Post-Merger Financial Performance – A Study of High-Tech Companies in the United States using Artificial Neural Networks

Main Article Content

Stanislav Tarasov
Bartłomiej Dessoulavy-Śliwiński

Abstrakt

The debate about the efficacy of mergers and acquisitions as a growth strategy in terms of ex-post value creation has been developing for decades. This paper aims to create an artificial neural network that examines trends in the financials and marks the potential sources of value creation in the high-tech industry mergers between 2011 and 2021. The findings demonstrate that ANN can be implemented as a highly efficient model for analyzing complex financial events due to its flexibility and lack of prior assumptions about the data.

Article Details

Jak cytować
Tarasov, S., & Dessoulavy-Śliwiński, B. (2024). Post-Merger Financial Performance – A Study of High-Tech Companies in the United States using Artificial Neural Networks. Metody Ilościowe W Badaniach Ekonomicznych, 25(2), 70–85. https://doi.org/10.22630/MIBE.2024.25.2.7
Bibliografia

Agrawal A., and Jaffe J. F. (2003) Do Takeover Targets Underperform? Evidence from Operating and Stock Returns. The Journal of Financial and Quantitative Analysis, 38(4), 721-746. https://doi.org/10.2307/4126741 (Crossref)

Agrawal A., Jaffe J. F., Mandelker G. N. (1992) The Post-Merger Performance of Acquiring Firms: A Re-examination of an Anomaly. Journal of Finance, 47, 1605-1621. https://doi.org/10.1111/j.1540-6261.1992.tb04674.x (Crossref)

Ahern K. P., Harford J. (2014) The Importance of Industry Links in Merger Waves. The Journal of Finance, 69(2), 527-576. https://doi.org/10.1111/jofi.12122 (Crossref)

Anderson C., Mandelker G. (1993) Long Run Return Anomalies and the Book-to-Market Effect: Evidence on Mergers and IPOs. Working Paper, University of Pittsburgh.

Andrade G., Mitchell M., Stafford E. (2001) New Evidence and Perspectives on Mergers. Journal of Economic Perspectives, 15(2), 103-120. https://doi.org/10.1257/jep.15.2.103 (Crossref)

André P., Kooli M., L’Her J. (2004) The Long-Run Performance of Mergers and Acquisitions: Evidence from the Canadian Stock Market. Financial Management, 33(4), 27-43. https://www.jstor.org/stable/3666327

Asquith P. (1983) Merger Bids, Uncertainty and Stockholder Returns. Journal of Financial Economics, 11, 51-83. https://doi.org/10.1016/0304-405X(83)90005-3 (Crossref)

Baldi P., Brunak S., Chauvin Y., Andersen C. A. F., Nielsen H. (2000) Assessing the Accuracy of Prediction Algorithms for Classification: An Overview. Bioinformatics Review, 16(5), 412-424. https://doi.org/10.1093/bioinformatics/16.5.412 (Crossref)

Bi W., Zhang Q. (2021) Forecasting Mergers and Acquisitions Failure Based on Partial Sigmoid Neural Network and Feature Selection. PLoS ONE, 16(11), 1-18. https://doi.org/10.1371/journal.pone.0259575 (Crossref)

Bouteska A., Hajek P., Fisher B., Abedin M. Z. (2023) Nonlinearity in Forecasting Energy Commodity Prices: Evidence from a Focused Time-Delayed Neural Network. Research in International Business and Finance, 64, 101863. https://doi.org/10.1016/j.ribaf.2022.101863 (Crossref)

Bradley M. Jarrell G. A. (1988) Comment. J. C. Coffee, L. Lowenstein, S. Rose-Ackerman, (Eds.), Knights, Raiders, and Targets: The Impact of the Hostile Takeover. Oxford University Press, New York, 252-259. ISBN: 0-19-504405-3

Chicco D., Jurman G. (2020) The Advantages of the Matthews Correlation Coefficient (MCC) over F1 Score and Accuracy in Binary Classification Evaluation. BMC Genomics, 21(6), 1-13. https://doi.org/10.1186/s12864-019-6413-7 (Crossref)

Cumming D., Jindal V., Kumar S., Pandey N. (2023) Mergers and Acquisitions Research in Finance and Accounting: Past, Present and Future. European Financial Management, 29(5), 1-41. https://doi.org/10.1111/eufm.12417 (Crossref)

Department of Math of the University of Utah (n.d.). Using the Receiver Operating Characteristic (ROC) Curve to Analyze a Classification Model. Retrieved from http://www.math.utah.edu/~gamez/files/ROCCurves.pdf

Firth M. (1980) Takeovers, Shareholder Returns, and the Theory of the Firm. Quarterly Journal of Economics, 94, 315-347. https://doi.org/10.2307/1884539 (Crossref)

Franks J., Harris R., Titman S. (1991) The Postmerger Share-Price Performance of Acquiring Firms. Journal of Financial Economics, 29, 81-96. https://doi.org/10.1016/0304-405X(91)90014-B (Crossref)

Hackbarth D., Morellec E. (2008) Stock Returns in Mergers and Acquisitions. The Journal of Finance, 63(3), 1213-1252. https://doi.org/10.1111/j.1540-6261.2008.01356.x (Crossref)

Healy P. M., Palepu K. G., Ruback R. S. (1992) Does Corporate Performance Improve after Mergers? Journal of Financial Economics, 31, 135-175. https://doi.org/10.1016/0304-405X(92)90002-F (Crossref)

IBM (2012) IBM SPSS Neural Networks – New Tools for Building Predictive Models. Retrieved from https://www.ibm.com/downloads/cas/N7LLA2LB

