Main Article Content
This investigation delves into the significance of precise earnings forecasts for publicly traded companies in attaining investment success. It highlights the importance of this aspect, particularly in markets with restricted analyst coverage, such as emerging markets like Poland. The study assesses the accuracy of predictions generated by diverse models utilizing distinct sets of explanatory variables, incorporating artificial neural network architectures, in contrast to a seasonal random walk model. These models are employed on earnings per share (EPS) data of companies listed on the Warsaw Stock Exchange spanning from 2008 to 2019. The seasonal random walk model exhibited the lowest error, gauged by the Mean Arctangent Absolute Percentage Error (MAAPE), a finding corroborated through rigorous statistical tests. Numerous robustness checks involving different timeframes and error metrics affirm this conclusion. The ascendancy of a simplistic model may stem from the overfitting tendencies of intricate models and the relatively straightforward dynamics characterizing the Polish listed companies.
Article Details
Abarbanell J., Bushee B. (1997) Fundamental Analysis, Future EPS, and Stock Prices. Journal of Accounting Research, 35(1), 1-24. (Crossref)
Ahmadpour A., Etemadi H., Moshashaei S. (2015) Earnings per Share Forecast using Extracted Rules from Trained Neural Network by Genetic Algorithm. Computational Economics, 46(1), 55-63. (Crossref)
Atiya A., Shaheen S., Talaat N. (1997) An Efficient Stock Market Forecasting Model using Neural Networks. IEEE International Conference on Neural Networks - Conference Proceedings.
Ball R., Ghysels E. (2017) Automated Earnings Forecasts: Beat Analysts or Combine and Conquer? Management Science, 64(10), 4936-4952. (Crossref)
Ball R. Watts R. (1972) Some Time Series Properties of Accounting Income. The Journal of Finance, 27(3), 663-681. (Crossref)
Banerjee P. (2020) A Guide on XGBoost Hyperparameters Tuning, Accessed February 14, 2024. https://www.kaggle.com/code/prashant111/a-guide-on-xgboost-hyperparameters-tuning.
Bathke Jr. A. W., Lorek K. S. (1984) The Relationship between Time-Series Models and the Security Market's Expectation of Quarterly Earnings. The Accounting Review, 59(2), 163-176.
Bradshaw M., Drake M., Myers J., Myers L. (2012) A Re-Examination of Analysts' Superiority over Time-Series Forecasts of Annual Earnings. Review of Accounting Studies, 17(4), 944-968. (Crossref)
Bengio Y., Courville A., Goodfellow I. (2017) Deep Learning. Cambridge, Massachusetts: The MIT Press.
Bengio Y., Glorot X. (2010) Understanding the Difficulty of Training Deep Feedforward Neural Networks. Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 9, 249-256.
Brandon Ch., Jarrett J. E., Khumawala S. B. (1987) A Comparative Study of the Forecasting Accuracy of Holt‐Winters and Economic Indicator Models of Earnings Per Share For Financial Decision Making. Managerial Finance, 13(2), 10-15. (Crossref)
Brooks L. D., Buckmaster D. A. (1976) Further Evidence of the Time Series Properties of Accounting Income. The Journal of Finance, 31(5), 1359-1373. (Crossref)
Brown L. D., Griffin P. A., Hagerman R. L., Zmijewski M. E. (1987) Security Analyst Superiority Relative to Univariate Time-Series Models in Forecasting Quarterly Earnings. Journal of Accounting and Economics, 9(1), 61-87. (Crossref)
Brown L. D., Rozeff M. S. (1979) Univariate Time-Series Models of Quarterly Accounting Earnings per Share: A Proposed Model. Journal of Accounting Research, 17(1), 179-189. (Crossref)
Cao Q., Gan Q. (2009) Forecasting EPS of Chinese Listed Companies using a Neural Network with Genetic Algorithm. 15th Americas Conference on Information Systems 2009, AMCIS 2009, 2791-2981.
