Application of ITransformers to Predicting Preterm Birth Rate. Comparison with the ARIMA Model

Main Article Content

Marek Karwański
Urszula Grzybowska
Vassilis Kostoglou
Ewa Mierzejewska
Katarzyna Szamotulska

Abstrakt

In this paper, we study the differences between forecasts obtained with the classical seasonal ARIMA model and forecasts obtained with the neural network model called iTransformers. The analysis is done on Polish data concerning preterm birth from 2015 to 2020. We compare the results and calculate the effect size to conclude the impact of the obtained differences.

Article Details

Jak cytować
Karwański, M., Grzybowska, U., Kostoglou, V., Mierzejewska, E., & Szamotulska, K. (2024). Application of ITransformers to Predicting Preterm Birth Rate. Comparison with the ARIMA Model . Metody Ilościowe W Badaniach Ekonomicznych, 25(3), 124–133. https://doi.org/10.22630/MIBE.2024.25.3.11
Bibliografia

Ahmed S., Nielsen I.E., Tripathi A. et al. (2023) Transformers in Time-Series Analysis: A Tutorial. Circuits Syst Signal Process 42, 7433-7466, https://doi.org/10.1007/s00034-023-02454-8. (Crossref)

Aijaz I., Agarwal P. (2019) A Study on Time Series Forecasting using Hybridization of Time Series Models and Neural Networks. Recent Patents on Computer Science, 12(5), 827-832, https://doi.org/10.2174/1573401315666190619112842. (Crossref)

Borboa-Olivares H., Rodríguez-Sibaja M.J., Espejel-Nuñez A., Flores-Pliego A., Mendoza-Ortega J., Camacho-Arroyo I., González-Camarena R., Echeverría-Arjonilla J.C., Estrada-Gutierrez G. (2023) A Novel Predictive Machine Learning Model Integrating Cytokines in Cervical-Vaginal Mucus Increases the Prediction Rate for Preterm Birth. International Journal of Molecular Sciences, 24(18), 13851, https://doi.org/10.3390/ijms241813851. (Crossref)

Box G., Jenkins G. (1970) Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco.

Brandon D., McGrath J. (2016) Infant Mortality Rates and Preterm Birth: A Challenge for Advocacy. Advances in Neonatal Care, 16(5), 323-324, https://doi.org/10.1097/ANC.0000000000000344. (Crossref)

Dench D., Joyce T., Minkoff H. (2022) United States Preterm Birth Rate and COVID-19. Pediatrics, 149(5), https://doi.org/10.1542/peds.2021-055495. (Crossref)

Gemmill A., Casey J. A., Catalano R., Karasek D., Margerison C. E., Bruckner T. (2022) Changes in Preterm Birth and Caesarean Deliveries in the United States during the SARS-CoV-2 Pandemic. Paediatric and Perinatal Epidemiology, 36(4), 485-489, https://doi.org/10.1111/ppe.12811. (Crossref)

Lakens D. (2013) Calculating and Reporting Effect Sizes to Facilitate Cumulative Science: a Practical Primer for T-Tests and ANOVAs. Frontiers in Psychology, 4, 863. https://doi.org/10.3389/fpsyg.2013.00863. (Crossref)

Lim B., Zohren S. (2021) Time-Series Forecasting with Deep Learning: a Survey. Phil. Trans. R. Soc. A, 379: 20200209, https://doi.org/10.1098/rsta.2020.0209 (Crossref)

Liu Y., Hu T., Zhang H., Wu H., Wang S., Ma L., Long M. (2023) Itransformer: Inverted Transformers Are Effective for Time Series Forecasting. arXiv preprint arXiv: 2310.06625.

Miller J. A., Aldosari M., Saeed F., Barna N. H., Rana S., Arpinar I. B., Liu N. (2024) A Survey of Deep Learning and Foundation Models for Time Series Forecasting. arXiv preprint arXiv:2401.13912.

Priya T., Sarkar B. K., Sahana S. K. (2024) Regression based Machine Learning Models for Forecasting Preterm Birth Cases. Procedia Computer Science, 235, 830-839, https://doi.org/10.1016/j.procs.2024.04.079. (Crossref)

Sefidkar R., Zayeri F., Kazemi E., Salehi M., Dehnad A., Hafizi M. (2021) A Trend Study of Preterm Infant Mortality Rate in Developed and Developing Countries over 1990 to 2017. Iranian Journal of Public Health, 50(2), 369-375, https://doi.org/10.18502/ijph.v50i2.5353. (Crossref)

Tzitiridou-Chatzopoulou M., Zournatzidou G., Kourakos M. (2024) Predicting Future Birth Rates with the Use of an Adaptive Machine Learning Algorithm: A Forecasting Experiment for Scotland. International Journal of Environmental Research and Public Health, 21(7), 84, https://doi.org/10.3390/ijerph21070841. (Crossref)

Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A., Kaiser L., Polosukhin I. (2017) Attention Is All You Need. NeurIPS, 2017.

Wen Q., Zhou T., Zhang C., Chen W., Ma Z., Yan J., Sun L. (2022) Transformers in Time Series: A Survey. arXiv preprint arXiv:2202.07125. (Crossref)

Yu Q. Y., Lin Y., Zhou Y. R., Yang X. J., Hemelaar J. (2024) Predicting Risk of Preterm Birth in Singleton Pregnancies using Machine Learning Algorithms. Frontiers in Big Data, 7, https://doi.org/10.3389/fdata.2024.1291196. (Crossref)

Zeng A., Chen M., Zhang, L., & Xu, Q. (2023). Are Transformers Effective for Time Series Forecasting?. Proceedings of the AAAI Conference on Artificial Intelligence, 37(9), 11121-11128, https://doi.org/10.1609/aaai.v37i9.26317. (Crossref)

Zhang F., Tong L., Shi C., Zuo R., Wang L. Wang Y. (2024) Deep Learning in Predicting Preterm Birth: A Comparative Study of Machine Learning Algorithms. Maternal-Fetal Medicine, 6(3), 141-146, https://doi.org/10.1097/FM9.0000000000000236. (Crossref)

Zhang Y., Du S., Hu T., Xu S., Lu H., Xu C., Li J., Zhu X. (2023) Establishment of a Model for Predicting Preterm Birth based on the Machine Learning Algorithm. BMC Pregnancy and Childbirth, 23(1), 779, https://doi.org/10.1186/s12884-023-06058-7. (Crossref)

Statystyki

Downloads

Download data is not yet available.
Rekomendowane teksty
Inne teksty tego samego autora