Jensen-Vinstrup M., Rigamonti D., Wulff J. (2018) European Cross-Border Acquisitions: Long-Run Stock Returns and Firm Characteristics. Journal of Multinational Financial Management, 47, 31-45. https://doi.org/10.1016/j.mulfin.2018.09.003 (Crossref)

Kaplan S. N. (2000) Introduction. Steven Kaplan, (Ed.), Mergers and Productivity. University of Chicago Press, Chicago, 1-8. ISBN: 0-226-42431-6

King D. R., Dalton D. R., Daily C. M., Covin J. G. (2004) Meta-analyses of Post-acquisition Performance: Indications of Unidentified Moderators. Strategic Management Journal, 25(2), 187-200. https://doi.org/10.1002/smj.371 (Crossref)

Kohers N., Kohers T. (2001) Takeovers of Technology Firms: Expectations vs. Reality. Financial Management, 30(3), 35-54. https://doi.org/10.2307/3666375 (Crossref)

Langetieg T. C. (1978) An Application of a Three-Factor Performance Index to Measure Stockholder Gains from Merger. Journal of Financial Economics, 6(4), 365-383. https://doi.org/10.1016/0304-405X(78)90010-7 (Crossref)

Le H. H., Viviani J. (2018) Predicting Bank Failure: An Improvement by Implementing a Machine-Learning Approach to Classical Financial Ratios. Research in International Business and Finance, 44, 16-25. https://doi.org/10.1016/j.ribaf.2017.07.104 (Crossref)

Lee K., Joo S., Baik H., Han S., In J. (2020) Unbalanced Data, Type II Error, and Nonlinearity in Predicting M&A failure. Journal of Business Research, 109, 271-287. https://doi.org/10.1016/j.jbusres.2019.11.083 (Crossref)

Léger P., Quach L. (2009) Post-Merger Performance in the Software Industry: The Impact of Characteristics of the Software Product Portfolio. Technovation, 29(10), 704-713. https://doi.org/10.1016/j.technovation.2009.05.016 (Crossref)

Loderer C., Martin K. (1992) Postacquisition Performance of Acquiring Firms. Financial Management, 21(3), 69-79. https://doi.org/10.2307/3666020 (Crossref)

Loughran T., Vijh A. M. (1997) Do Long-Term Shareholders Benefit from Corporate Acquisitions. Journal of Finance, 52, 1765-1790. https://doi.org/10.1111/j.1540-6261.1997.tb02741.x (Crossref)

Malmendier U., Moretti E., Peters F. S. (2018) Winning by Losing: Evidence on the Long-run Effects of Mergers. The Review of Financial Studies, 31(8), 3212-3264. https://doi.org/10.1093/rfs/hhy009 (Crossref)

Mitchell M. L. Mulherin J. H. (1996) The Impact of Industry Shocks on Takeover and Restructuring Activity. Journal of Financial Economics, 41(2), 193-229. https://doi.org/10.1016/0304-405X(95)00860-H (Crossref)

Møller M. F. (1993) A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning. Neural Networks, 6(4), 525-533. https://doi.org/10.1016/S0893-6080(05)80056-5 (Crossref)

Pianosi F., Wagener T. (2015) A Simple and Efficient Method for Global Sensitivity Analysis Based on Cumulative Distribution Functions. Environmental Modelling & Software, 67, 1-11. https://doi.org/10.1016/j.envsoft.2015.01.004 (Crossref)

Powers D. M. W. (2011) Evaluation: from Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation. The Journal of Machine Learning Technologies, 2. https://doi.org/10.48550/arXiv.2010.16061

Rau P. R., Vermaelen T. (1998) Glamour, Value and the Post-Acquisition Performance of Acquiring Firms. Journal of Financial Economics, 49, 223-253. https://doi.org/10.1016/S0304-405X(98)00023-3 (Crossref)

Ravenscraft D. J., Scherer F. M. (1987) Mergers, Sell-offs, and Economic Efficiency. Brookings Institution, Washington, D.C. ISBN: 0-8157-7348-X

Shao B., Asatani K., Sakata I. (2018) Categorization of Mergers and Acquisitions in Japan Using Corporate Databases: A Fundamental Research for Prediction. In 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 1523–1527. https://doi.org/10.1109/IEEM.2018.8607408 (Crossref)

Shao B., Asatani K., Sasaki H., Sakata I. (2021) Categorization of Mergers and Acquisitions using Transaction Network Features. Research in International Business and Finance, 57, 101421. https://doi.org/10.1016/j.ribaf.2021.101421 (Crossref)

Teräsvirta T., Van Dijk D., Medeiros M. C. (2005) Linear Models, Smooth Transition Autoregressions, and Neural Networks for Forecasting Macroeconomic Time Series: a Re-Examination. International Journal of Forecasting, 21(4), 755–774. https://doi.org/10.1016/j.ijforecast.2005.04.010 (Crossref)

Town R. J. (1992) Merger Waves and the Structure of Merger and Acquisition Time-Series. Journal of Applied Econometrics, 7(1), 83-100. https://doi.org/10.1002/jae.3950070507. (Crossref)

Yu L., Wang S. Lai K. K. (2007) Foreign-Exchange-Rate Forecasting with Artificial Neural Networks (107). Springer Science & Business Media. ISBN: 978-0-387-71720-3.

Zhu M., Meng Z. (2021) Fuzzy Comprehensive Evaluation Model of M&A Synergy Based on Transfer Learning Graph Neural Network. Complexity, 2021, 1-12. https://doi.org/10.1155/2021/6516723

Statystyki

Downloads

Download data is not yet available.
Rekomendowane teksty