Cao Q., Parry M. (2009) Neural Network Earnings per Share Forecasting Models: A Comparison of Backward Propagation and the Genetic Algorithm. Decision Support Systems, 47 (1), 32-41. (Crossref)
Cao Q., Schniederjans M. J., Zhang W. (2004) Neural Network Earnings per Share Forecasting Models: A Comparative Analysis of Alternative Methods. Decision Sciences, 35 (2), 205-237. (Crossref)
Chen Y., Chen S., Huang H., Sangaiah A. (2020) Applied Identification of Industry Data Science using an Advanced Multi-Componential Discretization Model. Symmetry, 12(10), 1-28. (Crossref)
Chen T., Guestrin C. (2016) XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. (Crossref)
Conroy R., Harris R. (1987) Consensus Forecasts of Corporate Earnings: Analysts' Forecasts and Time Series Methods. Management Science, 33(6), 725-738. (Crossref)
Dreher S., Eichfelder S., Noth F. (2024) Does IFRS Information on Tax Loss Carryforwards and Negative Performance Improve Predictions of Earnings and Cash Flows? Journal of Business Economics, 94(1), 1-39. (Crossref)
Elend L., Kramer O., Lopatta K., Tideman S. (2020) Earnings prediction with deep learning. German Conference on Artificial Intelligence (Künstliche Intelligenz), KI 2020: Advances in Artificial Intelligence, 267-274. (Crossref)
Elton E. J., Gruber M. J. (1972) Earnings Estimates and the Accuracy of Expectational Data, Management Science, 18(8), B409-B424. (Crossref)
Foster G. (1977) Quarterly Accounting Data: Time-Series Properties and Predictive-Ability Results. The Accounting Review, 52(1), 1-21.
Gaio L., Gatsios R, Lima F., Piamenta Jr. T. (2021) Re-Examining Analyst Superiority in Forecasting Results of Publicly-Traded Brazilian Companies. Revista de Administracao Mackenzie, 22(1), eRAMF210164. (Crossref)
Griffin P. (1977) The Time-Series Behavior of Quarterly Earnings: Preliminary Evidence. Journal of Accounting Research, 15(1), 71-83. (Crossref)
Gupta R., Khirbat G., Singh S. (2013) Optimal Neural Network Architecture for Stock Market Forecasting. Proceedings - 2013 International Conference on Communication Systems and Network Technologies, CSNT 2013, 557-561. (Crossref)
Harris R. D. F., Wang P. (2019) Model-Based Earnings Forecasts vs. Financial Analysts' Earnings Forecasts. British Accounting Review, 51(4), 424-437. (Crossref)
Heaton J. (2008) Introduction to Neural Networks for Java, 2nd Edition. Heaton Research Inc.
Hou K., van Dijk M., Zhang Y. (2012) The Implied Cost of Capital: A New Approach. Journal of Accounting and Economics, 53(3), 504-526. (Crossref)
Jarrett J. E. (2008) Evaluating Methods for Forecasting Earnings per Share. Managerial Finance, 16, 30-35. (Crossref)
Johnson T. E., Schmitt T. G. (1974) Effectiveness of Earnings per Share Forecasts. Financial Management, 3(2), 64-72. (Crossref)
Kim S., Kim H. (2016) A New Metric of Absolute Percentage Error for Intermittent Demand Forecasts. International Journal of Forecasting, 32(3), 669-679. (Crossref)
Kuryłek W. (2023a) The Modeling of Earnings per Share of Polish Companies for the Post-Financial Crisis Period using Random Walk and ARIMA Models. Journal of Banking and Financial Economics, 1(19), 26-43. (Crossref)
Kuryłek W. (2023b) Can Exponential Smoothing Do Better than Seasonal Random Walk for Earnings per Share Forecasting in Poland? Bank & Credit, 54(6), 651-672. (Crossref)
Lacina M., Lee B., Xu R. (2011) An Evaluation of Financial Analysts and Naïve Methods in Forecasting Long-Term Earnings. [In:] K. D Lawrence, R. K. Klimberg (Eds.), Advances in business and management forecasting (pp. 77-101), Bingley, UK, Emerald. (Crossref)
