Risk Aversion and a Calculus for Finitely Generated Piecewise Linear Functions: A Calculus that Economists Ought to Develop?

Main Article Content

Somdeb Lahiri

Abstrakt

In this note we propose a calculus for piece-wise linear functions, in order to obtain derivatives and second derivatives at points where the function is not differentiable. Such derivatives can be used to calculate coefficients of risk aversion at initial wealth for piece-wise linear utility functions for gains, which display loss aversion-and hence non differentiability at zero gains.

Article Details

Jak cytować
Lahiri, S. (2022). Risk Aversion and a Calculus for Finitely Generated Piecewise Linear Functions: A Calculus that Economists Ought to Develop?. Metody Ilościowe W Badaniach Ekonomicznych, 23(1), 1–10. https://doi.org/10.22630/MIBE.2022.23.1.1
Bibliografia

Arrow K. J. (1963) Liquidity preference. Lecture VI [in] Lecture Notes for Economics, 285, The Economics of Uncertainty, 33-53, Stanford University.

Eeckhoudt L., Gollier C., Schlesinger H. (2005) Economic and Financial Decisions Under Risk. Princeton University Press, NJ. (Crossref)

de Finetti B. (1952) Sulla preferibilita. Giornale Degli Economisti E Annali Di Economia,11, 685-709.

Kemeny J. G., Snell J. L., Thompson G. L. (1957) Introduction to Finite Mathematics (Third Edition, 1974). Prentice-Hall, Inc., Englewood Cliffs, N. J. Pratt J. (1964) Risk Aversion in the Small and in the Large. Econometrica, 32(1/2), 122-136.

Ross S. A. (1981) Some Stronger Measures of Risk Aversion in the Small and in the Large with Applications. Econometrica, 49(3), 621-638. (Crossref)

Stanley W. D. (2004) Technical Analysis and Applications With Matlab. Cengage Learning.

Statystyki

Downloads

Download data is not yet available.
Rekomendowane teksty