Main Article Content
Article Details
Blackwell T. M., Bentley P. J. (2002) Dynamic Search with Charged Swarms. [in:] W. B. Langdon et al. (ed.) Proc. of the 2002 Genetic and Evolutionary Computation Conference, 19-26.
Blackwell T. M., Branke J. (2004) Multi-swarm Optimization in Dynamic Environments. [in:] Raidl G. R. (ed.) Applications of Evolutionary Computing, Lecture Notes in Computer Science, 3005, 489-500. Springer, Berlin, Germany.
Blackwell T. M., Branke J. (2006) Multi-swarms, Exclusion and Anti-convergence in Dynamic Environments. IEEE Transactions on Evolutionary Computation, 10(4), 459-472.
Blackwell T. M., Branke J., Li X. (2008) Particle Swarms for Dynamic Optimization Problems. [in:] C. Blum and D. Merkle (eds.) Swarm Intelligence, 193-217 (Springer).
Burtini G., Loeppky J., Lawrence R. (2015) Improving Online Marketing Experiments with Drifting Multi-armed Bandits. Proceedings of the 17th International Conference on Enterprise Information Systems, 2, 630-636. DOI: 10.5220/0005458706300636.
Hoffman M.D., Brochu E., de Freitas N. (2011) Portfolio Allocation for Bayesian Optimization. [in:] The Conference on Uncertainty in Artificial Intelligence.
Kennedy J., Eberhart R. C., Shi Y. (2001) Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco.
Robbins H. (1952) Some Aspects of the Sequential Design of Experiments. Bulletin of the American Mathematical Society. 58(5), 527–535. doi:10.1090/S0002-9904-1952-09620-8.
Shen W., Wang J., Jiang Y.-G., Zha H. (2015) Portfolio Choices with Orthogonal Bandit Learning. [in:] Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015).
Silver D., Huang A., Maddison C. et al. (2016) Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature 529, 484-489, https://doi.org/10.1038/nature16961.
https://doi.org/10.1038/nature16961
Silver D., Schrittwieser J., Simonyan K. et al. (2017) Mastering the Game of Go without Human Knowledge. Nature 550, 354-359, https://doi.org/10.1038/nature24270.
Downloads
- Maciej Janowicz, Andrzej Zembrzuski, Symmetry Properties of Modified Black-Scholes Equation , Metody Ilościowe w Badaniach Ekonomicznych: Tom 22 Nr 2 (2021)
- Aleksander Strasburger, Andrzej Zembrzuski, On application of Newton’s Method to solve optimization problems in the consumer theory. Expansion’s Paths and Engel Curves , Metody Ilościowe w Badaniach Ekonomicznych: Tom 12 Nr 1 (2011)
Publikowane artykuły dostępne są na warunkach Open Access na zasadach licencji Creative Commons CC BY-NC – do celów niekomercyjnych udostępnione materiały mogą być kopiowane, drukowane i rozpowszechniane. Autorzy ponoszą opłatę za opublikowanie artykułu.