Lai S., Li H. (2006) The Predictive Power of Quarterly Earnings per Share based on Time Series and Artificial Intelligence Model. Applied Financial Economics, 16(18), 1375-1388. http://dx.doi.org/10.1080/09603100600592752. (Crossref)
Laurent C. (1979) Improving the Efficiency and Effectiveness of Financial Ratio Analysis. Journal of Business Finance & Accounting, 6(3), 401-413. (Crossref)
Lev B., Souginannis T. (2010) The Usefulness of Accounting Estimates for Predicting Cash Flows and Earnings. Review of Accounting Studies, 15(4), 779-807. (Crossref)
Lev B., Thiagarajan S. (1993) Fundamental Information Analysis. Journal of Accounting Research, 31(2), 190-215. (Crossref)
Li K. K. (2011) How Well Do Investors Understand Loss Persistence? Review of Accounting Studies, 16(3), 630-667. (Crossref)
Li K. K., Mohanram P. (2014) Evaluating Cross-Sectional Forecasting Models for the Implied Cost of Capital. Review of Accounting Studies, 19(3), 1152-1185. (Crossref)
Lorek K. S. (1979) Predicting Annual Net Earnings with Quarterly Earnings Time-Series Models, Journal of Accounting Research, 17(1), 190-204. (Crossref)
Lorek K. S, Willinger G. L. (1996) A Multivariate Time-Series Model for Cash-Flow Data. Accounting Review, 71, 81-101.
Ohlson J. A. (1995) Earnings, Book Values, and Dividends in Equity Valuation. Contemporary Accounting Research, 11(2), 661-687. (Crossref)
Ohlson J. A. (2001) Earnings, Book Values, and Dividends in Equity Valuation: An Empirical Perspective. Contemporary Accounting Research, 18(1), 107-120. https://doi.org/10.1092/7tpj-rxqn-tqc7-ffae. (Crossref)
Ohlson J. A., Juettner-Nauroth B. E. (2005) Expected EPS and EPS Growth as Determinants of Value. Review of Accounting Studies, 10(2-3), 349-365. (Crossref)
Pagach D. P., Warr R. S. (2020) Analysts Versus Time-Series Forecasts of Quarterly Earnings: A Maintained Hypothesis Revisited. Advances in Accounting, 51, 1-15. (Crossref)
Pasini A. (2015) Artificial Neural Networks for Small Dataset Analysis. Journal of Thoracic Disease, 7(5), 953-960.
Pope P. F., Wang P. (2005) Earnings Components, Accounting Bias and Equity Valuation. Review of Accounting Studies. 10(4), 387-407. (Crossref)
Pope P., Wang P. (2014) On the Relevance of Earnings Components: Valuation and Forecasting Links. Review of Quantitative Finance and Accounting. 42, 399-413. (Crossref)
Rosenblatt F. (1958). The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychological Review, 65(6), 386-408. (Crossref)
Ruland W. (1980) On the Choice of Simple Extrapolative Model Forecasts of Annual Earnings. Financial Management, 9(2), 30-37. (Crossref)
Suler P., Vochozka M., Vrbka J. (2020) Bankruptcy or Success? The Effective Prediction of a Company's Financial Development using LSTM. Sustainability, 12(18), 2299-2314. https://doi.org/10.3390/su12187529. (Crossref)
Watts R. L. (1975) The Time Series Behavior of Quarterly Earnings, Working paper, Department of Commerce, University of New Castle, April 1975.
Werbos P. (1988) Backpropagation: Past and Future. IEEE International Conference on Neural Networks, 343-353. (Crossref)
Wilcoxon F. (1945) Individual Comparisons by Ranking Methods. Biometrics, 1, 80-83. (Crossref)
Xiaoqiang W. (2022) Research on Enterprise Financial Performance Evaluation Method based on Data Mining. [In:] 2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information (ICETCI). Accessed February 14, 2024. https://doi.org/10.1109/icetci55101.2022.9832404. (Crossref)
Downloads
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne 4.0 Międzynarodowe.
Publikowane artykuły dostępne są na warunkach Open Access na zasadach licencji Creative Commons CC BY-NC – do celów niekomercyjnych udostępnione materiały mogą być kopiowane, drukowane i rozpowszechniane. Autorzy ponoszą opłatę za opublikowanie artykułu.