in Wiszniewska-Matyszkiel [20], were extended to a wider class of games that
can encompass also models of financial markets with complicated market clearing
conditions and private state variables of players besides the global state variable.
These notions are especially applicable to dynamic games but they can be applied
also to repeated games. In one stage games each of these concepts of equilibria is
equivalent to Nash equilibrium. In games with a continuum of players also in this
extended class of games the set of pre-BDNE for the perfect foresight is equal to the
set of BDNE for these beliefs and to the set of Nash equilibria.

Existence and equivalence theorems were extended to the games considered in this
paper.

The theoretical results were also illustrated by an example of a simplified model of
a stock exchange. There were also some results proven that apply only to this model,
among others no trade properties of pre-BDNE for fundamental beliefs and beliefs in
strong trends, as well as potential self-verification of these beliefs. Among others, this
proves that some, even very counterintuitive techniques of foreseeing prices of shares
can be regarded as rational.
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