Main Article Content
In this paper, machine learning models for Forex prediction, evaluating traditional ensemble methods (Random Forest, XGBoost, LightGBM) against specialized time series models (Prophet, Arima, LSTM) across multiple currency pairs are compared. Performance assessment uses both statistical metrics (RMSE, MAE, directional accuracy) and trading measures (Sharpe ratio, maximum drawdown) across different market conditions. It is shown that ensemble methods excel with rich feature sets while time series models better capture temporal patterns. The research identifies optimal use cases for each model category and examines combination strategies that leverage complementary strengths, providing practitioners with empirical guidance for forex prediction model selection.
Article Details
Andersen T. G., Bollerslev T., Diebold F. X., Vega C. (2003) Micro Effects of Macro Announcements: Real-Time Price Discovery in Foreign Exchange. American Economic Review, 93(1), 38-62. (Crossref)
Bao W., Yue J., Rao Y. (2017) A Deep Learning Framework for Financial Time Series Using Stacked Autoencoders and LSTM. Neurocomputing, 356, 72-78.
Box G. E. P., Jenkins,G. M., Reinsel G. C. (2008) Time Series Analysis: Forecasting and Control (4th ed.), Wiley. (Crossref)
Breiman L. (2001) Random forests. Machine Learning, 45(1), 5-32. (Crossref)
Cavalcante R. C., Brasileiro R. C., Souza V. L., Nobrega J. P., Oliveira A. L. (2016) Computational Intelligence and Financial Markets: A Survey and Future Directions. Expert Systems with Applications, 55, 194-211. (Crossref)
Chen T., Guestrin C. (2016) XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference (pp. 785-794) (Crossref)
Dietterich T. G. (2000) Ensemble methods in machine learning. [In:] Multiple Classifier Systems (pp. 1-15), Springer. (Crossref)
Engle R. F. (1982) Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), 987-1007. (Crossref)
Fischer T., Krauss C. (2018) Deep Learning with Long Short-Term Memory Networks for Financial Market Predictions. European Journal of Operational Research, 270(2), 654-669. (Crossref)
Friedman J. H. (2001) Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics, 29(5), 1189-1232. (Crossref)
Goodfellow I., Bengio Y., Courville A. (2016) Deep Learning. MIT Press.
Gu S., Kelly B., Xiu D. (2020) Empirical Asset Pricing via Machine Learning. The Review of Financial Studies, 33(5), 2223-2273. (Crossref)
Hiransha M., Gopalakrishnan E. A., Menon V. K., Soman K. P. (2018) NSE Stock Market Prediction Using Deep-Learning Models. Procedia Computer Science, 132, 1351-1362. (Crossref)
Hochreiter S., Schmidhuber J. (1997) Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. (Crossref)
Hyndman R. J., Athanasopoulos G. (2018) Forecasting: Principles and Practice (2nd ed.) OTexts. (Crossref)
Ke G., et al. (2017) LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Advances in Neural Information Processing Systems, 30, 3146-3154.
Kim K. J. (2003) Financial Time Series Forecasting Using Support Vector Machines. Neurocomputing, 55, 307-319. (Crossref)
Krauss C., Do X. A., Huck N. (2017) Deep Neural Networks, Gradient-Boosted Trees, Random Forests: Statistical Arbitrage on the S&P 500. European Journal of Operational Research, 259(2), 689-702. (Crossref)
Makridakis S., Spiliotis E., Assimakopoulos V. (2018) Statistical and Machine Learning Forecasting Methods: Concerns and Ways Forward. PLoS ONE, 13(3), e0194889. (Crossref)
Patel J., Shah S., Thakkar P., Kotecha K. (2015) Predicting Stock and Stock Price Index Movement Using Trend Deterministic Data Preparation and Machine Learning Techniques. Expert Systems with Applications, 42(1), 259-268. (Crossref)
Sezer O. B., Gudelek M. U., Ozbayoglu A. M. (2020) Financial Time Series Forecasting with Deep Learning: A Systematic Literature Review. Applied Soft Computing, 90, 106181. (Crossref)
Sirignano J., Cont R. (2019) Universal Features of Price Formation in Financial Markets: Perspectives from Deep Learning. Quantitative Finance, 19(9), 1449-1459. (Crossref)
Taylor S. J., Letham B. (2018) Forecasting at Scale. The American Statistician, 72(1), 37-45. (Crossref)
Zhang G. P. (2003) Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model. Neurocomputing, 50, 159-175. (Crossref)
Zhang X., Aggarwal C. C., Qi G. J. (2017) Stock Price Prediction via Discovering Multi-Frequency Trading Patterns. [In:] Proceedings of the 23rd ACM SIGKDD International Conference (pp. 2141-2149). (Crossref)
Downloads
- Małgorzata Kowalczyk, Luiza Ochnio, WYBRANE KONCEPCJE ZARZĄDZANIA PROJEKTAMI IT OPARTE NA METODYCE PMI – STUDIUM PRZYPADKU , Metody Ilościowe w Badaniach Ekonomicznych: Tom 21 Nr 2 (2020)
- Maciej Janowicz, Andrzej Zembrzuski, Symmetry Properties of Modified Black-Scholes Equation , Metody Ilościowe w Badaniach Ekonomicznych: Tom 22 Nr 2 (2021)
- Maciej Janowicz, Andrzej Zembrzuski, SIMULATION OF PARTICLE SWARM OPTIMIZATION FOR INVESTMENTS ON STOCK MARKET , Metody Ilościowe w Badaniach Ekonomicznych: Tom 21 Nr 4 (2020)
- Luiza Ochnio, Grzegorz Koszela, Pornsiri Suebpongsang, APPLICATION OF ARMAX MEASURE FOR ANALYSIS OF FOOD PREFERENCE CHANGES IN ASIAN COUNTRIES 2001-2013 , Metody Ilościowe w Badaniach Ekonomicznych: Tom 19 Nr 4 (2018)
- Grzegorz Koszela, Luiza Ochnio, WOMEN PARTICIPATION IN EUROPEAN UNION COUNTRIES PARLIAMENTS , Metody Ilościowe w Badaniach Ekonomicznych: Tom 15 Nr 1 (2014)

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne 4.0 Międzynarodowe.
Publikowane artykuły dostępne są na warunkach Open Access na zasadach licencji Creative Commons CC BY-NC – do celów niekomercyjnych udostępnione materiały mogą być kopiowane, drukowane i rozpowszechniane. Autorzy ponoszą opłatę za opublikowanie artykułu.